

CS208: Applied Privacy for Data Science End-to-end privacy

School of Engineering & Applied Sciences Harvard University

April 16, 2025

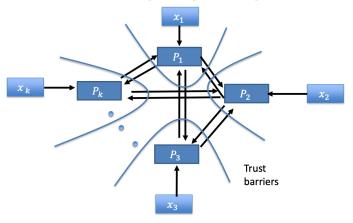
Discussion

What are settings where the performance of an RCT would be changed by the guarantee of privacy? Explain how. For example, what elements of the RCT methodology would be affected?

DP vs. Crypto

Model	Utility	Privacy	Who Holds Data?
Centralized Differential Privacy	statistical analysis of dataset	individual-specific info	trusted curator
Local or Federated Differential Privacy	statistical analysis of dataset	individual-specific info	original users (or delegates)
Secure Multiparty Computation	any query desired	everything other than result of query	original users (or delegates)
Fully Homomorphic (or Functional) Encryption	any query desired	everything (except possibly result of query)	untrusted server

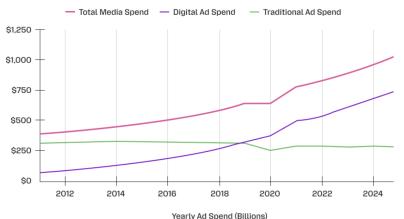
Secure Multiparty Computation

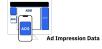


Requirement: At end of protocol, each party P_i learns $f_i(x_1, ..., x_n)$ and nothing else!

Ad Industry at a Glance

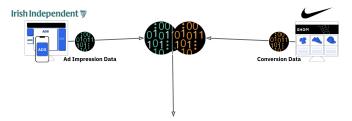
Total Yearly Advertising Spend





Platform

Advertiser



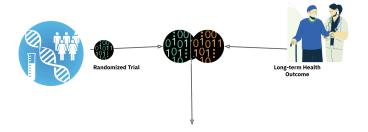
Attribution: Summary tables by groups

Lift: Causal estimate from random assignment

Delivery Optimization: Entropy measure for tuning ML

Retargeting: Track individual with ad

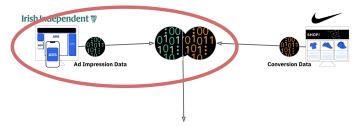
Data Flow in Ads Clinical Trials



Phase IV Trials -Lift: Causal estimate from random assignment

Data Flow in Ads Social Science

Opportunity Atlas Attribution: Summary tables by groups

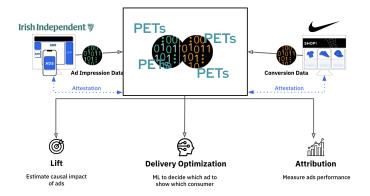


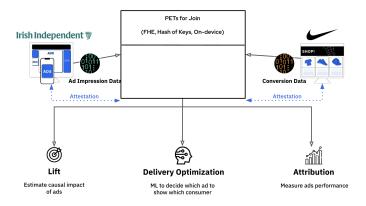
Attribution: Summary tables by groups

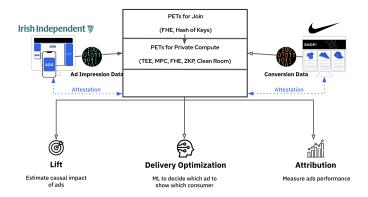
Lift: Causal estimate from random assignment

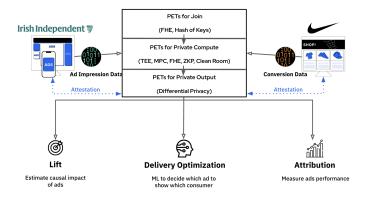
Delivery Optimization: Entropy measure for tuning ML

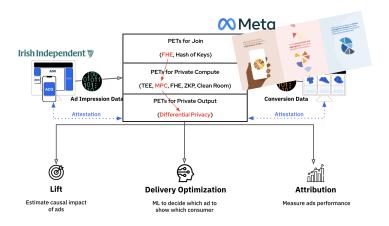
Retargeting: Track individual with ad

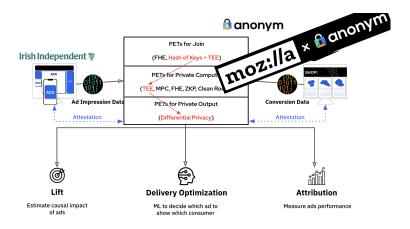


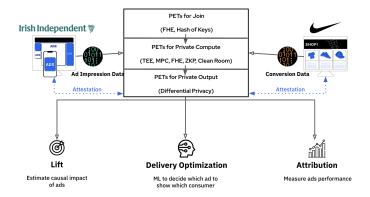












Data Flow in Ads figs/admeasurement16.png

Difference of Means

Outcome: $y_i \in [y_{\min}, y_{\max}]; \qquad R = y_{\max} - y_{\min}$ Treatment: $t_i \in \{0, 1\}$

Difference of Means

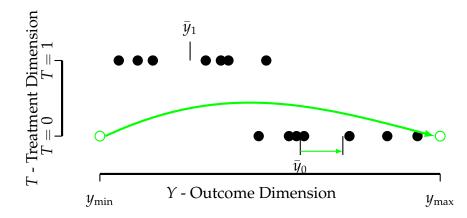
Outcome:
$$y_i \in [y_{\min}, y_{\max}]; \qquad R = y_{\max} - y_{\min}$$

