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Discussion
Imagine a study asks a random sample of voters in a town about their race and whether they are 
registered as Republican, Democrat, or Independent. The investigators claim to use differentially 
private mechanisms to compute proportions of party registration by race, along with confidence 
intervals around these proportions.

Their results indicate that Asian people in the town are almost always registered as Democrats, 
however people of other racial backgrounds in the town are almost always registered as Republicans.

Mr. E is an Asian person living in the town. His boss, a registered Republican, knows Mr. E’s race and 
uses the results of the study to conclude that Mr. E is likely a Democrat.

Mr. E finds out what his boss has learned and is upset, feeling that his privacy was violated. He 
contacts the study investigators letting them know what happened and questioning whether their 
analysis actually satisfied differential privacy.

Based on Mr. E’s experience, is there reason to doubt the investigators’ claim of using 
differentially private mechanisms in their analysis? Why or why not?



DP for one query/release
[Dwork-McSherry-Nissim-Smith ’06]
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Def: M is 𝜀𝜀-DP if for all 𝑥𝑥, 𝑥𝑥𝑥 differing on one row, and all 𝑞𝑞

∀ sets 𝑇𝑇,          Pr 𝑀𝑀 𝑥𝑥, 𝑞𝑞 ∈ 𝑇𝑇 ≤ 𝑒𝑒𝜀𝜀 ⋅ Pr 𝑀𝑀 𝑥𝑥′, 𝑞𝑞 ∈ 𝑇𝑇

adversary

(Probabilities are (only) over the randomness of M.)



Properties of the Definition

• Suffices to check pointwise: 𝑀𝑀 is 𝜀𝜀-DP if and only if
∀𝑥𝑥 ∼ 𝑥𝑥′ ∀𝑞𝑞 ∀𝑦𝑦 Pr 𝑀𝑀 𝑥𝑥, 𝑞𝑞 = 𝑦𝑦 ≤ 𝑒𝑒𝜀𝜀 ⋅ Pr 𝑀𝑀 𝑥𝑥′, 𝑞𝑞 = 𝑦𝑦 .

• Preserved under post-processing: If 𝑀𝑀 is 𝜀𝜀-DP and 𝑓𝑓 is any 
function, then 𝑀𝑀′ 𝑥𝑥, 𝑞𝑞 = 𝑓𝑓(𝑀𝑀 𝑥𝑥, 𝑞𝑞 ) is 𝜀𝜀-DP. 

• (Basic) composition: If 𝑀𝑀𝑖𝑖 is 𝜀𝜀𝑖𝑖-DP for 𝑖𝑖 = 1, … ,𝑘𝑘, then
𝑀𝑀′ 𝑥𝑥, 𝑞𝑞1, … , 𝑞𝑞𝑘𝑘 = (𝑀𝑀1 𝑥𝑥, 𝑞𝑞1 , … ,𝑀𝑀𝑘𝑘 𝑥𝑥, 𝑞𝑞𝑘𝑘 )

is (𝜀𝜀1 + ⋯+ 𝜀𝜀𝑘𝑘)-DP
– Use independent randomness for the 𝑘𝑘 queries
– Holds even if 𝑞𝑞𝑖𝑖’s are chosen adaptively



DP for Interactive Mechanisms
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1st Attempt: for all 𝑥𝑥 ∼ 𝑥𝑥𝑥, all 𝑞𝑞1, … , 𝑞𝑞𝑡𝑡, all 𝑇𝑇

Pr 𝑀𝑀 𝑥𝑥, 𝑞𝑞1, … , 𝑞𝑞𝑡𝑡 ∈ 𝑇𝑇 ≤ 𝑒𝑒𝜀𝜀 ⋅ Pr 𝑀𝑀 𝑥𝑥𝑥, 𝑞𝑞1, … , 𝑞𝑞𝑡𝑡 ∈ 𝑇𝑇

adversary

vectors of answers 𝑎𝑎1, … , 𝑎𝑎𝑡𝑡



DP for Interactive Mechanisms
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Better: for all 𝑥𝑥 ∼ 𝑥𝑥𝑥, all adversarial strategies 𝐴𝐴
View𝐴𝐴 𝐴𝐴 𝑀𝑀 𝑥𝑥 ≈𝜀𝜀 View𝐴𝐴(𝐴𝐴 𝑀𝑀 𝑥𝑥′ )

adversary

Everything 𝐴𝐴 sees (its internal randomness & query answers)

Equivalently: ∀ 𝐴𝐴 Pr[𝐴𝐴 outputs "In" after interacting w/𝑀𝑀 𝑥𝑥 ]
≤ 𝑒𝑒𝜀𝜀 ⋅ Pr 𝐴𝐴 outputs "In" after interacting w/𝑀𝑀 𝑥𝑥𝑥



