

CS208: Applied Privacy for Data Science Introduction to Differential Privacy

School of Engineering & Applied Sciences Harvard University

February 8, 2022

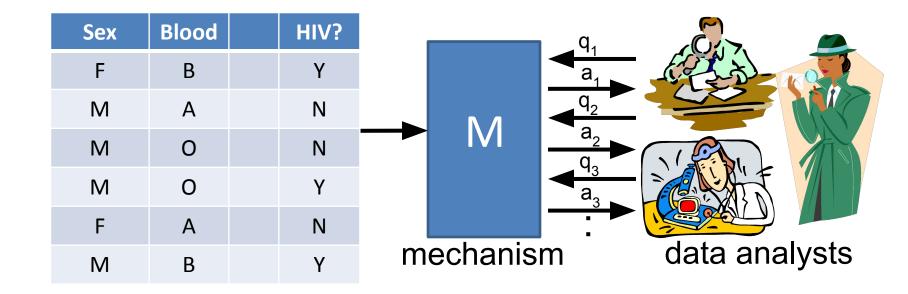
Attacks on Aggregate Stats

- What error *α* makes sense?
 - Estimation error due to sampling $\approx 1/\sqrt{n}$
 - Reconstruction attacks require $\alpha \leq 1/\sqrt{n}$, $d \geq n$
 - Membership attacks: $\alpha \leq \sqrt{d}/n$
- Lessons
 - "Too many, too accurate" statistics reveal individual data
 - "Aggregate" is hard to pin down

Goals of Differential Privacy

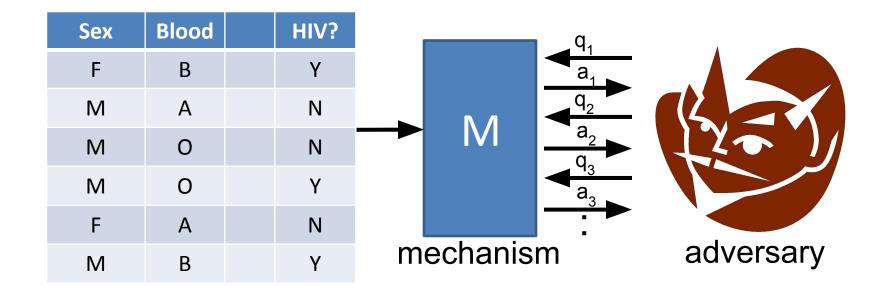
- Utility: enable "statistical analysis" of datasets
 - e.g. inference about population, ML training, useful descriptive statistics
- Privacy: protect individual-level data
 - against "all" attack strategies, auxiliary info.
- Q: Can it help with privacy in microtargetted advertising? [Korolova attacks]
 - inference from impressions?
 - inference from clicks?
 - displaying intrusive ads?

[Dinur-Nissim '03+Dwork, Dwork-Nissim '04, Blum-Dwork-McSherry-Nissim '05, Dwork-McSherry-Nissim-Smith '06]

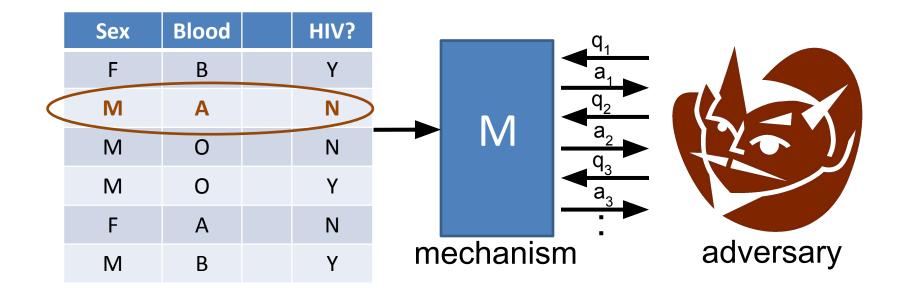


Requirement: effect of each individual should be "hidden"

[Dinur-Nissim '03+Dwork, Dwork-Nissim '04, Blum-Dwork-McSherry-Nissim '05, Dwork-McSherry-Nissim-Smith '06]

