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More Responses to Midterm Feedback
(see also 3/12 slides)

Median time spent on readings: 1.75hrs
Median time spent on psets: 8hrs
— Come discuss if you're regularly spending 12+hrs

— Should be lower in the rest of the course (to leave time for
project work)

Discussions:
— Most enjoying, depends on who you are with

— Request for more technical discussions, more TA
involvement

Section times inconvenient, need more OH
— Have added Tue eve section, more OH
Pset solutions should now have been released for past psets.



Why ML with DP?
ML models memorize training data
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ML Inputs and Loss Functions

* Data: (xq,¥1), o0, (6, V) ~ P
— Examples x; € X': d-dimensional, discrete or continuous

— Labels y; € Y: 1-dimensional, discrete or continuous
— P typically unknown

* Aloss function:
—£:0XXXY->R £(0|x;y;) measures loss"

— DefineL:® > R L(O) = % i1 £(01x;, y1)
— E.g. squared loss £(0|x;, v;) = |(O1x; + 6y) — y;
« Goal: output 8 € O stt.
L(é) ~ min L(60)

.



Convexity

« Def: L is convex if for all points a, I_9>, we have
i+b L(a) +L (1_5)
< .
2 2
e Convex functions have no local minima

Weighted average of y values at A and B

A

L

Value of the function at the x
coordinate with the same weights
N

Convex / . Non-convex \

~— o’

* Loss function for logistic regression is convex
— No closed form solution for minimum, but it is easy to find

[slide modified from Adam Smith, BU CS 591 Fall 2018]



Gradient Descent

* Proceed in steps

e Start from (carefully chosen) initial parameters §0

e At each step, move in direction opposite to the gradient of the
loss VL().

* Gradient is the vector of partial derivatives

f( )n — B T
(minimization: substract gradient term Yy " N
because we move towards local minima) I - N \\
position a (current position) / \
(the derivative of f f In' [ e
with respect to a) (one step towards [ L (I ' |
b V f( ) local minimum) | R [
T \_Y_’ position b /"'
(next position) C
(old position (gradient term \ VN f,// -
g | - e
before the step) is steepest ascent) [ S
S : < "~
1 M, "
(new position  (weighting factor known as step-size, 4 \\ -
after the step) can change at every iteration, '
also called learning rate) Xy X X

[slide modified from Adam Smith, BU CS 591 Fall 2018]



Gradient Descent

Specify

— Number of steps T
— Learning rate n

Pick initial point 8, € ©
Fort =1toT

— Compute gradient

~ 1 ~
ge = VL(B-1) == ) Ve(Br-slxi, 1)
[

~0=0ii -0 g | Memssteme
Outputd = ¥.7_, 8, or 0Oy I I

[slide modified from Adam Smith, BU CS 591 Fall 2018]




Gradient Descent for Neural Networks

input layer

hidden layer 1 hidden layer 2

* Each node is a linear function of inputs (specified by 8) composed
with a nonlinear “activation” function

e Gradient of Loss function can be computed quickly
— Using chain rule (technique called “backpropagation”)

* But no longer convex, has many local minima
— Can get stuck in a bad place
— But works well in practice!

[slide modified from Adam Smith, BU CS 591 Fall 2018]



Common Activation Functions
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Sigmoid g(x) = !

1+e~X
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ReLU(x) = max(0, x)
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tanh(x) = 20(2x) — 1

Leaky ReLU(x) = max(0.05x, x)

[slide modified from Adam Smith, BU CS 591 Fall 2018]



DP for Vector-Valued Functions

e Letf: X™ > R¥, and M(x) = f(x) + Z for noise Z € RX.
* global #,-sensitivity of f is

GSye, & max [|f (x) = F(x)
X~X 1/2

2
Izllo = ) |71
J
1.25

. 2
* Gaussian Mechanism: Z ~ N(O,Z (Gsf’fz) -lnT-Ik)

&E

— independent Gaussian noise per coordinate.



Robustness to Noise in Gradient Estimation

* For efficiency:
Sample a minibatch B © {1 2,..,n}

| | iEB Ve(ét—lwxi' yl)
Stochastic Gradient Descent (SGD)!

Gradient estimate g, =

* For privacy:
Add Gaussian Noise §; = g + N (0,021)

i E— .




