

CS208: Applied Privacy for Data Science Reidentification & Reconstruction Attacks

School of Engineering & Applied Sciences Harvard University

January 29. 2025

Announcements

- Fill out <u>first-class survey</u> if you haven't already: <u>https://shorturl.at/jSosl</u>
- Post questions to Ed rather than emailing us individually. Keep an eye on Ed for announcements!
- Let us know ASAP if you can't access course platforms (esp. Ed, Perusall).
- Office hours the rest of this week:
 - Salil Fri 10:30am-12pm (SEC 3.327)
 - Priyanka Wed 2:30pm-4:30pm (SEC 2.101)
 - Zach Thu 3pm-4pm (SEC 3.314)
- Probability/algorithms/stats review sessions this week:
 - Jason Wed 3pm-4pm, Science Center 304
 - Zach Thu 9:45-11:00am, SEC 4.308+Zoom+recording (possibly including programming)

Reidentification via Linkage

Uniquely identify > 60% of the US population [Sweeney `00, Golle `06]

Deidentification via Generalization

- Def (generalization): A generalization mechanism is an algorithm *A* that takes a dataset $x = (x_1, ..., x_n) \in \mathcal{X}^n$ and outputs $A(x) = (T_1, ..., T_n)$ where $x_i \in T_i \subseteq \mathcal{X}$ for all *i*.
- Example:

Name	Sex	Blood		HIV?
*	F	В	•••	Y
*	М	А	•••	Ν
*	М	0	•••	Ν
*	М	0		Y
*	F	А	•••	Ν
*	М	В		Y

 $T_i = \{\text{all strings}\} \times \{x_{i2}\} \times \cdots \times \{x_{im}\}$

K-Anonymity [Sweeney `02]

• Def (generalization): A generalization mechanism A satisfies k-anonymity (across all fields) if for every dataset $x = (x_1, ..., x_n) \in \mathcal{X}^n$ the output $A(x) = (T_1, ..., T_n)$ has the property that every set T that occurs at all occurs at least k times.

							_
ZIP	Income	COVID	-	ZIP	Income	COVID)
91010	125k	Yes	Ā	9101×	\$75–150k	*	
91011	105k	No		$9101 \star$	75-150k	*	
91012	80k	No		$9101 \star$	75-150k	*	=A(x)
20037	\$50k	No		20037	0-75k	*	
20037	\$20k	No		20037	0-75k	*	
20037	25k	Yes		20037	0-75k	*	
	ZIP 91010 91011 91012 20037 20037 20037	ZIPIncome91010\$125k91011\$105k91012\$80k20037\$50k20037\$20k20037\$25k	ZIPIncomeCOVID91010\$125kYes91011\$105kNo91012\$80kNo20037\$50kNo20037\$20kNo20037\$25kYes	ZIP Income COVID 91010 \$125k Yes A 91011 \$105k No 91012 \$80k No 20037 \$50k No 20037 \$20k No 20037 \$25k Yes	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

• Example: 3-anonymizing a dataset

Quasi-Identifiers

 Typically, *k*-anonymity only applied on "quasi-identifiers" – attributes that might be linked with an external dataset. i.e. X = Y × Z, where Y is domain of quasi-identifiers, and T_i = U_i × V_i, where each U_i occurs at least k times.

Zip code	Age	Nationality	Condition
130**	<30	*	AIDS
130**	<30	*	Heart Disease
130**	<30	*	Viral Infection
130**	<30	*	Viral Infection
130**	\geq 40	*	Cancer
130**	>40	*	Heart Disease
130**	\geq 40	*	Viral Infection
130**	\geq 40	*	Viral Infection
130**	3*	*	Cancer
130**	3*	*	Cancer
130**	3*	*	Cancer
130**	3*	*	Cancer

Q: what could go wrong?

Q: What if no quasi-identifiers? Netflix Challenge Re-identification

[Narayanan & Shmatikov `08]

Q: Why would Netflix release such a dataset?

Anonymized NetFlix data

Narayanan-Shmatikov Set-Up

- **Dataset:** x = set of records r (e.g. Netflix ratings)
- Adversary's inputs:

•

- \hat{x} = subset of records from *x*, possibly distorted slightly
- aux = auxiliary information about a record $r \in D$ (e.g. a particular user's IMDB ratings)
- Adversary's goal: output either
 - r' = record that is "close" to r, or
 - \perp = failed to find a match

Narayanan-Shmatikov Algorithm

- 1. Calculate score(aux, r') for each $r' \in \hat{x}$, as well as the standard deviation σ of the calculated scores.
- 2. Let r_1' and r_2' be the records with the largest and second-largest scores.
- 3. If score(aux, r_1') score(aux, r_2') > $\phi \cdot \sigma$, output r_1' , else output \perp .