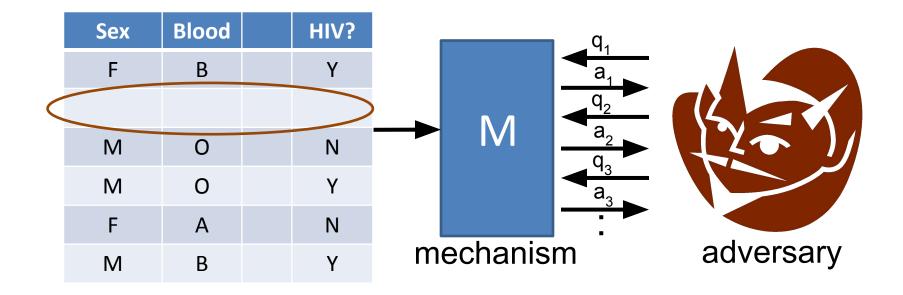


[Dinur-Nissim '03+Dwork, Dwork-Nissim '04, Blum-Dwork-McSherry-Nissim '05, Dwork-McSherry-Nissim-Smith '06]



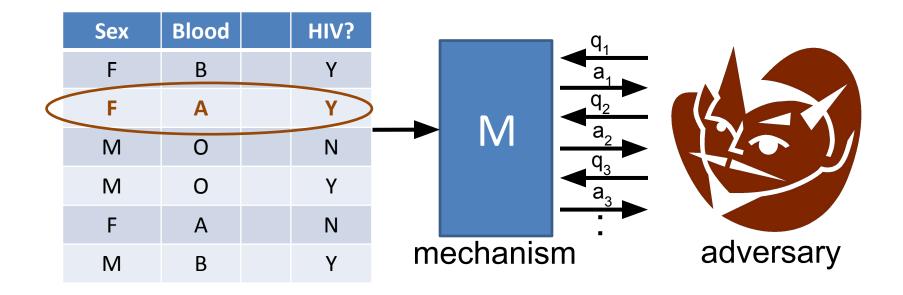
Requirement: an adversary shouldn't be able to tell if any one person's data were changed arbitrarily

[Dinur-Nissim '03+Dwork, Dwork-Nissim '04, Blum-Dwork-McSherry-Nissim '05, Dwork-McSherry-Nissim-Smith '06]



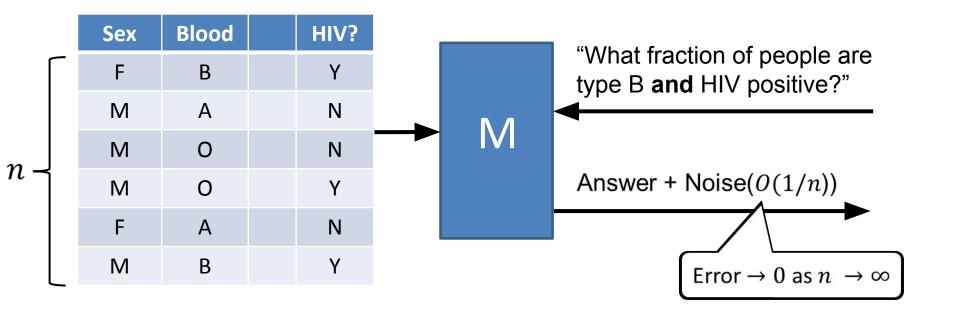
Requirement: an adversary shouldn't be able to tell if any one person's data were changed arbitrarily

[Dinur-Nissim '03+Dwork, Dwork-Nissim '04, Blum-Dwork-McSherry-Nissim '05, Dwork-McSherry-Nissim-Smith '06]



Requirement: an adversary shouldn't be able to tell if any one person's data were changed arbitrarily

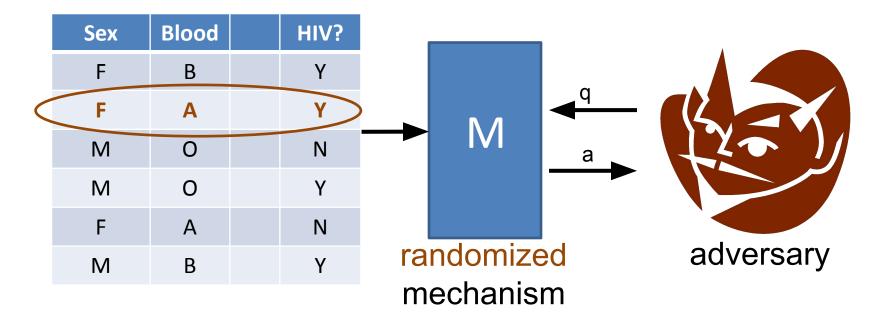
Simple approach: random noise



- Very little noise needed to hide each person as $n \to \infty$.
- Note: this is just for one query

