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Attacks on Aggregate Stats

For releasing d population proportions on a dataset of size n:

Reconstruction

1 : Vd
attacksd = n i Membership attacks —
Error a
Sampling error 2

Questions:

« If we allow error greater than v'd/n, can we prevent these
attacks?

e (Can we reason about unforeseen attacks?



Goals of Differential Privacy

e Utility: enable “statistical analysis” of datasets

— e.g. inference about population, ML training, useful
descriptive statistics

* Privacy: protect individual-level data
— against “all” attack strategies, auxiliary info.



Differential privacy

[Dinur-Nissim ‘03+Dwork, Dwork-Nissim '04, Blum-Dwork-McSherry-Nissim
05, Dwork-McSherry-Nissim-Smith '06]
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mechanism ~ data analysts

Requirement: effect of each individual should be “hidden”



Differential privacy
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Differential privacy

[Dinur-Nissim ‘03+Dwork, Dwork-Nissim '04, Blum-Dwork-McSherry-Nissim
05, Dwork-McSherry-Nissim-Smith '06]
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mechanism adversary

Requirement: an adversary shouldn’t be able to
tell if any one person’s data were changed arbitrarily



Differential privacy

[Dinur-Nissim ‘03+Dwork, Dwork-Nissim '04, Blum-Dwork-McSherry-Nissim
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Requirement: an adversary shouldn’t be able to
tell if any one person’s data were changed arbitrarily



Differential privacy

[Dinur-Nissim ‘03+Dwork, Dwork-Nissim '04, Blum-Dwork-McSherry-Nissim
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Requirement: an adversary shouldn’t be able to
tell if any one person’s data were changed arbitrarily



Simple approach: random noise

“What fraction of people are
type B and HIV positive?”

“Sex | Biood |- | HIV?
B B “ee

Answer + Noise(0(1/n))
A
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Error > 0 asn —>00]

* Very little noise needed to hide each personasn — 00,

* Note: this is just for one query



DP for one query/release

[Dinur-Nissim ‘03+Dwork, Dwork-Nissim '04, Blum-Dwork-McSherry-Nissim
05, Dwork-McSherry-Nissim-Smith "06]
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Requirement: for all x, x’ differing on one row, and all g

Distribution of M(x, q) =~ Distribution of M(x', q)




DP for one query/release

[Dinur-Nissim ‘03+Dwork, Dwork-Nissim '04, Blum-Dwork-McSherry-Nissim
05, Dwork-McSherry-Nissim-Smith '06]

e Lsoos L

F
-l >
M N
—»
M Y
F N
M Y

randomized adversary
mechanism

@ > O O »r

Requirement: for all x, x’ differing on one row, and all g

Vsets T, Pr[M(x,q) € T] < (1+¢) - Pr[M(x',q) € T}




DP for one query/release

[Dwork-McSherry-Nissim-Smith '06]
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Def: M is e-DP if for all x, x’ differing on one row, and all g

Vsets T, PriM(x,q) € T] <ef:-Pr[M(x',q) € T]

(Probabilities are (only) over the randomness of M.)




The Laplace Mechanism

[Dwork-McSherry-Nissim-Smith '06]
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“What fraction of people are
type B and HIV positive?”

Answer + Laplace(1/en)
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_ Density at y < exp(—en - |y]) ]

* Very little noise needed to hide each personasn — 00,



The Laplace Mechanism

[Dwork-McSherry-Nissim-Smith '06]
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query q

q(x) + Laplace(Aq/¢)
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* Very little noise needed to hide each personasn — 00,



The Laplace Mechanism

[Dwork-McSherry-Nissim-Smith '06]

* Let X be a data universe, and X™ a space of datasets.
— This is the Bounded DP setting: n known and public.
e Forx,x' € X™ writex ~ x"if x and x’ differ on < 1 row.
 Foraqueryqg: X" — R, the global sensitivity is
Aq = GSg = max |q(x) —q(x")l.
* The Laplace distribution with scale s, Lap(s): Zj
— Has density function f(y) = e~ 175 /2s.

— Mean 0, standard deviation V2 - s. "
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Theorem: M(X, q) — Q(X) + Lap(Aq/S) is E—DP, By IkamusumeFan - Own work, CC BY-SA 4.0



https://commons.wikimedia.org/w/index.php?curid=34776178

Calculating Global Sensitivity
1. X={01},q(x) = X, x;, Aq =
2 X=R, qgx)=3",x;,Aq =
3 X =1[0,1], g(x) = mean(xy, X3, ..., Xn), Ag =
4. X =[0,1], q(x) = median(xy, x5, ..., X,), Aq =
5 X =1[01], q(x) = variance(x, Xy, ..., %), AG=

Q: for which of these queries is the Laplace Mechanism “useful”?



Properties of the Definition

* Suffices to check pointwise: M is e-DP if and only if
Vx ~x'"VgVyPr[M(x,q) =y] <e® Pr[M(x',q) =vy].

* Preserved under post-processing: If M is e-DP and f is any
function, then M'(x,q) = f(M(x, q)) is &-DP.

* (Basic) composition: If M; is g;-DP fori = 1, ..., k, then
M’(X, (CI1' "y qk)) = (Ml (X, Ch); Ly Mk (X, qk))
is (&g + -+ &,)-DP
— Use independent randomness for the k queries
— Holds even if g;’s are chosen adaptively



Interpreting the Definition

Whatever an adversary learns about me, it could have learned
from everyone else’s data.

Mechanism cannot leak “individual-specific” information.

Above interpretations hold regardless of adversary’s auxiliary
information or computational power.

Protection against MIAs: let X = (X3, ..., X;;) be a r.v. distributed
onX"and X_; = (X1, ..., X;_1, L, X;+1, ..., X;;) be X with Alice’s
data removed. Then for every MIA A4,

Pr[A(M(X)) = "In"] < e® - Pr[A(M(X_;)) = "In"]
\ ) \

| |
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Varying the Data Domain and Privacy Unit

* Unbounded DP (n not publicly known):
— Datasets: multisets x from a data universe X

 Can represent as histogram h,: X = N, h, (i) = # copies of i
— Adjacency: x ~ x' if |[xAx'| < 1 (add/remove 1 record)
* Equivalently }};cy|hy (i) — h (D) < 1

* Social Networks:
— Datasets: graphs G
— Adjacency: G ~ G'if
 differ by < 1 edge (edge privacy), OR
 differ by < 1 node and incident edges (node privacy)
Q: which is better for privacy?



Real Numbers Aren’t

[Mironov "12]

* Digital computers don’t manipulate actual real numbers.

— Floating-point implementations of the Laplace mechanism
can have M(x, q) and M(x', q) disjoint — privacy violation!

e Solutions:
— Round outputs of M to a discrete value (with care).
— Or use the Geometric Mechanism:
* Ensure that g(x) is always an integer multiple of g.
* Define M(x,q) = q(x) + g - Geo(GS,/gée), where
Pr[Geo(s) = k] « e~ I¥l/s for k € Z.
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