
CS208: Applied Privacy for Data Science
Machine Learning & Optimization under DP: Theory

James Honaker, Priyanka Nanayakkara, Salil Vadhan
School of Engineering & Applied Sciences

Harvard University

March 26, 2025

More Responses to Midterm Feedback
(see also 3/12 slides)

• Median time spent on readings: 1.75hrs
• Median time spent on psets: 8hrs

– Come discuss if you’re regularly spending 12+hrs
– Should be lower in the rest of the course (to leave time for

project work)
• Discussions:

– Most enjoying, depends on who you are with
– Request for more technical discussions, more TA

involvement
• Section times inconvenient, need more OH

– Have added Tue eve section, more OH
• Pset solutions should now have been released for past psets.

Why ML with DP?
ML models memorize training data

[Carlini, Tramèr, Wallace et al. 2021] [Carlini, Hayes, Nasr et al. 2023]

ML Inputs and Loss Functions

• Data: 𝑥𝑥1,𝑦𝑦1 , … , 𝑥𝑥𝑛𝑛,𝑦𝑦𝑛𝑛 ∼ 𝒫𝒫
– Examples 𝑥𝑥𝑖𝑖 ∈ 𝒳𝒳: 𝑑𝑑-dimensional, discrete or continuous
– Labels 𝑦𝑦𝑖𝑖 ∈ 𝒴𝒴: 1-dimensional, discrete or continuous
– 𝒫𝒫 typically unknown

• A loss function:
– ℓ ∶ Θ × 𝒳𝒳 × 𝒴𝒴 → ℝ ℓ(𝜃𝜃|𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖) measures ``loss"

– Define 𝐿𝐿:Θ→ ℝ 𝐿𝐿 𝜃𝜃 = 1
𝑛𝑛
∑𝑖𝑖=1
𝑛𝑛 ℓ(𝜃𝜃|𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)

– E.g. squared loss ℓ 𝜃𝜃|𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 = (𝜃𝜃1𝑥𝑥𝑖𝑖 + 𝜃𝜃0) − 𝑦𝑦𝑖𝑖 2.
• Goal: output �𝜃𝜃 ∈ Θ s.t.

𝐿𝐿 �𝜃𝜃 ≈ min 𝐿𝐿(𝜃𝜃)

Convexity

• Def: 𝐿𝐿 is convex if for all points �⃗�𝑎, 𝑏𝑏, we have

𝐿𝐿
�⃗�𝑎 + 𝑏𝑏

2
≤
𝐿𝐿 �⃗�𝑎 + 𝐿𝐿 𝑏𝑏

2
.

• Convex functions have no local minima

• Loss function for logistic regression is convex
– No closed form solution for minimum, but it is easy to find

[slide modified from Adam Smith, BU CS 591 Fall 2018]

Gradient Descent

• Proceed in steps
• Start from (carefully chosen) initial parameters �𝜃𝜃0
• At each step, move in direction opposite to the gradient of the

loss 𝛻𝛻𝐿𝐿(�𝜃𝜃).
• Gradient is the vector of partial derivatives

[slide modified from Adam Smith, BU CS 591 Fall 2018]

Gradient Descent

• Specify
– Number of steps 𝑇𝑇
– Learning rate 𝜂𝜂

• Pick initial point �𝜃𝜃0 ∈ Θ
• For 𝑡𝑡 = 1 to 𝑇𝑇

– Compute gradient

𝑔𝑔𝑡𝑡 = 𝛻𝛻𝐿𝐿 �𝜃𝜃𝑡𝑡−1 =
1
𝑛𝑛
�
𝑖𝑖

𝛻𝛻ℓ �𝜃𝜃𝑡𝑡−1|𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖

– �𝜃𝜃𝑡𝑡 = �𝜃𝜃𝑡𝑡−1 − 𝜂𝜂 ⋅ 𝑔𝑔𝑡𝑡
• Output �𝜃𝜃 = ∑𝑡𝑡=1𝑇𝑇 �𝜃𝜃𝑡𝑡 or �𝜃𝜃𝑇𝑇

Average iterate

Last iterate

[slide modified from Adam Smith, BU CS 591 Fall 2018]

Gradient Descent for Neural Networks

• Each node is a linear function of inputs (specified by 𝜃𝜃) composed
with a nonlinear “activation” function

• Gradient of Loss function can be computed quickly
– Using chain rule (technique called “backpropagation”)

• But no longer convex, has many local minima
– Can get stuck in a bad place
– But works well in practice!

