

CS2080: Applied Privacy for Data Science Machine Learning under DP

School of Engineering & Applied Sciences Harvard University

March 24, 2022

Discussion

Assume we want to learn the relationship between education and income, in a sample of private data.

- Sketch out three differentially private approaches to learning this? (Make any assumptions you need but write them down.)
- Which of your methods would work if we further extended the relationship to many features/variables/covariates?
- If time: Does it matter if our model is predictive or inferential?
- If time: What would be an attack on this model if it were released without privacy-preservation?

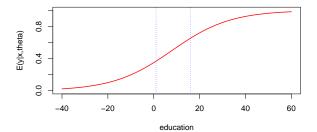
DP Optimization of Complex Models

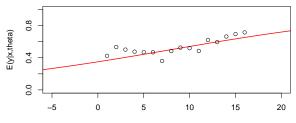
Logit Model

$$logL(y|x, heta) = \sum_{i=1}^{N} y_i log(\pi_i) + (1 - y_i) log(1 - \pi_i),$$

 $\pi_i = rac{1}{1 + e^{-eta_0 - eta_1 x_i}}.$

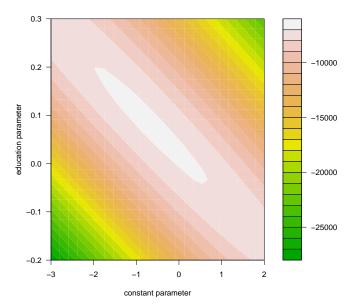
Probability Married by Education





education

logLikelihood surface



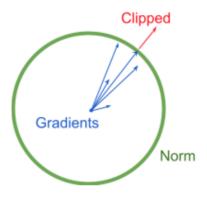
Algorithm 1 Differentially private SGD (Outline)

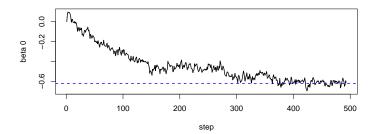
Input: Examples $\{x_1, \ldots, x_N\}$, loss function $\mathcal{L}(\theta) =$ $\frac{1}{N}\sum_{i}\mathcal{L}(\theta, x_{i})$. Parameters: learning rate η_{t} , noise scale σ , group size L, gradient norm bound C. **Initialize** θ_0 randomly for $t \in [T]$ do Take a random sample L_t with sampling probability L/N**Compute** gradient For each $i \in L_t$, compute $\mathbf{g}_t(x_i) \leftarrow \nabla_{\theta_t} \mathcal{L}(\theta_t, x_i)$ Clip gradient $\bar{\mathbf{g}}_t(x_i) \leftarrow \mathbf{g}_t(x_i) / \max\left(1, \frac{\|\mathbf{g}_t(x_i)\|_2}{C}\right)$ Add noise $\tilde{\mathbf{g}}_t \leftarrow \frac{1}{L} \left(\sum_i \bar{\mathbf{g}}_t(x_i) + \mathcal{N}(0, \sigma^2 C^2 \mathbf{I}) \right)$ Descent $\theta_{t+1} \leftarrow \theta_t - \eta_t \tilde{\mathbf{g}}_t$ **Output** θ_T and compute the overall privacy cost (ε, δ) using a privacy accounting method.

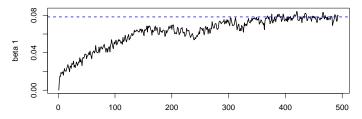
Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B., Mironov, I., Talwar, K., Zhang, L. (2016, October). Deep learning with differential privacy. In *Proceedings of the 2016 ACM SIGSAC conference on computer* and communications security (pp. 308-318)

Key privacy innovation:

- Clip each individual observations maximum contribution to the gradient to C.
- Average gradients and add noise proportional to C/N (via Gaussian mechanism)
- Model optimized by DP-SGD is itself DP







step

$\begin{array}{c|c} \text{Learning Rate} & \eta_t \\ \text{Clipping Norm} & C \\ \text{Batch Size} & L \end{array}$

Learning Rate η_t Clipping NormCBatch SizeL

- Public data and transfer parameters (*Deep Learning with Differential Privacy* [Abadi *et al.* 2016])
 - Find similar styled public data, tune parameters there, transfer.

 $\begin{array}{c|c} \text{Learning Rate} & \eta_t \\ \text{Clipping Norm} & C \\ \text{Batch Size} & L \end{array}$

- Exponential mechanism over private models (*Lipschitz extensions for node-private graph statistics and the generalized exponential mechanism* [Raskhodnikova & Smith 2016])
 - Requires score function that has low sensitivity
 - Use (generalized) exponential mechanism over models

Learning Rate η_t Clipping NormCBatch SizeL

- Private selection (*Private Selection from Private Candidates* [Liu & Talwar 2019])
 - Requires DP score function
 - Randomized stopping algorithm tunes parameters an indefinite period of time
 - however, lower expected computation and lower privacy consumption.

Broader Choices

- Instance level gradients
- Mechanisms
- Batch Sampler (Tensorflow Chunking, Opacus Uniform with replacement across batches)
- Composition
- DP definition

Opacus Train PyTorch models with Differential Privacy		
Key Features		
22	Ċ	
Scalable	Built on PyTorch	Extensible
Vectorized per-sample gradient computation that is 10x faster than microbatching	Supports most types of PyTorch models and can be used with minimal modification to the original neural network.	Open source, modular API for differential privacy research. Everyone is welcome to contribute.

https://opacus.ai

Opacus for PyTorch

Write out a standard PyTorch model:

```
import torch
import torch.nn as nn
import torch.nn.functional as F
class ExampleLogisticModule(nn.Module):
    def __init__(self, input_size):
        super().__init__()
        self.linear = nn.Linear(input_size, 1)
    def forward(self, x):
        x = self.linear(x)
        x = torch.sigmoid(x)
        return x[:,0]
```

Opacus for PyTorch

Write out a standard PyTorch model:

```
import torch
import torch.nn as nn
import torch.nn.functional as F
class ExampleLogisticModule(nn.Module):
    def __init__(self, input_size):
        super().__init__()
        self.linear = nn.Linear(input_size, 1)
    def forward(self, x):
        x = self.linear(x)
        x = torch.sigmoid(x)
        return x[:,0]
```

Swap out the optimizer for DP:

```
from opacus import PrivacyEngine
privacy_engine = PrivacyEngine()
model, optimizer, data_loader = privacy_engine.make_private(
    module=model,
    optimizeroptimizer,
    data_loader=data_loader,
    noise_multiplier=1.0,
    max_grad_norm=0.5,
```