Narayanan-Shmatikov Results

- For the \$1m Netflix Challenge, a dataset of ~.5 million subscribers' ratings (less than 1/10 of all subscribers) was released (total of ~\$100m ratings over 6 years).
- Out of 50 sampled IMBD users, two standouts were found, with eccentricities of 28 and 15.
- Reveals all movies watched from only those publicly rated on IMDB.
- Class action lawsuit, cancelling of Netflix Challenge II.

Message: any attribute can be a "quasi-identifier"

k-anonymity across all attributes?

- Utility concerns?
 - Significant bias even when applied on quasiidentifiers, cf. [Daries et al. `14]
- Privacy concerns?
 - Consider mechanism A(x): if Salil is in x and has tuberculosis, generalize starting with rightmost attribute. Else generalize starting on left.
 - Message: privacy is not only a property of the output, but of the input-output relationships.

Downcoding Attacks [Cohen `21]

	ZIP	Income	COVID		ZIP	Income	COVID		ZIP	Income	COVID
	91010	125k	Yes		$9101 \star$	\$75–150k	*		91010	125 - 150 k	*
	91011	105k	No		$9101\star$	75-150k	*	-	$9101\star$	100-125k	*
$\mathbf{X} =$	91012	\$80k	No	$\mathbf{Y} =$	$9101 \star$	75-150k	*	$\mathbf{Z} =$	$9101 \star$	75-150k	*
	20037	\$50k	No		20037	0-75k	*		20037	0-75k	No
	20037	\$20k	No		20037	0-75k	*		20037	0-75k	*
	20037	25k	Yes		20037	0-75k	*		20037	25k	Yes

- Downcoding undoes generalization
- X is the original dataset \rightarrow Y is a 3-anonymized version
- Z is a **downcoding**: It generalizes X and refines Y

Cohen's Result

Theorem (informal): There are settings in which every minimal, hierarchical k-anonymizer (even enforced on all attributes) enables strong downcoding attacks.

Setting

 A (relatively natural) data distribution and hierarchy, which depend on k

Strength

- How many records are refined? $\Omega(N)$ (> 3% for $k \le 15$)
- How much are records refined? 3D/8 (38% of attributes)
- How often? w.p. 1 o(1) over a random dataset

Composition Attacks

- [Ganti-Kasiviswanathan-Smith `08]: Two k-anonymous generalizations of the same dataset can be combined to be not k-anonymous.
- [Cohen `21]:

Reidentification on Harvard-MIT EdX Dataset [Daries et al. `14]

 5-anonymity enforced separately (a) on course combination, and (b) on demographics + 1 course

EdX Quasi-identifiers

2	Year of Birth	Gender	Country	Course 1	Course 2	Course 3	
	2000	F	India	Yes	No	Yes	Enrolled
O				5		8	# Posts
ň				Yes		No	Certificate

{Year of Birth, Gender, Country, Course(i).Enrolled, Course(i).Posts} for i = 1, . . ., 16

2	Year of Birth	Gender	Country	Course 1	Course 2	Course 3	
	2000	F	India	Yes	No	Yes	Enrolled
U				5		8	# Posts
Ň				Yes		No	Certificate

{Course(1).Enrolled, Course(2).Enrolled, ..., Course(16).Enrolled

Slide credit: Aloni Cohen

Failure of Composition

If you combine the QIs:

- 7.1% uniques (34,000)
- 15.3% not 5-anonymous

Reidentification carried out using LinkedIn profiles \rightarrow dataset heavily redacted

Reading & Discussion for Next Time

- Q: How should we respond to the failure of de-identification?
- Not assigned: writings claiming that de-identification works (see <u>cs208 annotated bibliography</u>)
- Next: what if we only release aggregate statistics?

Attacks on Aggregate Statistics

US? ID • Stylized set-up: 1 1 − Dataset $x \in \{0,1\}^n$. 2 0 - (Known) person *i* has sensitive bit x_i . 3 0 - Adversary gets $q_S(x) = \sum_{i \in S} x_i$ for various $S \subseteq [n]$. 4 1 How to attack if adversary can query chosen sets S? •

1

n

• What if we restrict to sets of size at least n/10?

This attack has been used on Israeli Census Bureau! (see [Ziv `13])

Attacks on Exact Releases

- What if adversary cannot choose subsets, but q_S(x) is released for "innocuous" sets S?
- Example: uniformly random $S_1, S_2, ..., S_m \subseteq [n]$ are chosen, and adversary receives: $(S_1, a_1 = q_{S_1}(x)), (S_2, a_2 = q_{S_2}(x)), ..., (S_m, a_m = q_{S_m}(x))$
- Claim: for m = n, with prob. 1 o(1) adversary can reconstruct entire dataset!
- Proof?

