

CS208: Applied Privacy for Data Science Introduction to Differential Privacy

School of Engineering & Applied Sciences Harvard University

February 8, 2022

Attacks on Aggregate Stats

For releasing d population proportions on a dataset of size n:



Questions:

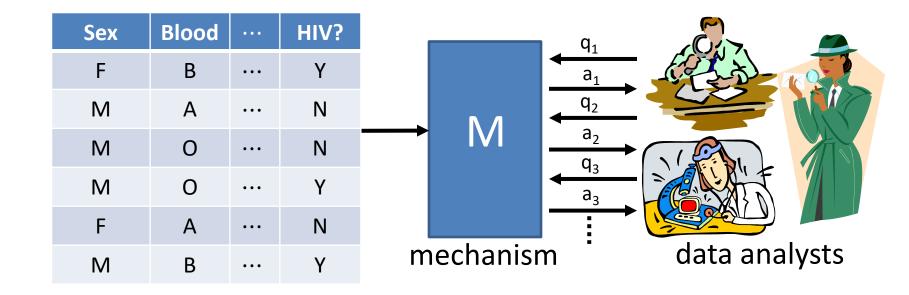
- If we allow error greater than \sqrt{d}/n , can we prevent these attacks?
- Can we reason about unforeseen attacks?

Goals of Differential Privacy

- Utility: enable "statistical analysis" of datasets
 - e.g. inference about population, ML training, useful descriptive statistics

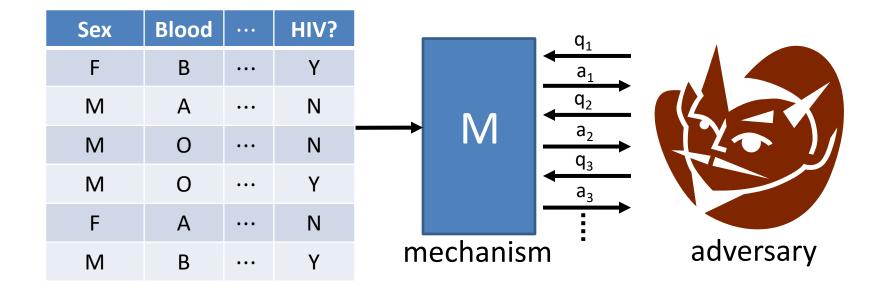
- Privacy: protect individual-level data
 - against "all" attack strategies, auxiliary info.

[Dinur-Nissim '03+Dwork, Dwork-Nissim '04, Blum-Dwork-McSherry-Nissim '05, Dwork-McSherry-Nissim-Smith '06]

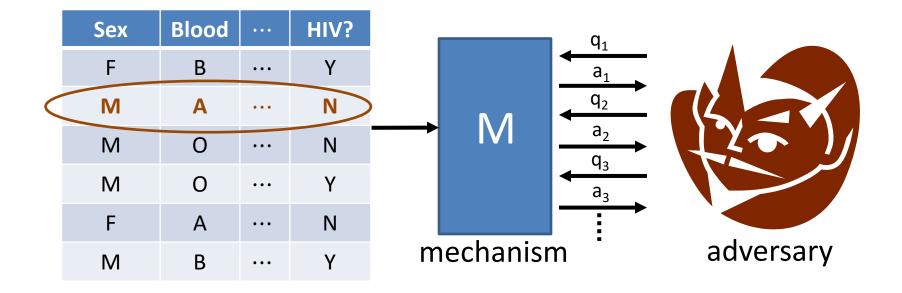


Requirement: effect of each individual should be "hidden"

[Dinur-Nissim '03+Dwork, Dwork-Nissim '04, Blum-Dwork-McSherry-Nissim '05, Dwork-McSherry-Nissim-Smith '06]

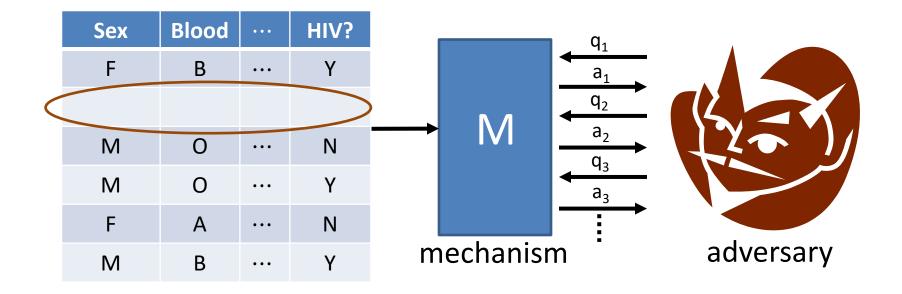


[Dinur-Nissim '03+Dwork, Dwork-Nissim '04, Blum-Dwork-McSherry-Nissim '05, Dwork-McSherry-Nissim-Smith '06]



