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Housekeeping

• Detailed project descriptions due this Friday!
– You can still change your topic, eg based on the feedback we gave.
– Come to OH to discuss!

• No pset due this week, hw8b due Fri 4/18.

• Other project deadlines:
– Full project paper: Wed 4/30
– Revision of paper: Thu 5/8
– Poster session: Thu 5/8, 9am-12pm in the SEC.
– 3 late days per group on project deadlines.



Class-wide exercise

• Privately:
– Write down your preference: vanilla (1) or chocolate (0)
– Choose a random number from 1-4 using Google, 

www.random.org, or by tossing a coin twice.

• Class Poll:  Salil will ask everyone to report their preference
– If your random number is 1,2,3: report truthfully
– If your random number is 4: report falsely

http://www.random.org/


Group Exercise

1. Use the reported counts for vanilla and chocolate to 
compute an unbiased estimator 𝜇̂𝜇 of the fraction of people in 
the class who prefer vanilla.
Hint: write a formula for the expectation of the number 𝑉𝑉rep of people 
who report vanilla in terms of the number 𝑣𝑣 of people who actually prefer 
vanilla and 𝑛𝑛 − 𝑣𝑣.

2. What is the standard deviation of your estimator?

3. For what 𝜀𝜀 is this method 𝜀𝜀-DP?  (Consider the release to be 
collection of everyone’s “noisy” reports.)



Group Exercise: Solution

1. Use the reported counts for vanilla and chocolate to compute an unbiased 
estimator 𝜇̂𝜇 of the fraction of people in the class who prefer vanilla.

E 𝑉𝑉rep =
3
4
⋅ 𝑣𝑣 +

1
4
⋅ 𝑛𝑛 − 𝑣𝑣 =

𝑣𝑣
2

+
𝑛𝑛
4

 𝜇̂𝜇 =
2
𝑛𝑛
⋅ 𝑉𝑉rep −

1
2

2. What is the standard deviation of your estimator?
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3. For what 𝜀𝜀 is this method 𝜀𝜀-DP?  (Consider the release to be collection of 
everyone’s “noisy” reports.)

𝜀𝜀 = ln
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= ln 3 ≈ 1.1



Individual Survey

Compare the method we just saw for doing a DP count to a 
standard noise-addition mechanism (e.g. the Laplace 
mechanism).

1. What is an advantage of the method we just used?

2. What is a disadvantage of the method we just used?

In either case, if you don’t think there’s an advantage or 
disadvantage, give your intuition.



Central Model vs Local Model
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Local Differential Privacy

𝑅𝑅𝑖𝑖
Sex Blood ⋯ HIV?

F B ⋯ Y

𝑅𝑅:𝒳𝒳 → 𝒴𝒴 is 𝜀𝜀, 𝛿𝛿 -locally differentially private (LDP) if 
for all 𝑥𝑥, 𝑥𝑥′ ∈ 𝒳𝒳, 𝑆𝑆 ⊆ 𝒴𝒴

Pr[𝑅𝑅 𝑥𝑥 ∈ 𝑆𝑆] ≤ 𝑒𝑒𝜀𝜀 ⋅ Pr[𝑅𝑅 𝑥𝑥′ ∈ 𝑆𝑆] + 𝛿𝛿

local randomizer

𝐶𝐶

That is, a protocol is 𝜀𝜀-LDP if each party’s local randomizer 𝑅𝑅𝑖𝑖 is an 
𝜀𝜀-DP mechanism for 1-row databases.

Can be interactive

A single user!



Interactive Local DP
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Require: for all 𝑥𝑥, 𝑥𝑥𝑥, all adversarial strategies 𝐴𝐴
View𝐴𝐴 𝐴𝐴 𝑀𝑀 𝑥𝑥 ≈𝜀𝜀 View𝐴𝐴(𝐴𝐴 𝑀𝑀 𝑥𝑥′ )

adversary

Everything 𝐴𝐴 sees (its internal randomness & query answers)

Equivalently: ∀ 𝐴𝐴 Pr[𝐴𝐴 outputs "In" after interacting w/𝑀𝑀 𝑥𝑥 ]
 ≤ 𝑒𝑒𝜀𝜀 ⋅ Pr 𝐴𝐴 outputs "In" after interacting w/𝑀𝑀 𝑥𝑥𝑥

Sex Blood ⋯ HIV?