Example for n = 5

$$S_1 = \{1,2,3\}, a_1 = 2, S_2 = \{1,3,4\}, a_2 = 1, S_3 = \{4,5\}, a_3 = 1, S_4 = \{2,3,4,5\}, a_4 = 3, S_5 = \{1,2,4,5\}, a_5 = 2$$

Unknowns: $x_1, x_2, ..., x_5$

Equations:

- 1. $x_1 + x_2 + x_3 = 2$
- 2. $x_1 + x_3 + x_4 = 1$
- 3. $x_4 + x_5 = 1$
- 4. $x_2 + x_3 + x_4 + x_5 = 3$
- 5. $x_1 + x_2 + x_4 + x_5 = 2$

Unique Solution:

$$x_1 = 0$$

 $x_2 = 1$
 $x_3 = 1$
 $x_4 = 0$
 $x_5 = 1$

Attacks on Approximate Statistics

- What if we release statistics $a_i \approx q_{S_i}(x)$?
- Thm [Dinur-Nissim `03]: given m = n uniformly random sets S_j and answers a_j s.t. $|a_j - q_{S_j}(x)| \le E = o(\sqrt{n})$, whp adversary can reconstruct 1 - o(1) fraction of the bits x_i .

• Proof idea:
$$A(S_1, a_1, \dots, S_m, a_n) = \text{any } \hat{x} \in \{0, 1\}^n \text{ s.t.}$$

 $\forall j | a_j - q_{S_j}(\hat{x}) | \leq E.$

(Show that whp, for all \hat{x} that differs from x in a constant fraction of bits, $\exists j$ such that $|q_{S_j}(\hat{x}) - q_{S_j}(x)| > 2E$.)

Integer Programming Implementation

 $A(S_1, a_1, ..., S_m, a_n)$:

1. Find a vector $\hat{x} \in \mathbb{Z}^n$ such that:

$$- 0 \le \hat{x}_i \le 1 \text{ for all } i = 1, \dots, n$$

$$- -E \le a_j - \sum_{i \in S_j} \hat{x}_i \le E$$
 for all $j = 1, ..., m$

2. Output \hat{x} .

Problem: Can be computationally expensive ("NP-hard", exponential time in worst case)

Faster: Linear Programming Implementation

 $A(S_1, a_1, ..., S_m, a_n)$:

1. Find a vector $\hat{x} \in \mathbb{R}^n$ such that:

$$- 0 \le \hat{x}_i \le 1 \text{ for all } i = 1, \dots, n$$

$$- -E \le a_j - \sum_{i \in S_j} \hat{x}_i \le E$$
 for all $j = 1, ..., m$

2. Output \hat{x}

Linear Programming Implementation for Average Error

 $A(S_1, a_1, ..., S_m, a_n)$:

- 1. Find vectors $\hat{x} \in \mathbb{R}^n$ and $E \in \mathbb{R}^m$
 - Minimizing $\sum_{j=1}^{m} E_j$ and such that

$$- \quad 0 \le \hat{x}_i \le 1 \text{ for all } i = 1, \dots, n$$

$$- -E_j \le a_j - \sum_{i \in S_j} \hat{x}_i \le E_j$$
 for all $j = 1, ..., m$

2. Output round(\hat{x}).

Least-Squares Implementation for MSE

$$A(S_1, a_1, \dots, S_m, a_n):$$

1. Find vector $\hat{x} \in \mathbb{R}^n$ minimizing

$$\sum_{j=1}^{m} \left(a_j - \sum_{i \in S_j} \hat{x}_i \right)^2 = \|a - M_S \hat{x}\|^2$$

2. Output round(\hat{x}).

Also works for random S_i 's, and is much faster than LP!

On the Level of Accuracy

- The theorems require the error per statistic to be $o(\sqrt{n})$. This is necessary for reconstructing almost all of x.
- Q: What is significant about the threshold of \sqrt{n} ?
 - If dataset is a random sample of size *n* from a larger population, the standard deviation of a count query is $O(\sqrt{n})$.
 - Reconstruction attacks ⇒ if we want to release many (> n) arbitrary or random counts, then we need introduce error at least as large as the sampling error to protect privacy.

How to Make Subset Sum Queries?

• Stylized set-up:

- Dataset $x \in \{0,1\}^n$.
- (Known) person *i* has sensitive bit x_i .
- Adversary gets $a_S \approx q_S(x) = \sum_{i \in S} x_i$ for various $S \subseteq [n]$.
- Q: How to attack if the subjects aren't numbered w/ ID's?
 - If we know the set of people but not their IDs? (e.g. current Harvard students)
 - If we only know the size *n* of the dataset?

ID	US?
1	1
2	0
3	0
4	1
÷	:
n	1

Overall Message

- Every statistic released yields a (hard or soft) constraint on the dataset.
 - Sometimes have nonlinear or logical constraints ⇒ use fancier solvers (e.g. SAT or SMT solvers)
- Releasing too many statistics with too much accuracy necessarily determines almost the entire dataset.
- This works in theory and in practice (see readings, ps2).