DP for one query/release

[Dinur-Nissim '03+Dwork, Dwork-Nissim '04, Blum-Dwork-McSherry-Nissim '05, Dwork-McSherry-Nissim-Smith '06]

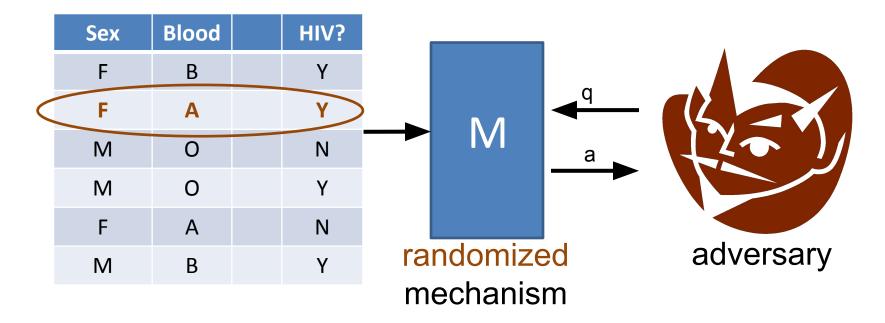


Requirement: for all D, D' differing on one row, and all q

Distribution of $M(D,q) \approx_{\varepsilon} Distribution of M(D',q)$

DP for one query/release

[Dinur-Nissim '03+Dwork, Dwork-Nissim '04, Blum-Dwork-McSherry-Nissim '05, Dwork-McSherry-Nissim-Smith '06]

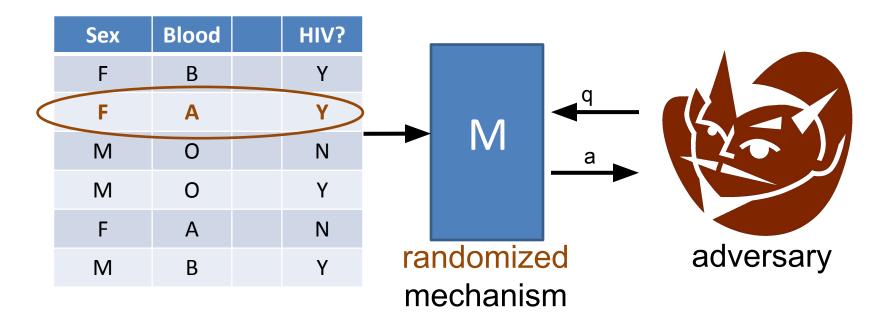


Requirement: for all D, D' differing on one row, and all q

 $\forall \text{ sets T}, \qquad \Pr[\mathsf{M}(\mathsf{D},\mathsf{q}) \in \mathsf{T}] \leq (1 + \varepsilon) \cdot \Pr[\mathsf{M}(\mathsf{D}',\mathsf{q}) \in \mathsf{T}]$

DP for one query/release

[Dwork-McSherry-Nissim-Smith '06]



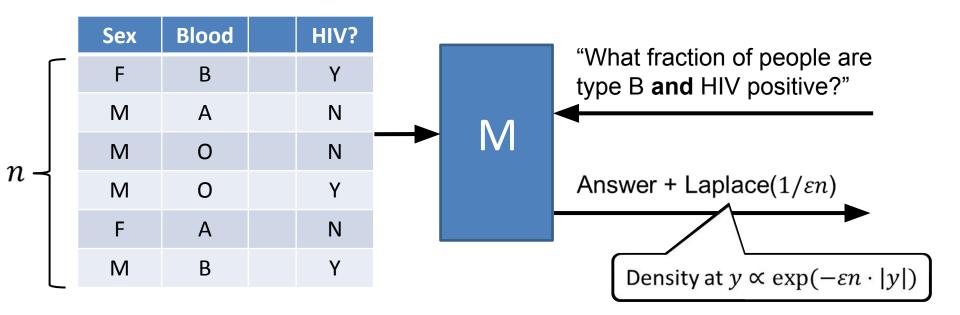
Def: M is ε -DP if for all D, D' differing on one row, and all q

 $\forall \text{ sets } \mathsf{T}, \qquad \mathsf{Pr}[\mathsf{M}(\mathsf{D},\mathsf{q}) \in \mathsf{T}] \leq e^{\varepsilon} \cdot \mathsf{Pr}[\mathsf{M}(\mathsf{D}',\mathsf{q}) \in \mathsf{T}]$

(Probabilities are (only) over the randomness of M.)