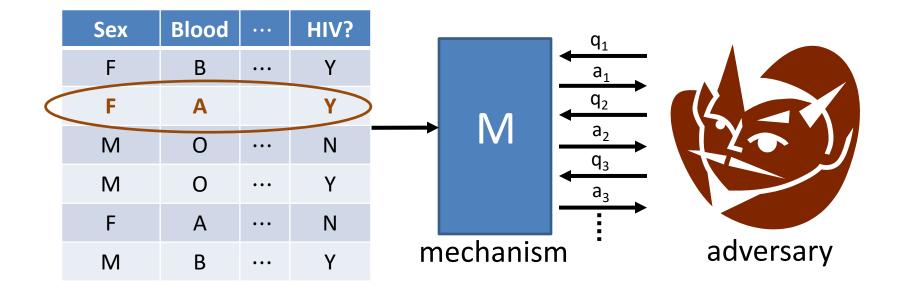
Requirement: an adversary shouldn't be able to tell if any one person's data were changed arbitrarily

[Dinur-Nissim '03+Dwork, Dwork-Nissim '04, Blum-Dwork-McSherry-Nissim '05, Dwork-McSherry-Nissim-Smith '06]



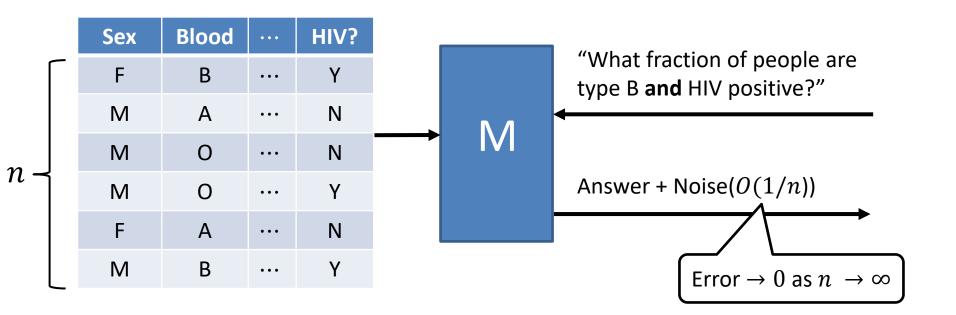
Requirement: an adversary shouldn't be able to tell if any one person's data were changed arbitrarily

[Dinur-Nissim '03+Dwork, Dwork-Nissim '04, Blum-Dwork-McSherry-Nissim '05, Dwork-McSherry-Nissim-Smith '06]



Requirement: an adversary shouldn't be able to tell if any one person's data were changed arbitrarily

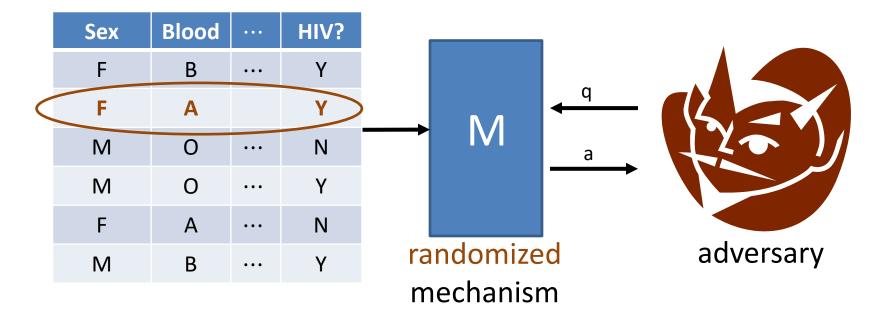
Simple approach: random noise



- Very little noise needed to hide each person as $n \to \infty$.
- Note: this is just for one query

DP for one query/release

[Dinur-Nissim '03+Dwork, Dwork-Nissim '04, Blum-Dwork-McSherry-Nissim '05, Dwork-McSherry-Nissim-Smith '06]

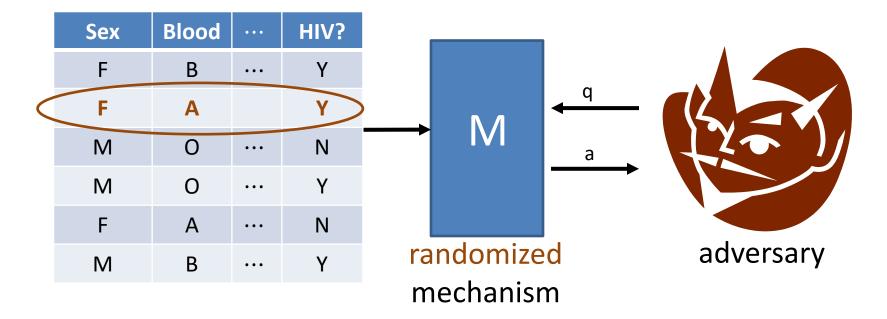


Requirement: for all x, x' differing on one row, and all q

Distribution of $M(x,q) \approx_{\varepsilon}$ Distribution of M(x',q)