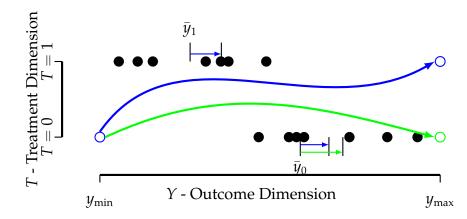
Treatment: $t_i \in \{0, 1\}$

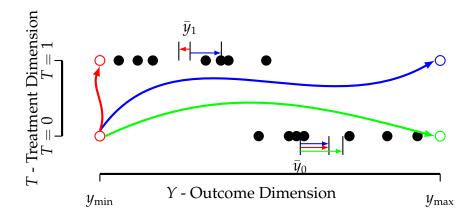
$$n_{1} = \sum t_{i} \qquad n_{0} = \sum 1 - t_{i}$$

$$\bar{y}_{1} = \frac{\sum t_{i} y_{i}}{n_{1}} \qquad \bar{y}_{0} = \frac{\sum (1 - t_{i}) y_{i}}{n_{0}}$$

$$sd(y_{1}) = \sqrt{\frac{\sum t_{i} (y_{i} - \bar{y}_{1})^{2}}{n_{1}}} \quad sd(y_{0}) = \sqrt{\frac{\sum (1 - t_{i}) (y_{i} - \bar{y}_{0})^{2}}{n_{0}}}$$







Statistic

$$\bar{y}_1 - \bar{y}_0$$
 $\frac{R}{n_1+1} + \frac{R}{n_0+1}$

Sensitivity

Difference of Means

 $\sqrt{\frac{sd(y_1)^2}{n_1} + \frac{sd(y_0)^2}{n_0}} \qquad R\sqrt{\frac{N^*-1}{N^{*3}}}$

where
$$N^* = \min(n_0, n_1)$$

Alg.1 Differentially Private Diff. of Means Estimate

- 1. Calculate $\bar{y}_1 \bar{y}_0$
- 2. Calculate $GS = \frac{x_{\text{max}} x_{\text{min}}}{N_1 + 1} + \frac{x_{\text{max}} x_{\text{min}}}{N_2 + 1}$

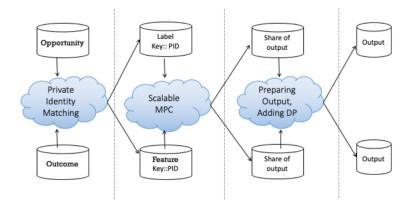
4. Release $M(X) = \bar{y}_1 - \bar{y}_0 + Z$

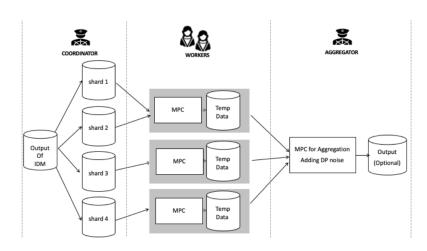
- 3. Draw $Z \sim f_{Laplace}(\mu = 0, b = GS/\epsilon)$

Privacy-Preserving Randomized Controlled Trials: A Protocol for Industry Scale Deployment

Mahnush Benjamin M. Case James Honaker Andrew Knox Movahedi* Li Li Yiming Paul Li Sanjay Saravanan Shubho Sengupta

> Erik Taubeneck Facebook Inc Menlo Park, CA





Algorithm 1 Differentially Private RCT Input:

Normal $\left(0, \frac{\Delta_{se_{lift}}^2}{2\rho_2}\right)$.

- - x_T: user-level outcomes for the test group • x_C: user-level outcomes for the control group • R: upper bound of user-level outcomes (lower bound =
 - 0) ρ₁: zCDP privacy budget for point estimate
 - ρ₂: zCDP privacy budget for standard error α: significance level of confidence interval (e.g., 10%)

Output: [DP lift -w, DP lift +w] confidence interval

- 1: Clamp/Winsorize:
- $Y_i = \begin{cases} X_i & \text{if } X_i \le R \\ R & \text{if } X_i > R \end{cases}$
- Calculate sample means, variances, and counts: \(\bar{u}_T\), \(\bar{u}_C\).
 - s_T^2 , s_C^2 , n_T , n_C . 3: lift ← \(\bar{q}_T - \bar{q}_C\).
 - 4: Standard error of lift: $se_{lift} \leftarrow \sqrt{s_T^2/n_T + s_C^2/n_C}$.
- 6: Sensitivity of the standard error of lift: $\Delta_{se_{lift}} \leftarrow \sqrt{\frac{N^*-1}{N^*}}R$, where $N^* = \min(n_T, n_C)$. 7: Draw scalar random noise $Z_1 \sim \text{Normal}\left(0, \frac{\Delta_{\text{lift}}^2}{2\alpha}\right), Z_2 \sim$
- 5: Sensitivity of lift: $\Delta_{\text{lift}} \leftarrow \frac{R}{n_T} + \frac{R}{n_C}$.

8: DP lift \leftarrow lift + Z_1 , where $Z_1 \sim \text{Normal}\left(0, \frac{\Delta_{\text{lift}}^2}{2\rho_1}\right)$. 9: DP $se_{lift} \leftarrow se_{lift} + Z_2$, where $Z_2 \sim Normal\left(0, \frac{\Delta_{se_{lift}}^2}{2\rho_2}\right)$. 10: $w = \sqrt{(se_{\text{lift}} + Z_2)^2 + \frac{\Delta_{\text{lift}}^2}{2a_1} \cdot z_{1-\alpha/2}}$, where $z_{1-\alpha/2}$ is the

critical value of standard normal at $1 - \alpha/2$.