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DP for one query/release

[Dwork-McSherry-Nissim-Smith '06]
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Def: M is ¢-DP if for all D, D’ differing on one row, and all g

V sets T, PrM(D,q)eT] < e®- Pr[M(D’,q) eT]

(Probabilities are (only) over the randomness of M.)



The Laplace Mechanism

[Dwork-McSherry-Nissim-Smith '06]
 Let X be a data universe, and X" a space of datasets.

(For now, we are treating n as known and public.)
 Forx,x' € X", write x ~ x' if x and x’ differ on at one row.
 Foraqueryqg: X™ - R, the global sensitivity is

GSq = max |q(x) — q(x")].

« The Laplace distribution with scale s, Lap(s):

— Has density function f(y) = e l/5/2s.

— Mean 0, standard deviation V2 - s.

Theorem: M(x, q) = q(x) + Lap(GS,/¢) is e-DP.



Real Numbers Aren’t

[Mironov "12]

e Digital computers don’t manipulate actual real numbers.

— Floating-point implementations of the Laplace mechanism
can have M(x, q) and M(x', q) disjoint — privacy violation!

e Solutions:
— Round outputs of M to a discrete value (with care).
— Or use the Geometric Mechanism:
* Ensure that g(x) is always an integer multiple of g.
* Define M(x,q) = q(x) + g - Geo(GS,/g¢), where
Pr[Geo(s) = k] x e~ Kl/s for k € Z.



Properties of the Definition

¢ Suffices to check pointwise: M is e-DP if and only if
Vx ~ x'Vq,Vt PrIM(x,q) =t] <e€-Pr[M(x',q) = t]
\ /

Replace with densities for
continuous distributions

* Closed under post-processing: if M is e-DP and f is any function,
then M'(x,q) = f(M(x,q)) is also €-DP.

* (Basic) composition: If M; is €;-DP fori = 1, ..., k, then
M(x,(qq, -, qr)) = (M1(x, q1), ..., My (x, qx.))
is (€1+ -+ + € )-DP.
— Use independent randomness for k queries.
— Holds even if g;s are adaptively chosen by an adversary.



Composition & Privacy Budgeting
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Thm: If M is &-DP if for one query, then it is ke-DP for k queries.
* To maintain global privacy loss at most ¢4, can set € = £, /k and stop
answering after k queries.
* More queries = Smaller € = Less accuracy.
Some query-accuracy tradeoff is necessary! (why?)



Composition for Algorithm Design

Composition and post-processing allow designing more
complex differentially private algorithms from simpler ones.

Example:

« Many machine learning algorithms (e.g. stochastic
gradient descent) can be described as sequence of low-
sensitivity queries (e.g. averages) over the dataset, and
can tolerate noisy answers to the queries. (The
“Statistical Query Model.”)

« Can answer each query by adding Laplace noise.

« By composition and post-processing, trained model is
DP and safe to output.



Interpreting the Definition
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Def: M is e-DP if for all D, D’ differing on one row, and all g

YV sets T, PriIM(D,q)eT] < e?- Pr[M(D’,q) €T]

(Probabilities are (only) over the randomness of M.)



Interpreting the Definition

 Whatever an adversary learns about me, it could have
learned from everyone else’s data.

« Mechanism cannot leak “individual-specific” information.

« Above interpretations hold regardless of adversary’s
auxiliary information or computational power.

But:

* No guarantee that adversary won't infer sensitive
attributes.

* No guarantee that subjects won’t be “harmed” by results of
analysis.

* No protection for information that is not localized to a few
rOws.



A Bayesian Interpretation

Let X = (X4, ..., X;;) € X" be a random variable distributed
according to an adversary’s “prior beliefs” about a dataset,
andlet X_; = (X4, ..., X;_1, L, X;, ..., X;;) have person i’s data
removed or replaced with a dummy value in X..

Suppose M : X™ — Y is -DP, and let y € Y be any possible
output. Then for every x; € X,

PriX; = x,|M(X) = y] € e** - Pr[X; = xIM(X_) = y]
\ J

|
Posterior belief about person Posterior belief about person
[ after seeing output y [ after seeing output y if

person i’s data wasn’t used

Explains choice of multiplicative distance in def of DP.



Group Privacy & Setting ¢

Thm: If Mis &-DP if for one query, then it is ke-DP for k
groups of size k: for all x, x’ that differ on at most k rows,
Vq VT Pr[M(x,q) € T] <e®€. Pr[M(x',q) € T]

— Meaningful privacy for groups of size 0(1/¢).
Cor: Need n = 1/¢ for any reasonable utility.

Typical recommendation for “good” privacy guarantee:
01<e< 1



Variants of the Definition

¢ When n is not publicly known:

— Datasets: multisets D of elements of X, can represent as a
histogram D € N*, where D,, = number of copies of x.

— Neighbors: D ~ D"iff IDAD'| = 1 (add or remove an elt)
In histogram notation: |DAD'| = }.,.|D,, — Dy| & ||D — D’||;

* Social network data:
— Datasets: graphs G, possibly with labels on nodes and edges
— Neighbors v1: G ~ G' if differ by modifying one edge

— Neighbors v2: G ~ G'if differ by modifying one node &
incident edges.

— Q: which choice provides better privacy protection?



Approximate Differential Privacy

Pef: Mis (&, 6)-DP if for all D~D’, and all q

YV sets T, Pr[M(D,q)eT] < e®: Pr[M(D’,q) eT]+06

e [ntuitively: e-DP with probability at least 1 — §.

* Picking a random person from dataset and publishing their
datais (0,1/n)-DP, sowant§ < 1/n.

* Ideally set § to be cryptographically small (e.g. 27°9).
 Satisfies postprocessing, basic composition (adding d;’s).

* Group privacy for groups of size up to 0(1/¢).

* Does not suffice to check pointwise (need to consider sets T).



Benefits of Approximate DP

* More mechanisms, e.g. Gaussian Mechanism:
M(x,q) = q(x) + N(0,02),

GS
for o = qu\/z In(2/6)

* Advanced Composition Thm: If M; is (¢,8)-DPfori =1, ...,k
and k < 1/&?,thenV§ > 0

M(X, (Ch: ey CIk)) — (Ml(x; ql); seny Mk(x, qk))
is(e,k-85+8")—DP, for

=0 (e k- 10g(1/5’)).




# Queries vs. Accuracy Tradeoff

¥sing Laplace Mechanism to answer k queries, each with global
sensitivity 1 (e.g. counts), under fixed privacy budget &':

— Sete = 1/(7(\/%) for each query (via Advanced Comp, hiding 6").

— Add noise of scale E = 1/¢ ~ 5(\/%) per query.

S
LE =k |
n/2 kil At
DP possible
Error £ Membership attacks possibl
per R |- embership attacks possible
query Reconstruction attacks possible
0
0 n n?

Number k of Queries

Note: DP prevents all membership & reconstruction attacks (not just
those we’ve seen), e.g. Pr[true pos| < e® - Pr[false pos| + 6



Doing Better than Composition

Not all sequences of k queries require error growing as Vk.

Example: histograms

— Let B4, ..., By © X be disjoint bins.

— Defineq; : X™ - {0,1} by q;(x) = #{i : x; € B;}.

— DefineM(x) = (q1(x) + Z1,q,(x) + Z,, ..., qi (x) + Z},)
where the Z;’s are independent Lap(2/<) or Geo(2/¢).

— Then M is &-DP.

Amazing result: with correlated noise, can answer k arbitrary
bounded averaging queries on a finite data universe X' w/error

1/2
<\/10ng| -log(1/6) - log k)
a=0 o




