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[slide based on one from Adam Smith]



Goals of Differential Privacy
• Utility: enable “statistical analysis” of datasets

– e.g. inference about population, ML training, useful 
descriptive statistics

• Privacy: protect individual-level data  
– against “all” attack strategies, auxiliary info.

Q: Can it help with privacy in microtargetted advertising?
[Korolova attacks]
– inference from impressions?
– inference from clicks?
– displaying intrusive ads?
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Simple approach: random noise

C “What fraction of people are 
type B and HIV positive?”
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DP for one query/release
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DP for one query/release
[Dwork-McSherry-Nissim-Smith ’06]
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The Laplace Mechanism

C “What fraction of people are 
type B and HIV positive?”
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The Laplace Mechanism
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The Laplace Mechanism

•  

[Dwork-McSherry-Nissim-Smith ’06]



Calculating Global Sensitivity

•  



Proof that the Laplace Mechanism is
Differentially Private



Real Numbers Aren’t
[Mironov `12]

•  



Properties of the Definition

•  

Replace with densities for 
continuous distributions



Composition & Privacy 
Budgeting
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Composition for Algorithm 
Design

Composition and post-processing allow designing more 
complex differentially private algorithms from simpler ones.

Example:
• Many machine learning algorithms (e.g. stochastic 

gradient descent) can be described as sequence of 
low-sensitivity queries (e.g. averages) over the dataset, 
and can tolerate noisy answers to the queries. (The 
“Statistical Query Model.”)

• Can answer each query by adding Laplace noise.
• By composition and post-processing, trained model is 

DP and safe to output.
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Interpreting the Definition

• Whatever an adversary learns about me, it could have 
learned from everyone else’s data.

• Mechanism cannot leak “individual-specific” information.
• Above interpretations hold regardless of adversary’s 

auxiliary information or computational power.
But:
• No guarantee that adversary won’t infer sensitive 

attributes.
• No guarantee that subjects won’t be “harmed” by results of 

analysis.
• No protection for information that is not localized to a few 

rows.
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