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Attacks on Aggregate Stats
For releasing 𝑑𝑑 population proportions on a dataset of size 𝑛𝑛:
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Questions:

• If we allow error greater than ⁄𝑑𝑑 𝑛𝑛, can we prevent these 
attacks? 

• Can we reason about unforeseen attacks?



Goals of Differential Privacy

• Utility: enable “statistical analysis” of datasets
– e.g. inference about population, ML training, useful 

descriptive statistics

• Privacy: protect individual-level data  
– against “all” attack strategies, auxiliary info.



Differential privacy
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Requirement: effect of each individual should be “hidden”

[Dinur-Nissim ’03+Dwork, Dwork-Nissim ’04, Blum-Dwork-McSherry-Nissim 
’05, Dwork-McSherry-Nissim-Smith ’06]
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Simple approach: random noise

C “What fraction of people are 
type B and HIV positive?”

Answer + Noise(𝑂𝑂(1/𝑛𝑛))𝑛𝑛
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M

Error → 0 as 𝑛𝑛 → ∞

• Very little noise needed to hide each person as 𝑛𝑛 → ∞.

• Note: this is just for one query



DP for one query/release
[Dinur-Nissim ’03+Dwork, Dwork-Nissim ’04, Blum-Dwork-McSherry-Nissim 
’05, Dwork-McSherry-Nissim-Smith ’06]
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DP for one query/release
[Dwork-McSherry-Nissim-Smith ’06]
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Def: M is 𝜀𝜀-DP if for all 𝑥𝑥, 𝑥𝑥𝑥 differing on one row, and all 𝑞𝑞

∀ sets 𝑇𝑇,          Pr 𝑀𝑀 𝑥𝑥, 𝑞𝑞 ∈ 𝑇𝑇 ≤ 𝑒𝑒𝜀𝜀 ⋅ Pr 𝑀𝑀 𝑥𝑥′, 𝑞𝑞 ∈ 𝑇𝑇
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(Probabilities are (only) over the randomness of M.)



The Laplace Mechanism

C “What fraction of people are 
type B and HIV positive?”

Answer + Laplace(1/𝜀𝜀𝑛𝑛)𝑛𝑛
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Density at 𝑦𝑦 ∝ exp(−𝜀𝜀𝑛𝑛 ⋅ 𝑦𝑦 )

• Very little noise needed to hide each person as 𝑛𝑛 → ∞.

[Dwork-McSherry-Nissim-Smith ’06]



The Laplace Mechanism

C query 𝑞𝑞
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• Very little noise needed to hide each person as 𝑛𝑛 → ∞.

Density at 𝑦𝑦 ∝ exp(−𝜀𝜀 ⋅ 𝑦𝑦 /Δ𝑞𝑞)

[Dwork-McSherry-Nissim-Smith ’06]



The Laplace Mechanism

• Let 𝒳𝒳 be a data universe, and 𝒳𝒳𝑛𝑛 a space of datasets.
– This is the Bounded DP setting: 𝑛𝑛 known and public.

• For 𝑥𝑥, 𝑥𝑥′ ∈ 𝒳𝒳𝑛𝑛, write 𝑥𝑥 ∼ 𝑥𝑥𝑥 if 𝑥𝑥 and 𝑥𝑥𝑥 differ on ≤ 1 row.
• For a query 𝑞𝑞 ∶  𝒳𝒳𝑛𝑛 → ℝ, the global sensitivity is

Δ𝑞𝑞 = GS𝑞𝑞 = max
𝑥𝑥∼𝑥𝑥′

𝑞𝑞 𝑥𝑥 − 𝑞𝑞(𝑥𝑥′) .

• The Laplace distribution with scale 𝑠𝑠, Lap 𝑠𝑠 :
– Has density function 𝑓𝑓 𝑦𝑦 = 𝑒𝑒−|𝑦𝑦|/𝑠𝑠/2𝑠𝑠.
– Mean 0, standard deviation 2 ⋅ 𝑠𝑠.

Theorem: 𝑀𝑀 𝑥𝑥, 𝑞𝑞 = 𝑞𝑞 𝑥𝑥 + Lap(Δ𝑞𝑞/𝜀𝜀) is 𝜀𝜀-DP.

[Dwork-McSherry-Nissim-Smith ’06]
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Calculating Global Sensitivity

1. 𝒳𝒳 = {0,1}, 𝑞𝑞 𝑥𝑥 =  ∑𝑖𝑖=1𝑛𝑛 𝑥𝑥𝑖𝑖, Δ𝑞𝑞 = 

2. 𝒳𝒳 =  ℝ, 𝑞𝑞 𝑥𝑥 =  ∑𝑖𝑖=1𝑛𝑛 𝑥𝑥𝑖𝑖 ,Δ𝑞𝑞 = 

3. 𝒳𝒳 = [0,1], 𝑞𝑞 𝑥𝑥 = mean 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 ,Δ𝑞𝑞 = 

4. 𝒳𝒳 = [0,1], 𝑞𝑞 𝑥𝑥 = median 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 ,Δ𝑞𝑞 = 

5. 𝒳𝒳 = [0,1], 𝑞𝑞 𝑥𝑥 = variance 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 ,Δ𝑞𝑞= 

Q: for which of these queries is the Laplace Mechanism “useful”?



Properties of the Definition

• Suffices to check pointwise: 𝑀𝑀 is 𝜀𝜀-DP if and only if
∀𝑥𝑥 ∼ 𝑥𝑥′ ∀𝑞𝑞 ∀𝑦𝑦 Pr 𝑀𝑀 𝑥𝑥, 𝑞𝑞 = 𝑦𝑦 ≤ 𝑒𝑒𝜀𝜀 ⋅ Pr 𝑀𝑀 𝑥𝑥′, 𝑞𝑞 = 𝑦𝑦 .

• Preserved under post-processing: If 𝑀𝑀 is 𝜀𝜀-DP and 𝑓𝑓 is any 
function, then 𝑀𝑀′ 𝑥𝑥, 𝑞𝑞 = 𝑓𝑓(𝑀𝑀 𝑥𝑥, 𝑞𝑞 ) is 𝜀𝜀-DP. 

• (Basic) composition: If 𝑀𝑀𝑖𝑖 is 𝜀𝜀𝑖𝑖-DP for 𝑖𝑖 = 1, … ,𝑘𝑘, then
  𝑀𝑀′ 𝑥𝑥, 𝑞𝑞1, … , 𝑞𝑞𝑘𝑘 = (𝑀𝑀1 𝑥𝑥, 𝑞𝑞1 , … ,𝑀𝑀𝑘𝑘 𝑥𝑥, 𝑞𝑞𝑘𝑘 ) 
     is (𝜀𝜀1 + ⋯+ 𝜀𝜀𝑘𝑘)-DP
– Use independent randomness for the 𝑘𝑘 queries
– Holds even if 𝑞𝑞𝑖𝑖’s are chosen adaptively



Interpreting the Definition

• Whatever an adversary learns about me, it could have learned 
from everyone else’s data.

• Mechanism cannot leak “individual-specific” information.

• Above interpretations hold regardless of adversary’s auxiliary 
information or computational power.

• Protection against MIAs: let 𝑋𝑋 = (𝑋𝑋1, … ,𝑋𝑋𝑛𝑛) be a r.v. distributed 
on 𝒳𝒳𝑛𝑛 and 𝑋𝑋−𝑖𝑖 = (𝑋𝑋1, … ,𝑋𝑋𝑖𝑖−1,⊥,𝑋𝑋𝑖𝑖+1, … ,𝑋𝑋𝑛𝑛) be 𝑋𝑋 with Alice’s 
data removed.   Then for every MIA 𝐴𝐴,

  Pr 𝐴𝐴 𝑀𝑀 𝑋𝑋 =  "In" ≤ 𝑒𝑒𝜀𝜀 ⋅ Pr 𝐴𝐴 𝑀𝑀 𝑋𝑋−𝑖𝑖 =  "In"

TPR on 𝑋𝑋 FPR on 𝑋𝑋−𝑖𝑖



Varying the Data Domain and Privacy Unit

• Unbounded DP (𝑛𝑛 not publicly known):
– Datasets: multisets 𝑥𝑥 from a data universe 𝒳𝒳

• Can represent as histogram ℎ𝑥𝑥:𝒳𝒳 → ℕ, ℎ𝑥𝑥 𝑖𝑖 = # copies of 𝑖𝑖

– Adjacency: 𝑥𝑥 ∼ 𝑥𝑥𝑥 if 𝑥𝑥Δ𝑥𝑥′ ≤ 1 (add/remove 1 record)
• Equivalently ∑𝑖𝑖∈𝒳𝒳 ℎ𝑥𝑥 𝑖𝑖 − ℎ𝑥𝑥′ 𝑖𝑖 ≤ 1

• Social Networks:
– Datasets: graphs 𝐺𝐺
– Adjacency: 𝐺𝐺 ∼ 𝐺𝐺𝑥 if 

• differ by ≤ 1 edge (edge privacy), OR
• differ by ≤ 1 node and incident edges (node privacy)

 Q: which is better for privacy?



Real Numbers Aren’t
[Mironov `12]
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