DP for one query/release

[Dinur-Nissim '03+Dwork, Dwork-Nissim '04, Blum-Dwork-McSherry-Nissim '05, Dwork-McSherry-Nissim-Smith '06]

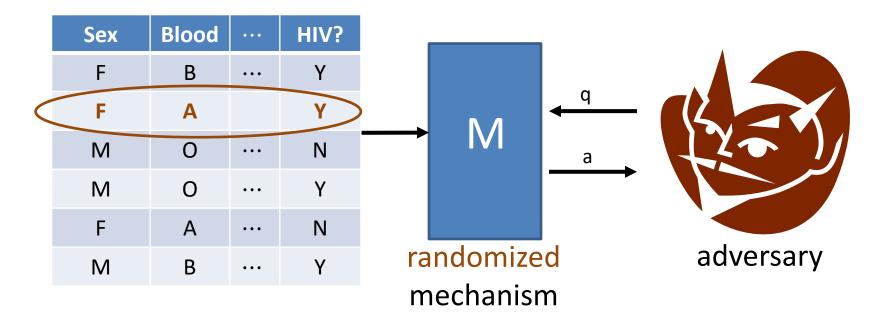


Requirement: for all x, x' differing on one row, and all q

 $\forall \text{ sets } T, \qquad \Pr[M(x,q) \in T] \leq (1+\varepsilon) \cdot \Pr[M(x',q) \in T]$

DP for one query/release

[Dwork-McSherry-Nissim-Smith '06]



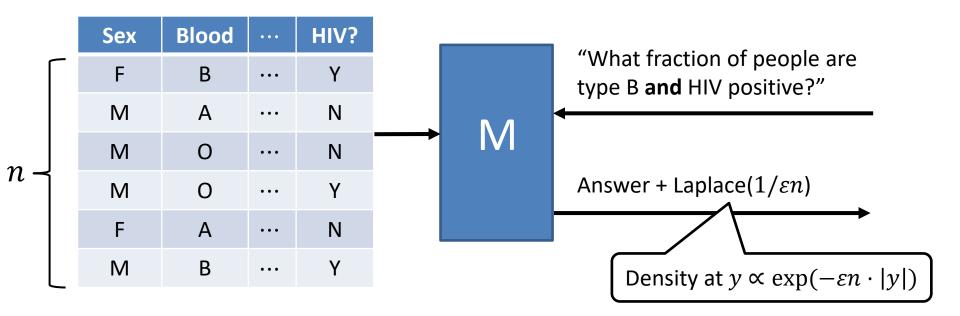
Def: M is ε -DP if for all x, x' differing on one row, and all q

 $\forall \text{ sets } T, \qquad \Pr[M(x,q) \in T] \le e^{\varepsilon} \cdot \Pr[M(x',q) \in T]$

(Probabilities are (only) over the randomness of M.)

The Laplace Mechanism

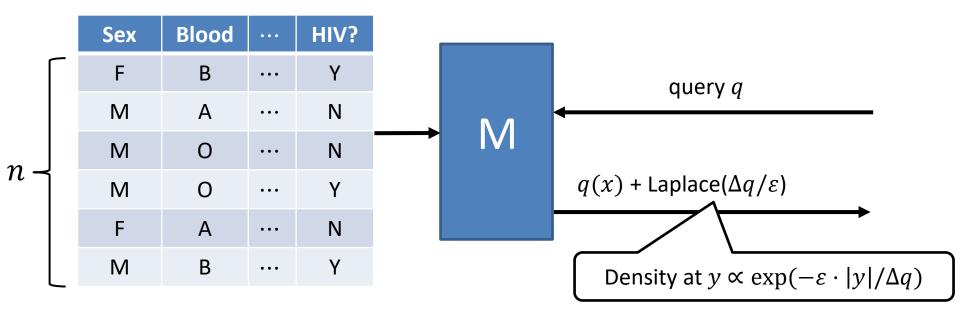
[Dwork-McSherry-Nissim-Smith '06]



• Very little noise needed to hide each person as $n \to \infty$.

The Laplace Mechanism

[Dwork-McSherry-Nissim-Smith '06]



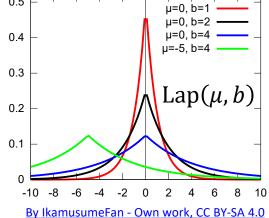
• Very little noise needed to hide each person as $n \to \infty$.