The Laplace Mechanism

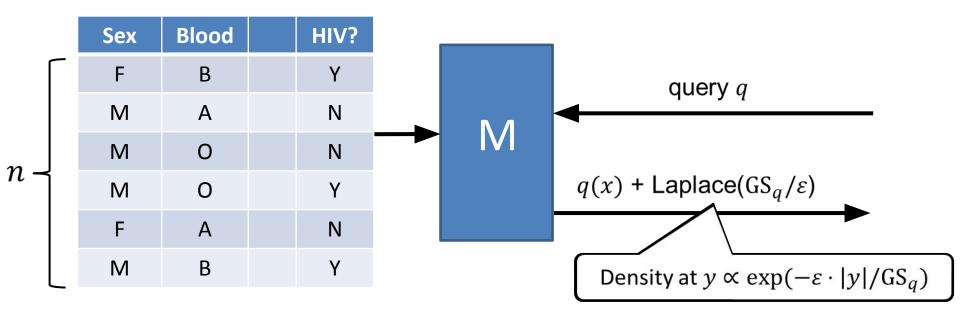
[Dwork-McSherry-Nissim-Smith '06]



• Very little noise needed to hide each person as $n \to \infty$.

The Laplace Mechanism

[Dwork-McSherry-Nissim-Smith '06]



• Very little noise needed to hide each person as $n \to \infty$.

The Laplace Mechanism

[Dwork-McSherry-Nissim-Smith '06]

- Let X be a data universe, and Xⁿ a space of datasets.
 (For now, we are treating n as known and public.)
- For $x, x' \in \mathcal{X}^n$, write $x \sim x'$ if x and x' differ on at one row.
- For a query $q : \mathcal{X}^n \to \mathbb{R}$, the global sensitivity is $GS_q = \max_{x \sim x'} |q(x) - q(x')|.$
- The Laplace distribution with scale *s*, Lap(*s*):
 - Has density function $f(y) = e^{-|y|/s}/2s$.
 - Mean 0, standard deviation $\sqrt{2} \cdot s$.

Theorem: $M(x,q) = q(x) + \text{Lap}(GS_q/\varepsilon)$ is ε -DP.

Calculating Global Sensitivity

1.
$$\mathcal{X} = \{0,1\}, q(x) = \sum_{i=1}^{n} x_i, GS_q =$$

2.
$$\mathcal{X} = \mathbb{R}, q(x) = \sum_{i=1}^{n} x_i$$
, $GS_q =$

3.
$$\mathcal{X} = [0,1], q(x) = \text{mean}(x_1, x_2, \dots, x_n), \text{GS}_q =$$

4.
$$\mathcal{X} = [0,1], q(x) = \text{median}(x_1, x_2, \dots, x_n), GS_q =$$

5.
$$X = [0,1], q(x) = variance(x_1, x_2, ..., x_n), GS_q =$$

Q: for which of these queries is the Laplace Mechanism "useful"?

Proof that the Laplace Mechanism is Differentially Private

Real Numbers Aren't

[Mironov `12]

- Digital computers don't manipulate actual real numbers.
 - Floating-point implementations of the Laplace mechanism can have M(x,q) and M(x',q) disjoint \rightarrow privacy violation!
- Solutions:
 - Round outputs of *M* to a discrete value (with care).
 - Or use the Geometric Mechanism:
 - Ensure that q(x) is always an integer multiple of g.
 - Define $M(x,q) = q(x) + g \cdot \text{Geo}(\text{GS}_q/g\varepsilon)$, where $\Pr[\text{Geo}(s) = k] \propto e^{-|k|/s}$ for $k \in \mathbb{Z}$.

