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Exponential Mechanism for the Median

• Say X = {1, 2, · · · ,M}.
• M(x) : output y ∈ X with prob ∝ exp(ε · s(x, y)/2)

Where s(x, y) = min{#{i : xi ≤ y},#{i : xi ≥ y}}.
• Note that true median y∗ has s(x, y∗) ≥ n/2.
• Can show that for all x, with high probability,

s(x,M(x)) ≥ n/2−O(log(M)/ε)



Education Values
Codebook for Census PUMS 5 Percent CS208 Datasets
educ 1: No schooling completed,

2: Nursery school to 4th grade,
3: 5th grade or 6th grade,
4: 7th grade or 8th grade,
5: 9th grade,
6: 10th grade,
7: 11th grade,
8: 12th grade, no diploma,
9: High school graduate,
10: Some college, but less than 1 year,
11: One or more years of college, no degree,
12: Associate degree,
13: Bachelor’s degree,
14: Master’s degree,
15: Professional degree,
16: Doctorate degree.
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Discussion

1. Why is the coverage of the population mean failing?
Why particularly at high ε, low privacy-loss?

2. What is the sensitivity of the (sample estimate) of
standard error of the mean?

SE =
1√
N

√∑
(xi − x̄)2

N



Gaussian Mechanism

Laplace Mechanism



Correcting Coverage in Confidence Intervals
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Publishing Statistics Based on Small Cells

• Social scientists increasingly use confidential data to
publish statistics based on cells with a small number
of observations

• Causal effects of schools or hospitals [e.g., Angrist et
al. 2013, Hull 2018]

• Local area statistics on health outcomes or income
mobility [e.g., Cooper et al. 2015, Chetty et al. 2018]







Controlling Privacy Loss

• Problem with releasing such estimates at smaller
geographies (e.g., Census tract): risk of disclosing an
individual’s data

• Literature on differential privacy has developed
practical methods to protect privacy for simple
statistics such as means and counts [Dwork 2006,
Dwork et al. 2006]

• But methods for disclosing more complex estimates,
e.g. regression or quasiexperimental estimates, are
not feasible for many social science applications
[Dwork and Lei 2009, Smith 2011, Kifer et al. 2012]



This Paper: A Practical Method to Reduce
Privacy Loss

• We develop and implement a simple method of
controlling privacy loss when disclosing arbitrarily
complex statistics in small samples

I The “Maximum Observed Sensitivity” (MOS)
algorithm

• Method outperforms widely used methods such as
cell suppression both in terms of privacy loss and
statistical accuracy

I Does not offer a formal guarantee of privacy, but
potential risks occur only at more aggregated levels
(e.g., the state level)







Maximum Observed Sensitivity

• Our method: use the maximum observed local
sensitivity across all cells in the data

I In geography of opportunity application, calculate
local sensitivity in every tract

I Then use the maximum observed sensitivity (MOS)
across all tracts within a given state as the sensitivity
parameter for every tract in that state

• Analogous to Empirical Bayes approach of using
actual data to construct prior on possible realizations
rather than considering all possible priors







Producing Noise-Infused Estimates for
Public Release

• Main lesson: tools from differential privacy literature
can be adapted to control privacy loss while
improving statistical inference

I Opportunity Atlas has been used by half a million
people, by housing authorities to help families move
to better neighborhoods, and in downstream research
[Creating Moves to Opportunity Project; Morris et al.
2018]

I The MOS algorithm can be practically applied to any
empirical estimate

• Example: difference-in-differences or regression
discontinuity

I Even when there is only one quasi-experiment,
pretend that a similar change occurred in other cells
of the data and compute MOS across all cells





Conclusion
• Use max observed sensitivity χ, tract counts, and

exogenously specified privacy parameter ε to add
noise and construct public estimates:

θ̃g = θg + L
(

0,
χ

εNg

)
Ñg = Ng + L

(
0,

1
ε

)
I This method not “provably private,” but it reduces

privacy risk to release of the single max observed
sensitivity parameter (!)

I Privacy loss from release of regression statistics
themselves is controlled below risk tolerance
threshold ε.

• Critically, χ can be computed at a sufficiently
aggregated level that disclosure risks are considered
minimal ex-ante


