
Section 1: Probability and Asymptotic Notation Review

CS 208 Applied Privacy for Data Science, Spring 2022

February 1, 2022

1 Agenda

• Introductions (go around and say name, year, where you are from, and why you are interested
in this class)

• Section logistics (optional but encouraged, counts for participating and helps homework, we
will send out poll for timings)

• Probability, bounds, asymptotic notation review

• Some exercises

2 Probability Review

Probability is the chance or likelihood that something is to happen. For example, we might look
at the probability that we get 10 heads in a row when flipping a fair coin. The analysis of events
governed by probability is called statistics. The elements of probability include the sample space
Ω (set of all outcomes in a random experiment), events A ⊆ Ω, event space F (set of all events,
and probability measure P : F → R. The probability measure P must follow three rules.

• 0 ≤ P (A) ≤ 1, for event A ∈ F

• P (Ω) = 1

• For disjoint events A1, A2, P (A1 ∪A2) = P (A1) + P (A2)

• Boole’s Inequality/Union Bound: For any n events A1, A2, . . . , An,

Pr

(
n⋃

i=1

Ai

)
≤

n∑
i=1

Pr (Ai) .

Conditional probability and independence: Let B be an event with non-zero probability.
The conditional probability of an event A given B is

Pr(A|B) =
Pr(A ∩B)

Pr(B)

A and B are independent if and only if Pr(A ∩B) = Pr(A) · Pr(B). Independence is equivalent to
saying that observing B does not have any effect on the probability of A.
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Random variables, expectation, and variance: A random variable X is a function: X : Ω→
R. For example, X(ω) could be the number of heads which occur in a series of tosses ω. Then, the
probability that 5 heads occur is

Pr(X = 5) := Pr(ω : X(ω) = 5)

X can be a discrete random variable (in the example above) or a continuous random variable. Let
X be a discrete random variable with probability mass distribution pX(x). Then, the expected value
of X is

E[X] =
∑
x

x · pX(x)

Intuitively, the expectation of a random variable X is a weighted average of all its possible values
x. Two properties of expectation:

• E[X + Y ] = E[X] + E[Y ]

• E[af(X)] = aE[f(X)]

The variance of a random variable X is a measure of the concentration of its distribution around
its mean or expected value.

V ar(X) = E[(X − E(X))2]

Using the properties of expectation listed above, we can derive an alternate equation.

V ar(X) = E[X2]− E[X]2

Remember that if two variables X and Y are independent, then V ar(X+Y ) = V ar(X) +V ar(Y ).

3 Tail Bounds

Claim 3.1 (A Chernoff-Hoeffding Bound). For i = 1, . . . , n, let Xi be an independent random
variable within [a, b] with mean µ. Then,

Pr

[
n∑

i=1

Xi − nµ ≥ t

]
≤ exp

(
− 2t2

n(b− a)2

)
.

Claim 3.2 (Laplace Tail Bound). Let Z be a Laplace random variable with mean 0 and scale b
(variance 2b2). Then for every t > 0,

Pr[Z > t] =
1

2
e−t/b, Pr[|Z| > t] = e−t/b.

Claim 3.3 (Gaussian Tail Bound). Let Z be a standard normal random variable with mean 0 and
variance 1. Then for every t > 0,

Pr[Z > t] ≤ exp(−t2/2).
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3.1 Exercises

1. Suppose you independently flip 15 fair coins, what is the probability that you get 5 heads?

Solution:

Pr[5 heads] =

(
15

5

)
(0.5)5(0.5)10

2. LetX1, . . . , Xn be independent {0, 1}-valued Bernoulli random variables where Pr[Xi = 1] = p
for all i ∈ [n] (e.g., coin tosses where the probability of heads is p). How large does n need to
be to make sure that the mean of observed outcomes (i.e., 1

n

∑n
i=1Xi) is within ε of p with

probability at least 0.9?

Solution:

Pr

[∣∣∣∣∣ 1n
n∑

i=1

Xi − p

∣∣∣∣∣ ≥ ε
]
≤ 2 exp

(
−2ε2n

)
< 0.1

n > ln(20)/(2ε2)

3. Let X be a Gaussian random variable with mean 0 and standard deviation 1. What is the
probability that X is greater than 4?

Solution:

Pr [X > 4] ≤ exp (−16/2) =
1

e8

4. Let X be a Laplace random variable with mean 0 and scale of s. What is the probability
that X is greater than 4

√
2s?

Solution:

Pr
[
X > 4

√
2s
]

=
1

2
exp

(
−4
√

2s/s
)

=
1

2e4
√
2

4 Asymptotic Notation Review

In asymptotic analysis, we ask: how does a function f(n) behave as its input size n goes to infinity?
Here are the different ways to classify the growth rate of a function.

• Big-O (upper bound): f(n) = O(g(n)) if and only if there exists constants c and N such
that for all n ≥ N ,

0 ≤ f(n) ≤ c · g(n).

• Little-o (strict upper bound): f(n) = o(g(n)) if and only if

lim
n→∞

f(n)

g(n)
= 0.
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• Big-Ω (lower bound): f(n) = Ω(g(n)) if and only if there exists constants c and N such
that for all n ≥ N ,

0 ≤ c · g(n) ≤ f(n).

• Little-ω (strict lower bound): f(n) = ω(g(n)) if and only if

lim
n→∞

f(n)

g(n)
=∞.

• Θ (tight bound): f(n) = Θ(g(n)) if and only if f(n) = O(g(n)) and f(n) = Ω(g(n)).

4.1 Exercises

1. Let f(n) = 3n2 + 2n+ 5. Is f(n) = O(n2)?

2. Let f(n) = 3n2 + 2n+ 5. Is f(n) = o(n2)?

3. Let f(n) = 2.5n. Is f(n) = o(3.5n)?

4. Let f(n) = 500 log n100. Is f(n) = O(0.5 log n)?

5. Let f(n) = 1.01n/100. is f(n) = ω(n900)?
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