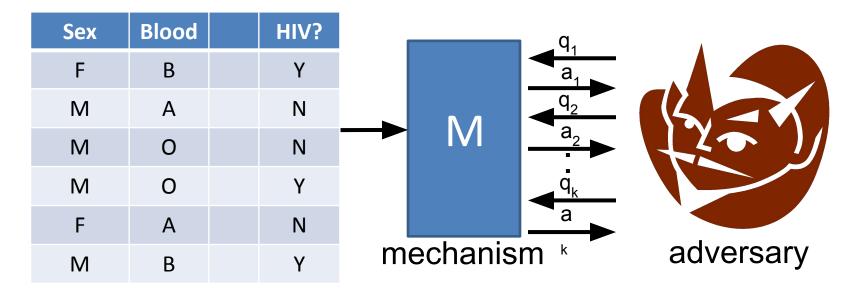
Properties of the Definition

• Suffices to check pointwise: M is ϵ -DP if and only if $\forall x \sim x', \forall q, \forall t \ \Pr[M(x,q) = t] \le e^{\epsilon} \cdot \Pr[M(x',q) = t]$

Replace with densities for continuous distributions

- Closed under post-processing: if M is ϵ -DP and f is any function, then M'(x,q) = f(M(x,q)) is also ϵ -DP.
- (Basic) composition: If M_i is ϵ_i -DP for i = 1, ..., k, then $M(x, (q_1, ..., q_k)) = (M_1(x, q_1), ..., M_k(x, q_k))$ is $(\epsilon_1 + \dots + \epsilon_k)$ -DP.
 - Use independent randomness for k queries.
 - Holds even if q'_i s are adaptively chosen by an adversary.

Composition & Privacy Budgeting



Thm: If M is ε -DP if for one query, then it is $k\varepsilon$ -DP for k queries.

- To maintain global privacy loss at most ε_g , can set $\varepsilon = \varepsilon_g/k$ and stop answering after k queries.
- More queries ⇒ Smaller ε ⇒ Less accuracy.
 Some query-accuracy tradeoff is necessary! (why?)

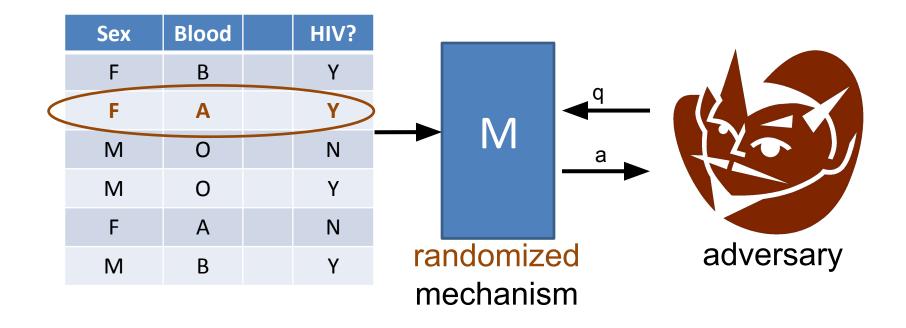
Composition for Algorithm Design

Composition and post-processing allow designing more complex differentially private algorithms from simpler ones.

Example:

- Many machine learning algorithms (e.g. stochastic gradient descent) can be described as sequence of low-sensitivity queries (e.g. averages) over the dataset, and can tolerate noisy answers to the queries. (The "Statistical Query Model.")
- Can answer each query by adding Laplace noise.
- By composition and post-processing, trained model is DP and safe to output.

Interpreting the Definition



Def: M is ε -DP if for all D, D' differing on one row, and all q

 $\forall \text{ sets T}, \qquad \Pr[\mathsf{M}(\mathsf{D},\mathsf{q}) \in \mathsf{T}] \leq e^{\varepsilon} \cdot \Pr[\mathsf{M}(\mathsf{D}',\mathsf{q}) \in \mathsf{T}]$

(Probabilities are (only) over the randomness of M.)

Interpreting the Definition

- Whatever an adversary learns about me, it could have learned from everyone else's data.
- Mechanism cannot leak "individual-specific" information.
- Above interpretations hold regardless of adversary's auxiliary information or computational power.

But:

- No guarantee that adversary won't infer sensitive attributes.
- No guarantee that subjects won't be "harmed" by results of analysis.
- No protection for information that is not localized to a few rows.

Group Privacy & Setting $\boldsymbol{\epsilon}$

• Thm: If M is ε -DP if for one query, then it is $k\varepsilon$ -DP for kgroups of size k: for all x, x' that differ on at most k rows, $\forall q \; \forall T \; \Pr[M(x,q) \in T] \leq e^{k\varepsilon} \cdot \; \Pr[M(x',q) \in T]$

– Meaningful privacy for groups of size $O(1/\varepsilon)$.

- Cor: Need $n \ge 1/\varepsilon$ for any reasonable utility.
- Typical recommendation for "good" privacy guarantee:
 .01 ≤ ε ≤ 1.