The Laplace Mechanism

[Dwork-McSherry-Nissim-Smith '06]

- Let X be a data universe, and Xⁿ a space of datasets.
 This is the Bounded DP setting: n known and public.
- For $x, x' \in \mathcal{X}^n$, write $x \sim x'$ if x and x' differ on ≤ 1 row.
- For a query $q : \mathcal{X}^n \to \mathbb{R}$, the global sensitivity is $\Delta q = \mathrm{GS}_q = \max_{x \sim x'} |q(x) - q(x')|.$
- The Laplace distribution with scale s, Lap(s):
 - Has density function $f(y) = e^{-|y|/s}/2s$.
 - Mean 0, standard deviation $\sqrt{2} \cdot s$.

Theorem: $M(x,q) = q(x) + Lap(\Delta q/\varepsilon)$ is ε -DP.



Calculating Global Sensitivity

1.
$$\mathcal{X} = \{0,1\}, q(x) = \sum_{i=1}^{n} x_i, \Delta q =$$

2.
$$\mathcal{X} = \mathbb{R}, q(x) = \sum_{i=1}^{n} x_i, \Delta q =$$

3.
$$X = [0,1], q(x) = mean(x_1, x_2, ..., x_n), \Delta q =$$

4.
$$\mathcal{X} = [0,1], q(x) = \text{median}(x_1, x_2, ..., x_n), \Delta q =$$

5.
$$X = [0,1], q(x) = variance(x_1, x_2, ..., x_n), \Delta q =$$

Q: for which of these queries is the Laplace Mechanism "useful"?

Properties of the Definition

- Suffices to check pointwise: *M* is ε -DP if and only if $\forall x \sim x' \forall q \forall y \Pr[M(x,q) = y] \le e^{\varepsilon} \cdot \Pr[M(x',q) = y].$
- Preserved under post-processing: If M is ε -DP and f is any function, then M'(x,q) = f(M(x,q)) is ε -DP.
- (Basic) composition: If M_i is ε_i -DP for i = 1, ..., k, then $M'(x, (q_1, ..., q_k)) = (M_1(x, q_1), ..., M_k(x, q_k))$ is $(\varepsilon_1 + \dots + \varepsilon_k)$ -DP
 - Use independent randomness for the k queries
 - Holds even if q_i 's are chosen adaptively

Interpreting the Definition

- Whatever an adversary learns about me, it could have learned from everyone else's data.
- Mechanism cannot leak "individual-specific" information.
- Above interpretations hold regardless of adversary's auxiliary information or computational power.
- Protection against MIAs: let $X = (X_1, ..., X_n)$ be a r.v. distributed on \mathcal{X}^n and $X_{-i} = (X_1, ..., X_{i-1}, \bot, X_{i+1}, ..., X_n)$ be X with Alice's data removed. Then for every MIA A,

$$\Pr[A(M(X)) = "In"] \le e^{\varepsilon} \cdot \Pr[A(M(X_{-i})) = "In"]$$

$$\mathsf{TPR} \text{ on } X \qquad \mathsf{FPR} \text{ on } X_{-i}$$

Varying the Data Domain and Privacy Unit

- Unbounded DP (*n* not publicly known):
 - Datasets: multisets x from a data universe \mathcal{X}
 - Can represent as histogram $h_x: \mathcal{X} \to \mathbb{N}$, $h_x(i) = \#$ copies of i
 - Adjacency: $x \sim x'$ if $|x\Delta x'| \leq 1$ (add/remove 1 record)
 - Equivalently $\sum_{i \in \mathcal{X}} |h_{\chi}(i) h_{\chi'}(i)| \le 1$
- Social Networks:
 - Datasets: graphs G
 - Adjacency: $G \sim G'$ if
 - differ by ≤ 1 edge (edge privacy), OR
 - differ by ≤ 1 node and incident edges (node privacy)

Q: which is better for privacy?

Real Numbers Aren't

[Mironov `12]

- Digital computers don't manipulate actual real numbers.
 - Floating-point implementations of the Laplace mechanism can have M(x,q) and M(x',q) disjoint \rightarrow privacy violation!
- Solutions:
 - Round outputs of *M* to a discrete value (with care).
 - Or use the Geometric Mechanism:
 - Ensure that q(x) is always an integer multiple of g.
 - Define $M(x,q) = q(x) + g \cdot \text{Geo}(\text{GS}_q/g\varepsilon)$, where $\Pr[\text{Geo}(s) = k] \propto e^{-|k|/s}$ for $k \in \mathbb{Z}$.