[slide modified from Adam Smith, BU CS 591 Fall 2018]

Common Activation Functions

Sigmoid 𝜎𝜎 𝑥𝑥 = 1
1+𝑒𝑒−𝑥𝑥

tanh 𝑥𝑥 = 2𝜎𝜎 2𝑥𝑥 − 1

ReLU 𝑥𝑥 = max(0, 𝑥𝑥) Leaky ReLU 𝑥𝑥 = max(0.05𝑥𝑥, 𝑥𝑥)
[slide modified from Adam Smith, BU CS 591 Fall 2018]

DP for Vector-Valued Functions

• Let 𝑓𝑓 ∶ 𝒳𝒳𝑛𝑛 → ℝ𝑘𝑘, and 𝑀𝑀 𝑥𝑥 = 𝑓𝑓 𝑥𝑥 + 𝑍𝑍 for noise 𝑍𝑍 ∈ ℝ𝑘𝑘.
• global ℓ2-sensitivity of 𝑓𝑓 is

GS𝑓𝑓,ℓ2 ≝ max
𝑥𝑥∼𝑥𝑥′

𝑓𝑓 𝑥𝑥 − 𝑓𝑓 𝑥𝑥′ 2.

𝑧𝑧 2 = �
𝑗𝑗

𝑧𝑧𝑗𝑗
2

1/2

• Gaussian Mechanism: 𝑍𝑍 ∼ 𝒩𝒩 0, 2
GS𝑓𝑓,ℓ2

𝜀𝜀

2
⋅ ln 1.25

𝛿𝛿
⋅ 𝐼𝐼𝑘𝑘

– independent Gaussian noise per coordinate.

Robustness to Noise in Gradient Estimation

• For efficiency:
Sample a minibatch 𝐵𝐵 ⊆ {1, 2, … ,𝑛𝑛}

Gradient estimate �𝑔𝑔𝑡𝑡 = 1
|𝐵𝐵|
∑𝑖𝑖∈𝐵𝐵 𝛻𝛻ℓ �𝜃𝜃𝑡𝑡−1, 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖

Stochastic Gradient Descent (SGD)!

• For privacy:
Add Gaussian Noise �𝑔𝑔𝑡𝑡 = 𝑔𝑔𝑡𝑡 + 𝒩𝒩(0,𝜎𝜎2𝐼𝐼)

In both cases, �𝑔𝑔𝑡𝑡 is an unbiased estimate of 𝑔𝑔𝑡𝑡: E[�𝑔𝑔𝑡𝑡]=𝑔𝑔𝑡𝑡

DP Gradient Descent
[Williams-McSherry`10, …]
• Specify

– Number of steps 𝑇𝑇
– Learning rate 𝜂𝜂
– Privacy parameters 𝜀𝜀, 𝛿𝛿

– Clipping parameter 𝐶𝐶. Write 𝑧𝑧 𝐶𝐶 = 𝑧𝑧 ⋅ max 1, 𝐶𝐶
𝑧𝑧 2

 .

– Noise variance 𝜎𝜎2 = TBD(𝑇𝑇, 𝜀𝜀, 𝛿𝛿,𝐶𝐶).
• Pick initial point �𝜃𝜃0
• For 𝑡𝑡 = 1 to 𝑇𝑇

– Estimate gradient as noisy average of clipped gradients
�𝑔𝑔𝑡𝑡 = 1

𝑛𝑛
∑𝑖𝑖 𝛻𝛻ℓ �𝜃𝜃𝑡𝑡−1|𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 𝐶𝐶+ 𝒩𝒩(0,𝜎𝜎2𝐼𝐼)

– �𝜃𝜃𝑡𝑡 = �𝜃𝜃𝑡𝑡−1 − 𝜂𝜂 ⋅ �𝑔𝑔𝑡𝑡
• Output �𝜃𝜃 = ∑𝑡𝑡=1𝑇𝑇 �𝜃𝜃𝑡𝑡 or �𝜃𝜃𝑇𝑇

[slide modified from Adam Smith, BU CS 591 Fall 2018]

Privacy Analysis

• Proof idea: Show releasing (�𝑔𝑔1, �𝑔𝑔2, … , �𝑔𝑔𝑇𝑇) satisfies DP
– Each step (releasing �𝑔𝑔𝑡𝑡) satisfies 𝜖𝜖, 𝛿𝛿 -DP
– Adaptive composition across 𝑇𝑇 steps

Privacy Analysis
• By Gaussian Mechanism, each iteration is (𝜀𝜀0, 𝛿𝛿0)-DP if

𝜎𝜎2 = 2
𝐶𝐶
𝜀𝜀0𝑛𝑛

2

⋅ ln
1.25
𝛿𝛿0

• By Advanced Composition, overall algorithm is (𝜀𝜀, 𝛿𝛿)-DP for:
𝜀𝜀 = 𝑂𝑂 𝜀𝜀0 ⋅ 𝑇𝑇 ln(⁄2 𝛿𝛿)
𝛿𝛿 = 2𝑇𝑇 ⋅ 𝛿𝛿0

• Solving, suffices to use noise variance

𝜎𝜎2 = 𝑂𝑂
𝐶𝐶
𝜀𝜀𝑛𝑛

2

⋅ 𝑇𝑇 ⋅ ln
𝑇𝑇
𝛿𝛿
⋅ ln

1
𝛿𝛿

[slide modified from Adam Smith, BU CS 591 Fall 2018]

Improved Analysis with “Concentrated DP”
[Dwork-Rothblum `16, Bun-Steinke `16]

• By Gaussian Mechanism, each iteration is 𝜀𝜀02 -zCDP if

𝜎𝜎2 =
1
2

𝐶𝐶
𝜀𝜀0𝑛𝑛

2

⋅ ln
1.25
𝛿𝛿0

• By composition of zCDP, overall algorithm is 𝑇𝑇 ⋅ 𝜀𝜀02-zCDP.

• By zCDP-to-approx. DP conversion, overall algorithm is 𝜀𝜀, 𝛿𝛿 -DP for:

𝜀𝜀 = 𝑇𝑇 ⋅ 𝜀𝜀02 + 2 𝑇𝑇 ⋅ 𝜀𝜀02 ⋅ ln(⁄1 𝛿𝛿)

• Solving, suffices to use noise variance

𝜎𝜎2 = 𝑂𝑂
𝐶𝐶
𝜀𝜀𝑛𝑛

2

⋅ 𝑇𝑇 ⋅ ln
1
𝛿𝛿
⋅ ln

𝑇𝑇
𝛿𝛿

[slide modified from Adam Smith, BU CS 591 Fall 2018]

DP Stochastic Gradient Descent (SGD)
[Jain-Kothari-Thakurta `12, Song-Chaudhuri-Sarwate `13, Bassily-Smith-Thakurta `14]

• Specify
– Number of steps 𝑇𝑇, learning rate 𝜂𝜂, privacy parameters 𝜀𝜀, 𝛿𝛿, clipping

parameter 𝐶𝐶.
– Batch size 𝐵𝐵 ≪ 𝑛𝑛 (for efficiency)
– Noise variance 𝜎𝜎2 = TBD(𝑇𝑇, 𝜀𝜀, 𝛿𝛿, C,𝐵𝐵).

• Pick initial point �𝜃𝜃0
• For 𝑡𝑡 = 1 to 𝑇𝑇

– Select a random batch 𝑆𝑆𝑡𝑡 ⊆ {1, … ,𝑛𝑛} of size 𝐵𝐵.
– Estimate gradient as noisy average of clipped gradients
�𝑔𝑔𝑡𝑡 = 1

𝐵𝐵
∑𝑖𝑖∈𝑆𝑆𝑡𝑡 𝛻𝛻ℓ �𝜃𝜃𝑡𝑡−1|𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 𝐶𝐶+ 𝒩𝒩(0,𝜎𝜎2𝐼𝐼)

– �𝜃𝜃𝑡𝑡 = �𝜃𝜃𝑡𝑡−1 − 𝜂𝜂 ⋅ �𝑔𝑔𝑡𝑡
• Output �𝜃𝜃 = ∑𝑡𝑡=1𝑇𝑇 �𝜃𝜃𝑡𝑡 or �𝜃𝜃𝑇𝑇

[slide modified from Adam Smith, BU CS 591 Fall 2018]

DP SGD: Improved Privacy Analysis

[Bassily-Smith-Thakurta `14, Abadi-Chu-Goodfellow-McMahan-Mironov-Talwar-Zhang `17]

• Privacy amplification by subsampling:
If 𝑆𝑆 ∶ 𝒳𝒳𝑛𝑛 → 𝒳𝒳𝐵𝐵 outputs a random subset of 𝑝𝑝𝑛𝑛 out of 𝑛𝑛 rows
and 𝑀𝑀 ∶ 𝒳𝒳𝐵𝐵 → 𝒴𝒴 is (𝜀𝜀, 𝛿𝛿)-DP, then
𝑀𝑀′ 𝑥𝑥 = 𝑀𝑀(𝑆𝑆 𝑥𝑥) is (ln 1 + (𝑒𝑒𝜖𝜖 − 1)𝑝𝑝 ,𝑝𝑝𝛿𝛿)-DP.
– Keep 𝑆𝑆𝑡𝑡 secret; use its randomness

• Poisson sampling: choosing each point independently with prob. 𝑝𝑝 = 𝐵𝐵/𝑛𝑛.
• Choosing 𝐵𝐵 points without replacement
• Choosing 𝐵𝐵 points with replacement

≈ 𝑝𝑝𝜖𝜖

[slide modified from Adam Smith, BU CS 591 Fall 2018]

DP SGD: Improved Privacy Analysis
[Bassily-Smith-Thakurta `14, Abadi-Chu-Goodfellow-McMahan-Mironov-Talwar-Zhang `17]

• Idea: Keep 𝑆𝑆𝑡𝑡 secret; use its randomness

• Privacy amplification by subsampling:
If 𝑆𝑆 ∶ 𝒳𝒳𝑛𝑛 → 𝒳𝒳𝐵𝐵 outputs a random subset of 𝑝𝑝𝑛𝑛 out of 𝑛𝑛 rows and
𝑀𝑀 ∶ 𝒳𝒳𝐵𝐵 → 𝒴𝒴 is (𝜀𝜀, 𝛿𝛿)-DP, then
𝑀𝑀′ 𝑥𝑥 = 𝑀𝑀(𝑆𝑆 𝑥𝑥) is (ln 1 + (𝑒𝑒𝜖𝜖 − 1)𝑝𝑝 ,𝑝𝑝𝛿𝛿)-DP.

• We can take 𝑝𝑝 = ⁄𝐵𝐵 𝑛𝑛 .
– Unfortunately privacy amplification by subsampling does not

hold for zCDP.
– But similar analysis can be recovered using the “moments

accountant” [Abadi et al. `17], “truncated zCDP”
[Bun et al. `18], or 𝑓𝑓-DP [Dong et al. `19, Doroshenko et al. `22]

≈ 𝑝𝑝𝜖𝜖

[slide modified from Adam Smith, BU CS 591 Fall 2018]

Neural Networks & Privacy

• Choice of the model architecture
– Noise is proportional to the square root of number of parameters.

• Hyperparameter tuning
– Run analyses on the training data with various hyperparameter settings,

and choose the best one. Q: any problems?
– Can do this privately, with additional cost in privacy.
– Or can tune on a public dataset.

• Can pretrain with “public” dataset (e.g. use a foundation model)
and then fine-tune using a sensitive dataset.

• State of Art as of 2022 [Bu-Mao-Xu]:
– CIFAR-10 (finetuned after pretraining on ImageNet):

96.7% accuracy with (1, 10−5)-DP (vs. 99.7% w/o DP)
• Current analyses of DP-SGD are nearly tight if adversary sees all

intermediate 𝜃𝜃𝑡𝑡’s [Nasr et al. `23]

Differentially Private Empirical Risk
Minimization

Supervised ML Output

Primary Goal (risk minimization):
• Find 𝜃𝜃 ∈ Θ minimizing 𝐿𝐿 𝜃𝜃 = E 𝑥𝑥,𝑦𝑦 ∼𝒫𝒫 ℓ(𝜃𝜃|𝑥𝑥,𝑦𝑦) .
• Difficulty: 𝒫𝒫 unknown.

Subgoal 1 (empirical risk minimization (ERM)):
• Find 𝜃𝜃 ∈ Θ minimizing 𝐿𝐿 𝜃𝜃 = 1

𝑛𝑛
∑𝑖𝑖=1𝑛𝑛 ℓ(𝜃𝜃|𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖) .

• Turns learning into optimization.
• Difficulty: overfitting*

Subgoal 2 (regularized ERM):
• Find 𝜃𝜃 ∈ Θ minimizing 𝐿𝐿 𝜃𝜃 = 1

𝑛𝑛
∑𝑖𝑖=1𝑛𝑛 ℓ(𝜃𝜃|𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖) + 𝑅𝑅 𝜃𝜃 .

• 𝑅𝑅(𝜃𝜃) typically penalizes “large” 𝜃𝜃, can capture Bayesian prior.

*Fact: DP automatically helps prevent overfitting! [Dwork et al. `15]

Output Perturbation
[Chaudhuri-Monteleoni-Sarwate `11]

𝑀𝑀 �⃗�𝑥, �⃗�𝑦 = argmin𝜃𝜃
1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

ℓ(𝜃𝜃|𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖) + 𝑅𝑅 𝜃𝜃 + Noise

Challenge: bounding sensitivity of 𝜃𝜃𝑜𝑜𝑜𝑜𝑡𝑡 = argmin𝜃𝜃 ⋅
• Global sensitivity can be infinite (e.g. OLS regression)
• Global sensitivity can be bounded when ℓ is strictly convex, has

bounded gradient (as a function of 𝜃𝜃), and 𝑅𝑅 is strongly convex.
Even analyzing local sensitivity seems to require unique global
optimum and using an optimizer that is guaranteed to succeed.

Objective Perturbation
[Chaudhuri-Monteleoni-Sarwate `11]

𝑀𝑀 �⃗�𝑥, �⃗�𝑦 = argmin𝜃𝜃
1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

ℓ(𝜃𝜃|𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖) + 𝑅𝑅 𝜃𝜃 + 𝑅𝑅priv(𝜃𝜃, noise)

Challenge: how to put noise in the objective function?
• [CMS11] use 𝑅𝑅priv 𝜃𝜃, 𝑣𝑣 = 𝜃𝜃, 𝑣𝑣 + 𝑐𝑐 𝜃𝜃 2 where 𝑣𝑣 is sampled with

probability density ∝ exp −𝑐𝑐′𝜀𝜀 𝑣𝑣 .
• Privacy proven under similar assumptions on ℓ and 𝑅𝑅 as before, plus ℓ

having bounded Jacobian.
• Has better performance than output perturbation [CMS11].

Exponential Mechanism for ML
[Kasiwiswanathan-Lee-Nissim-Raskhodnikova-Smith `11]

Use score function

s 𝑥𝑥,𝑦𝑦 ,𝜃𝜃 = − 𝐿𝐿 𝜃𝜃|𝑥𝑥,𝑦𝑦 = − 1
𝑛𝑛
∑𝑖𝑖=1𝑛𝑛 ℓ 𝜃𝜃|𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 − 𝑅𝑅 𝜃𝜃 .

That is,
Pr[𝑀𝑀 �⃗�𝑥, �⃗�𝑦 = 𝜃𝜃] ∝ 𝑒𝑒−

𝜀𝜀
2 ∑𝑖𝑖=1

𝑛𝑛 ℓ 𝜃𝜃|𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖 −
𝜀𝜀𝑛𝑛
2 𝑅𝑅 𝜃𝜃 .

Is 𝜀𝜀-DP if the loss functions are clipped to [0,1]. (why?)

Thm [KLNRS `11, informally stated]: anything learnable non-
privately on a finite data universe is also learnable with DP
(with larger 𝑛𝑛).

Problem: runtime often exponential in dimensionality of 𝜃𝜃.

Subsample & Aggregate
[Nissim-Rakhodnikova-Smith `07, Smith `11]

𝑥𝑥1
⋮

𝑥𝑥𝑛𝑛/𝑘𝑘

⋮
⋮
⋮
⋮
⋮
⋮
⋮

𝑥𝑥𝑛𝑛− ⁄𝑛𝑛 𝑘𝑘+1

⋮
𝑥𝑥𝑛𝑛

Non-DP
Learning Alg

Non-DP
Learning Alg

Non-DP
Learning Alg

Non-DP
Learning Alg

�̂�𝜃1
�̂�𝜃1
⋮
⋮

�̂�𝜃𝑘𝑘−1
�̂�𝜃𝑘𝑘

𝜀𝜀-DP
aggregator

�𝜃𝜃

Q: Why is this 𝜀𝜀-DP?

Subsample & Aggregate
[Nissim-Rakhodnikova-Smith `07, Smith `11]

• Typical aggregators: DP (clipped) mean, DP median
• Benefits:

– Use any non-private estimator as a black box
– Can give optimal asymptotic convergence rates: for many statistical

estimators, variance is asymptotically 𝑐𝑐𝜃𝜃/(sample size), so variance of DP
mean �𝜃𝜃 is

(⁄1 𝑘𝑘) ⋅ 𝑐𝑐𝜃𝜃 ⋅ ⁄𝑘𝑘 𝑛𝑛 + 𝑂𝑂(⁄1 𝜀𝜀𝑘𝑘)2 = 1 + 𝑜𝑜 1 ⋅ 𝑐𝑐𝜃𝜃/𝑛𝑛
 if 𝑘𝑘 = 𝜔𝜔 𝑛𝑛 .
• Drawbacks:

– Dependence on dimension, model parameters, distribution can be bad.
– Often takes very large sample size to kick in.

• PATE [PAE+17, PSM+18]: Use S&A just to label a public dataset

Modifying ML Algorithms

• Another approach: decompose existing ML/inference
algorithms into steps that can be made DP, like Statistical
Queries (estimating means of bounded functions)

• Example: linear regression
– ⁄𝑆𝑆𝑥𝑥𝑥𝑥 𝑛𝑛 , ⁄𝑆𝑆𝑥𝑥𝑦𝑦 𝑛𝑛 , �̅�𝑥, �𝑦𝑦 are all statistical queries

	CS208: Applied Privacy for Data Science�Machine Learning & Optimization under DP: Theory
	More Responses to Midterm Feedback�(see also 3/12 slides)
	Why ML with DP?�ML models memorize training data
	ML Inputs and Loss Functions
	Convexity
	Gradient Descent
	Gradient Descent
	Gradient Descent for Neural Networks
	Common Activation Functions
	DP for Vector-Valued Functions
	Robustness to Noise in Gradient Estimation
	DP Gradient Descent
	Privacy Analysis
	Privacy Analysis
	Improved Analysis with “Concentrated DP”�[Dwork-Rothblum `16, Bun-Steinke `16]�
	DP Stochastic Gradient Descent (SGD)
	DP SGD: Improved Privacy Analysis
	DP SGD: Improved Privacy Analysis
	Neural Networks & Privacy
	Differentially Private Empirical Risk Minimization
	Supervised ML Output
	Output Perturbation�[Chaudhuri-Monteleoni-Sarwate `11]
	Objective Perturbation�[Chaudhuri-Monteleoni-Sarwate `11]
	Exponential Mechanism for ML�[Kasiwiswanathan-Lee-Nissim-Raskhodnikova-Smith `11]
	Subsample & Aggregate�[Nissim-Rakhodnikova-Smith `07, Smith `11]
	Subsample & Aggregate�[Nissim-Rakhodnikova-Smith `07, Smith `11]
	Modifying ML Algorithms