F B ⋯ Y



Randomized Response
[Warner’65]

For 𝑥𝑥𝑖𝑖 ∈ {0,1},  RR𝜀𝜀 𝑥𝑥𝑖𝑖 = �
𝑥𝑥𝑖𝑖  w. p.  𝑒𝑒𝜀𝜀

1+𝑒𝑒𝜀𝜀

1 − 𝑥𝑥𝑖𝑖  w. p.  1
1+𝑒𝑒𝜀𝜀

Theorem: RR𝜀𝜀is 𝜀𝜀-LDP.

Unbiased estimator of the mean 𝜇𝜇 given 𝑦𝑦𝑖𝑖 = RR𝜀𝜀(𝑥𝑥𝑖𝑖) for 𝑖𝑖 = 1, … ,𝑛𝑛: 
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1 + 𝑒𝑒𝜀𝜀 ⋅ 𝑦𝑦𝑖𝑖 − 1

𝑒𝑒𝜀𝜀 − 1 .

Standard deviation: 𝑂𝑂 1
𝜀𝜀 𝑛𝑛

 for 𝜀𝜀 ≤ 1.



Randomized Response

RR gives an 𝜀𝜀-locally DP protocol that

• Estimates  “statistical queries” (means/avgs) to ±𝑂𝑂 1
𝜀𝜀 𝑛𝑛

.

– Q: how to use RR for fractional-valued functions?
– A: first randomly round 𝑥𝑥𝑖𝑖 ∈ [0,1] to 1 w.p. 𝑥𝑥𝑖𝑖, 0 w.p. 1 − 𝑥𝑥𝑖𝑖 .

• Estimates count/sum of a bounded function to ±𝑂𝑂 𝑛𝑛
𝜀𝜀

.

• Worse than centralized DP by a factor of 𝑛𝑛, but still useful.

• Fact: The above privacy-accuracy tradeoff is the best possible 
for 𝜀𝜀-local DP.



Local DP Histograms
𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 ∈ [𝐷𝐷]  (𝐷𝐷 bins).  Use a 1-hot encoding:

 𝑥𝑥𝑖𝑖 =

 𝑦𝑦𝑖𝑖 =

0     0     0      …      1    0    …  0  ….  0 Length 𝐷𝐷

RR𝜀𝜀/2 on every coordinate

1     0     1      …      1    0    …  0….  1

�ℎ = �
𝑖𝑖=1

𝑛𝑛
1 + 𝑒𝑒𝜀𝜀/2 ⋅ 𝑦𝑦𝑖𝑖 − 1

𝑒𝑒𝜀𝜀/2 − 1
.



Local DP Histograms

• Expected error on each bin is ±𝑂𝑂 𝑛𝑛
𝜀𝜀

.

• Expected max error over all 𝐷𝐷 bins is ±𝑂𝑂 𝑛𝑛⋅log 𝐷𝐷
𝜀𝜀

.

• We need to communicate 𝐷𝐷 bits from each user. 
There exist protocols that use sophisticated algorithmic ideas to 
get communication complexity sublinear in 𝐷𝐷.



Local vs. Centralized DP

Central Model

• Central curator collects the 
data from all users, then 
performs privatization

• Requires the users to trust 
the curator with their 
private data

• Most DP algorithms are in 
this model

Local Model

• Each user privatizes their 
own data then sends it to a 
central curator

• Requires less trust from 
users

• Worse accuracy

Slide based on one from Brendan Avent’s 
presentation



Local vs. Centralized DP

• Local DP protocols provably have lower accuracy for 
counts/averages than centralized DP protocols.
– Θ( ⁄1 𝜀𝜀 𝑛𝑛) error vs. Θ ⁄1 𝜀𝜀𝑛𝑛 .
– Successful deployments have very large 𝑛𝑛 (Google, Apple).

• Next class: Gap can be closed by relaxing adversarial model (e.g. 
anonymous participants, computationally bounded adversaries) 
and using crypto/infrastructure (secure MPC, mix-nets).



Federated DP
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Comparing the Models

• Federated DP with 𝑘𝑘 delegates, 𝑛𝑛 = 𝑛𝑛1 + ⋯+ 𝑛𝑛𝑘𝑘
– “horizontally partitioned” data
– 𝑘𝑘 = 1: central DP
– 𝑘𝑘 = 𝑛𝑛: local DP

• Error for sum of bounded values (like in DP-SGD) = Θ 𝑘𝑘
𝜀𝜀

.

– Interpolates between local & central model

• Error for set intersection when 𝑘𝑘 = 2: Θ 𝑛𝑛
𝜀𝜀

– No better than local model!



Other Models

• Can we get the “best of both worlds”?
– Privacy protections like the local model
– Accuracy like the central model

• Two approaches
– The shuffle model
– Using cryptography (secure multiparty computation)



Shuffle DP
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