DP Gradient Descent

[Williams-McSherry'10, ...]
e Specify
— Number of steps T
— Learning rate n
— Privacy parameters ¢, 0

— Clipping parameter C. Write [Z], = Z - max (1, ”;” ) .
2
— Noise variance 6% = TBD(T, ¢, §, C).
e Pick initial point 8,
e Fort=1toT
— Estimate gradient as noisy average of clipped gradients

A 1 A
9t = Ezi[Vf(Ht_1|xi,yi)]C+ N(0,0°1)
— 0 =01 —1n"J;
e Outputd =3I_,0, or 07
[slide modified from Adam Smith, BU CS 591 Fall 2018]



Privacy Analysis

* Proof idea: Show releasing (g1, >, ..., g ) satisfies DP
— Each step (releasing g;) satisfies (€, )-DP
— Adaptive composition across T steps



Privacy Analysis
* By Gaussian Mechanism, each iteration is (&g, 0g)-DP if

] ¢\ 125
o2=2—) -In—=
EoN 0o

* By Advanced Composition, overall algorithm is (&, 6)-DP for:

e =0 (g /TIn(2/5))
§=2T- 8,

* Solving, suffices to use noise variance

2=0 CZTlTll
0% = n--In-

[slide modified from Adam Smith, BU CS 591 Fall 2018]



Improved Analysis with “Concentrated DP”

[Dwork-Rothblum "16, Bun-Steinke "16]

By Gaussian Mechanism, each iteration is £§ -zCDP if

, 1/ c\* 125
G_Zeon oy

* By composition of zCDP, overall algorithm is T" - €§-ZCDP.

* By zCDP-to-approx. DP conversion, overall algorithm is (&, §)-DP for:

€=T-€§+2\/T-€§-ln(1/5)

* Solving, suffices to use noise variance

o~ = —1 </ ‘-In—--4H—
&n 6O O

[slide modified from Adam Smith, BU CS 591 Fall 2018]



DP Stochastic Gradient Descent (SGD)

[Jain-Kothari-Thakurta 12, Song-Chaudhuri-Sarwate "13, Bassily-Smith-Thakurta "14]

* Specify
— Number of steps T, learning rate 7, privacy parameters ¢, §, clipping
parameter C.

— Batch size B < n (for efficiency)
— Noise variance 6% = TBD(T, ¢, 6, C, B).

e Pick initial point 8,
e Fort=1toT
— Select a random batch §; € {1, ..., n} of size B.
— Estimate gradient as noisy average of clipped gradients

A 1 A
gt = EZiest[W)(Qt—1|xi;}’i)]C+ N(0,0%I)
— ;=01 -1 G¢
e Outputd =3I_,0, or 07

[slide modified from Adam Smith, BU CS 591 Fall 2018]



DP SGD: Improved Privacy Analysis

[Bassily-Smith-Thakurta "14, Abadi-Chu-Goodfellow-McMahan-Mironov-Talwar-Zhang "17]

* Privacy amplification by subsampling:
IfS: X™ - X5 outputs a random subset of pn out of n rows
and M : X5 > Y is (g,6)-DP, then
M'(x) =M(S(x))is (In(1 + (e — 1)p),pd)-DP.

— Keep S; secret; use its randomness

=~ pe

* Poisson sampling: choosing each point independently with prob. p = B/n.
 Choosing B points without replacement
* Choosing B points with replacement

[slide modified from Adam Smith, BU CS 591 Fall 2018]



DP SGD: Improved Privacy Analysis

[Bassily-Smith-Thakurta "14, Abadi-Chu-Goodfellow-McMahan-Mironov-Talwar-Zhang "17]

* Idea: Keep S; secret; use its randomness

* Privacy amplification by subsampling:
IfS: X™ — X8 outputs a random subset of pn out of n rows and
M: X5 - Yis (g 6)-DP, then
M'(x) = M(S(x))is (In(1 + (e€ — 1)p), pd)-DP.

= pe€

* Wecantakep = B/n.
— Unfortunately privacy amplification by subsampling does not
hold for zCDP.

— But similar analysis can be recovered using the “moments
accountant” [Abadi et al. '17], “truncated zCDP”
[Bun et al. "18], or f-DP [Dong et al. '19, Doroshenko et al. '22]

[slide modified from Adam Smith, BU CS 591 Fall 2018]



Neural Networks & Privacy

Choice of the model architecture
— Noise is proportional to the square root of number of parameters.

Hyperparameter tuning

— Run analyses on the training data with various hyperparameter settings,
and choose the best one. Q: any problems?

— Can do this privately, with additional cost in privacy.
— Or can tune on a public dataset.

Can pretrain with “public” dataset (e.g. use a foundation model)
and then fine-tune using a sensitive dataset.

State of Art as of 2022 [Bu-Mao-Xu]:

— CIFAR-10 (finetuned after pretramlng on ImageNet):
96.7% accuracy with (1, 107°)-DP (vs. 99.7% w/o DP)

Current analyses of DP-SGD are nearly tight if adversary sees all
intermediate 0;’s [Nasr et al. 23]



Differentially Private Empirical Risk
Minimization



Supervised ML Output

Primary Goal (risk minimization):
* Find 8 € © minimizing L(6) = E(x,)~2[£(0]x,y)].
e Difficulty: P unknown.

Subgoal 1 (empirical risk minimization (ERM)):

* Find 8 € © minimizing L(0) = %Z’lf‘:l 2(0]x;, ;).
* Turns learning into optimization.

* Difficulty: overfitting™*

Subgoal 2 (regularized ERM):
* Find 8 € © minimizing L(0) = %Z’lf‘:l £(0|x;,y;) + R(O).
* R(0) typically penalizes “large” 8, can capture Bayesian prior.

*Fact: DP automatically helps prevent overfitting! [Dwork et al. "15]



Output Perturbation

[Chaudhuri-Monteleoni-Sarwate "11]

n
1
M(x,y) = argming 52 £(0)x;,v;) + R(8) | + Noise
i=1

Challenge: bounding sensitivity of 8, = argming(-)

e Global sensitivity can be infinite (e.g. OLS regression)

* Global sensitivity can be bounded when £ is strictly convex, has
bounded gradient (as a function of 8), and R is strongly convex.

Even analyzing local sensitivity seems to require unique global
optimum and using an optimizer that is guaranteed to succeed.



Objective Perturbation

[Chaudhuri-Monteleoni-Sarwate '11]

n
1
M(x,y) = argming (EZ £(0|x;,y;) + R(0) + Rpriv(6, noise))
i=1

Challenge: how to put noise in the objective function?

* [CMS11] use R,y (0,v) =(0,v) + c||0]|?> where v is sampled with
probability density o< exp(—c'e||v]]).

* Privacy proven under similar assumptions on £ and R as before, plus £
having bounded Jacobian.

* Has better performance than output perturbation [CMS11].



Exponential Mechanism for ML

[Kasiwiswanathan-Lee-Nissim-Raskhodnikova-Smith "11]

Use score function
1
5((X;3’)»9) — = L(6|x;3’) = _;Z?=1£(9|xi»%') o R(H)

That is,
PrM(Z ) = 0] o ez 2i=1 COKYD—FR©).

Is -DP if the loss functions are clipped to [0,1]. (why?)

Thm [KLNRS "11, informally stated]: anything learnable non-
privately on a finite data universe is also learnable with DP
(with larger n).

Problem: runtime often exponential in dimensionality of 6.



xn/k

Xn—n/k+1

Subsample & Aggregate

[Nissim-Rakhodnikova-Smith 07, Smith "11]

Non-DP

Learning Alg

_—

Non-DP

D>
[uny

Learning Alg o, i
/

—
Non-DP ) o1

Learning Alg ék
Non-DP

Learning Alg

Q: Why is this €-DP?

e-DP
aggregator




Subsample & Aggregate

[Nissim-Rakhodnikova-Smith 07, Smith "11]

Typical aggregators: DP (clipped) mean, DP median

Benefits:
— Use any non-private estimator as a black box

— Can give optimal asymptotic convergence rates: for many statistical
estimators, variance is asymptotically cg/(sample size), so variance of DP

mean @ is
(1/k) - (cq - k/n) + 0(1/ek)?> = (1 + 0(1)) - co/n
if k = w(y/n).
Drawbacks:

— Dependence on dimension, model parameters, distribution can be bad.
— Often takes very large sample size to kick in.

PATE [PAE+17, PSM+18]: Use S&A just to label a public dataset



Modifying ML Algorithms

Another approach: decompose existing ML/inference
algorithms into steps that can be made DP, like Statistical
Queries (estimating means of bounded functions)

Example: linear regression

— Syx/M, Sxy /M, X,y are all statistical queries
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