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Discussion

Assume we want to learn the relationship between
education and income, in a sample of private data.

• Sketch out three differentially private approaches to
learning this? (Make any assumptions you need but
write them down.)

• Which of your methods would work if we further
extended the relationship to many
features/variables/covariates?

• If time: Does it matter if our model is predictive or
inferential?

• If time: What would be an attack on this model if it
were released without privacy-preservation?



DP Optimization of Complex Models



Logit Model

logL(y|x, θ) =
N∑

i=1

yilog(πi) + (1− yi)log(1− πi),

πi =
1

1 + e−β0−β1xi
.
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logLikelihood surface
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Key privacy innovation:
• Clip each individual observations maximum

contribution to the gradient to C.
• Average gradients and add noise proportional to

C/N (via Gaussian mechanism)
• Model optimized by DP-SGD is itself DP
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Parameter Tuning

Learning Rate ηt

Clipping Norm C
Batch Size L

Approaches to parameter tuning:



Parameter Tuning

Learning Rate ηt

Clipping Norm C
Batch Size L

Approaches to parameter tuning:
• Public data and transfer parameters

(Deep Learning with Differential Privacy [Abadi et al. 2016])
I Find similar styled public data, tune parameters

there, transfer.



Parameter Tuning

Learning Rate ηt

Clipping Norm C
Batch Size L

Approaches to parameter tuning:
• Exponential mechanism over private models

(Lipschitz extensions for node-private graph statistics and the
generalized exponential mechanism [Raskhodnikova & Smith
2016])

I Requires score function that has low sensitivity
I Use (generalized) exponential mechanism over

models



Parameter Tuning

Learning Rate ηt

Clipping Norm C
Batch Size L

Approaches to parameter tuning:
• Private selection

(Private Selection from Private Candidates [Liu & Talwar
2019])

I Requires DP score function
I Randomized stopping algorithm tunes parameters an

indefinite period of time
I however, lower expected computation and lower

privacy consumption.



Broader Choices

• Instance level gradients
• Mechanisms
• Batch Sampler (Tensorflow Chunking, Opacus

Uniform with replacement across batches)
• Composition
• DP definition



https://opacus.ai

https://opacus.ai


Opacus for PyTorch
Write out a standard PyTorch model:

Swap out the optimizer for DP:



Opacus for PyTorch
Write out a standard PyTorch model:

Swap out the optimizer for DP:


