CS2080: Applied Privacy for Data Science
Machine Learning under DP

School of Engineering & Applied Sciences
Harvard University

March 24, 2022



Discussion

Assume we want to learn the relationship between
education and income, in a sample of private data.

 Sketch out three differentially private approaches to
learning this? (Make any assumptions you need but
write them down.)

* Which of your methods would work if we further
extended the relationship to many
features/variables/covariates?

* If time: Does it matter if our model is predictive or
inferential?

e If time: What would be an attack on this model if it
were released without privacy-preservation?



DP Optimization of Complex Models



Logit Model

logL(y|x, 6) Zyllog () + (1 —y;)log(1 — m;),

1

= 1+ ePo—bixi’



E(y|x,theta)

E(y|x,theta)

Probability Married by Education

0.8
|

0.0

-40 -20 0 20 40 60

education

0.0
|

education



education parameter

-3

-2

logLikelihood surface

-1 0 1

constant parameter

—-10000

-15000

—20000

—-25000



Algorithm 1 Differentially private SGD (Outline)

Input: Examples {zi,...,zn}, loss function L£(0) =
+ >0, L£(0,x;). Parameters: learning rate 7, noise scale
o, group size L, gradient norm bound C'.

Initialize 6y randomly
for t € [T] do
Take a random sample L; with sampling probability
L/N
Compute gradient
For each i € L, compute g¢(x;) < Vo, L(0:,x:)
Clip gradient
g:(z;) < gi(z;)/ max (1» Hgt(él)llz)
Add noise
g « + (3, (i) + N(0,0°C?1))
Descent
Or1 < 0 — M8t
Output 67 and compute the overall privacy cost (e,d)
using a privacy accounting method.

Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B., Mironov, 1.,
Talwar, K., Zhang, L. (2016, October). Deep learning with differential
privacy. In Proceedings of the 2016 ACM SIGSAC conference on computer

and communications security (pp. 308-318)



Key privacy innovation:
* Clip each individual observations maximum
contribution to the gradient to C.
* Average gradients and add noise proportional to
C/N (via Gaussian mechanism)

* Model optimized by DP-SGD is itself DP



Clipped

Norm



500

400

300

200

100

step

T
800

T
00

TeRq

T
000

500

400

300

200

100

step



Parameter Tuning

Learning Rate | 7,
Clipping Norm | C
Batch Size L

Approaches to parameter tuning:



Parameter Tuning

Learning Rate | 7,
Clipping Norm | C
Batch Size L

Approaches to parameter tuning:

e Public data and transfer parameters
(Deep Learning with Differential Privacy [Abadi et al. 2016])
» Find similar styled public data, tune parameters
there, transfer.



Parameter Tuning

Learning Rate | 7
Clipping Norm | C
Batch Size L

Approaches to parameter tuning;:

* Exponential mechanism over private models
(Lipschitz extensions for node-private graph statistics and the
generalized exponential mechanism [Raskhodnikova & Smith
2016])

» Requires score function that has low sensitivity
» Use (generalized) exponential mechanism over
models



Parameter Tuning

Learning Rate | 7;
Clipping Norm | C
Batch Size L

Approaches to parameter tuning;:

* Private selection
(Private Selection from Private Candidates [Liu & Talwar
2019])
» Requires DP score function
» Randomized stopping algorithm tunes parameters an
indefinite period of time
» however, lower expected computation and lower
privacy consumption.



Broader Choices

Instance level gradients

Mechanisms

Batch Sampler (Tensorflow Chunking, Opacus
Uniform with replacement across batches)

* Composition
DP definition



Opacus

Train PyTorch models with Differential Privacy

| INTRODUCTION ” GET STARTED ” TUTORIALS ‘

KEY FEATURES

&% O 2

Scalable Built on PyTorch Extensible
Vectorized per-sample gradient computation that is Supports most types of PyTorch models and can be ‘Open source, modular API for differential privacy
10x faster than microbatching used with minimal modification to the original neural research. Everyone is welcome to contribute.
network.

https://opacus.ai


https://opacus.ai

Opacus for PyTorch

Write out a standard PyTorch model:

import torch
import torch.nn as nn
import torch.nn.functional as F

class ExamplelLogisticModule(nn.Module):
def __init__(self, input_size):
super().__init__()
self.linear = nn.Linear(input_size, 1)

def forward(self, x):
x = self.linear(x)
X = torch.sigmoid(x)
return x[:,0]



Opacus for PyTorch

Write out a standard PyTorch model:

import torch
import torch.nn as nn
import torch.nn.functional as F

class ExamplelLogisticModule(nn.Module):
def __init__(self, input_size):
super().__init__()
self.linear = nn.Linear(input_size, 1)

def forward(self, x):
x = self.linear(x)
X = torch.sigmoid(x)
return x[:,0]

Swap out the optimizer for DP:

from opacus import PrivacyEngine

privacy_engine = PrivacyEngine()
model, optimizer, data_loader = privacy_engine.make_private(
module=model,
optimizer=optimizer,
data_loader=data_loader,
noise_multiplier=1.0,
max_grad_norm=0.5,



