

CS2080: Applied Privacy for Data Science Membership Attacks

School of Engineering & Applied Sciences Harvard University

February 5, 2025

Null Distributions

If *t* is a function of the data, it has a sampling distribution. The distribution that *t* would obtain if the null hypothesis were true is called the *null distribution*.

- If we use the value of *t* to draw an inference about the null hypothesis, we call *t* a **test statistic**.
- We observe *t*^{*} in some observed dataset **X**^{*} and reason whether it could have been a draw from the null distribution.
- If *t*^{*} is unlikely to have come from the null distribution, we **reject the null** hypothesis.
- If *t*^{*} could have been obtained from the null distribution, we **fail to reject the null**.
- Failing to reject the null, does not prove the null to be true.

Dwork, Smith, Steinke, Ullman, Vadhan (2015)

How to Design MIAs

• Design Test Statistic T = T (everything given to attacker) that you expect to be larger under H_1 than H_0 .

 $\hat{Y}=0$ $\hat{Y}=1$

H₁ Declare "In" if $T \ge t$ ٠ p(X=x|Y=0)p(X=x|Y=1)"Out" otherwise ΤР T = X"Out" FN for a threshold tcarefully selected to tune FPR and TPR. FN **ROC Curve:** 100% Q: Why is the "Area Under the ROC Curve" (AUC) not P(TP), TPR so informative for privacy?

100%

P(FP), FPR

0%

H₀

FP

Inferential Errors

Reasoning from known data to about an unknown hypothesis is called inference. Inferential errors are commonly labelled by type:

	H_0	H_1
	True	True
Fail to Reject <i>H</i> ₀	Correct TNR	Error FNR
	Specificity	(Type II)
		Sensitivity
Reject H ₀	Error FPR	Correct TPR
	(Type I)	Sensitivity
	Specificity	

Sensitivity = TPR / (TPR + FNR) Specificity = TNR/ (TNR + FPR) Dwork, Smith, Steinke, Ullman, Vadhan (2015)

How to Design MIAs

• Design Test Statistic T = T (everything given to attacker) that you expect to be larger under H_1 than H_0 .

 $\hat{Y}=0$ $\hat{Y}=1$

H₁ Declare "In" if $T \ge t$ ٠ p(X=x|Y=0)p(X=x|Y=1)"Out" otherwise ΤР T = X"Out" FN for a threshold tcarefully selected to tune FPR and TPR. FN **ROC Curve:** 100% Q: Why is the "Area Under the ROC Curve" (AUC) not P(TP), TPR so informative for privacy?

100%

P(FP), FPR

0%

H₀

FP

 H_0 : *K*-dimensional random variables **x** and **z** are both drawn from a standard Normal distribution with the same mean, $\mathcal{N}(\vec{\mu}, 1)$.

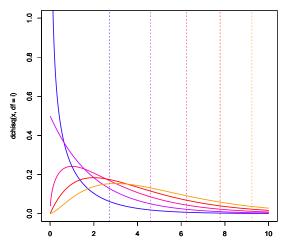
Then one test statistic is:

$$t(\mathbf{x}, \mathbf{z}) = ||\mathbf{x} - \mathbf{z}||_2 = \sqrt{\sum_{i=1}^{K} (x_i - z_i)^2}$$

Which has null distribution $\chi^2(K)$.

Example

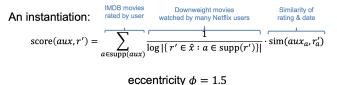
$\chi^2(K)$ Distribution with critical values for $\delta = 0.1$, for *i* in 1 to 5:



Netflix Challenge (from last week)

Narayanan-Shmatikov Algorithm

- 1. Calculate score(aux, r') for each $r' \in \hat{x}$, as well as the standard deviation σ of the calculated scores.
- Let r₁' and r₂' be the records with the largest and secondlargest scores.
- If score(aux, r₁') score(aux, r₂') > φ ⋅ σ, output r₁', else output ⊥.



Dwork, Smith, Steinke, Ullman, Vadhan (2015)

"Out" Population pOR Alice's data v**n** 0 1 0 1 0 1 people 1 0 1 1 1 0 0 1 0 0 0 aux = pprivacy mechanism "In"/ Attacker а $\approx \bar{x}$ $A(y, a, p) = \begin{cases} IN & \text{if } \langle y - p, a - p \rangle \ge t \\ OUT & \text{if } \langle y - p, a - p \rangle < t \end{cases}$

A Test Statistic for Means

Thm [Dwork et al. `15]: under natural distributional assumptions, if mechanism outputs have error smaller than $\gamma < \frac{1}{2}$, can achieve

- FPR = exp $(-\Omega(d/(\gamma n)^2))$ [very small when $d \gg (\gamma n)^2$]
- TPR = $\Omega(1/(\gamma^2 n))$ [declare "In" for $k = \Omega(1/\gamma^2)$ members of dataset]