Composition as an Interactive Mechanism

C

PureDPFilter𝜀𝜀(𝑥𝑥)

𝑀𝑀1, 𝜀𝜀1

𝑎𝑎1

𝑀𝑀2, 𝜀𝜀2

𝑎𝑎2dataset 𝑥𝑥

If 𝜀𝜀1 ≤ 𝜀𝜀 and 𝑀𝑀1 is 𝜀𝜀1-DP, 
then 𝑎𝑎1 = 𝑀𝑀1 𝑥𝑥 , 𝜀𝜀 = 𝜀𝜀 − 𝜀𝜀1
else 𝑎𝑎1 =⊥

If 𝜀𝜀2 ≤ 𝜀𝜀 and 𝑀𝑀2 is 𝜀𝜀2-DP, 
then 𝑎𝑎2 = 𝑀𝑀2 𝑥𝑥 , 𝜀𝜀 = 𝜀𝜀 − 𝜀𝜀2
else 𝑎𝑎2 =⊥

privacy-loss budget 𝜀𝜀

Theorem: PureDPFilter𝜀𝜀 is an 𝜀𝜀-DP interactive mechanism.

data analysts



Privacy Budgeting

C
𝑀𝑀1, 𝜀𝜀1

𝑎𝑎1

𝑀𝑀2, 𝜀𝜀2

𝑎𝑎2dataset 𝑥𝑥

If 𝜀𝜀1 ≤ 𝜀𝜀 and 𝑀𝑀1 is 𝜀𝜀1-DP, 
then 𝑎𝑎1 = 𝑀𝑀1 𝑥𝑥 , 𝜀𝜀 = 𝜀𝜀 − 𝜀𝜀1
else 𝑎𝑎1 =⊥

If 𝜀𝜀2 ≤ 𝜀𝜀 and 𝑀𝑀2 is 𝜀𝜀2-DP, 
then 𝑎𝑎2 = 𝑀𝑀2 𝑥𝑥 , 𝜀𝜀 = 𝜀𝜀 − 𝜀𝜀2
else 𝑎𝑎2 =⊥

privacy budget 𝜀𝜀

• To answer 𝑘𝑘 queries, can set each 𝜀𝜀𝑖𝑖 = 𝜀𝜀/𝑘𝑘.
• More queries ⇒ smaller 𝜀𝜀𝑖𝑖 ⇒ less accuracy per query.
• Some tradeoff #queries vs. accuracy necessary. (Q: why?)

data analysts



Composition for Algorithm Design

Composition and post-processing allow designing more 
complex differentially private algorithms from simpler ones.

Example: The “Statistical Query Model” for ML
• Many ML algorithms (e.g. stochastic gradient descent) can be 

described as sequence of low-sensitivity queries (e.g. averages) 
over the dataset, and can tolerate noisy answers to the queries. 

• Can answer each query by adding Laplace noise.
• By composition and post-processing, trained model is DP and safe 

to output.



Group Privacy & Setting 𝜺𝜺

• Proposition: If 𝑀𝑀 is 𝜀𝜀-DP for individuals, then it is 𝑘𝑘𝜀𝜀-DP 
for groups of 𝑘𝑘 individuals.  That is, if 𝑥𝑥 and 𝑥𝑥𝑥 differ on 
at most 𝑘𝑘 individuals, then

∀𝑇𝑇 Pr 𝑀𝑀 𝑥𝑥 ∈ 𝑇𝑇 ≤ 𝑒𝑒𝑘𝑘𝜀𝜀 ⋅ Pr[𝑀𝑀 𝑥𝑥′ ∈ 𝑇𝑇]

• Q: what are examples of “groups” for which this is 
useful?

• Consequence: need 𝑛𝑛 ≫ 1/𝜀𝜀 for any reasonable utility.

• Typical recommendation for a “good” privacy guarantee: 
.01 ≤ 𝜀𝜀 ≤ 1.



DP Histograms

Not all sequences of 𝑘𝑘 queries require noise growing with 𝑘𝑘.

Thm: Let 𝐵𝐵1, … ,𝐵𝐵𝑘𝑘 be disjoint subsets of the row-space 𝒳𝒳.
• Define 𝑞𝑞𝑗𝑗 𝑥𝑥 = {𝑖𝑖 ∶ 𝑥𝑥𝑖𝑖 ∈ 𝐵𝐵𝑗𝑗 . 
• Then 𝑀𝑀 𝑥𝑥 = 𝑞𝑞1 𝑥𝑥 + 𝑍𝑍1, … , 𝑞𝑞𝑘𝑘 𝑥𝑥 + 𝑍𝑍𝑘𝑘 is 𝜀𝜀-DP for
• 𝑍𝑍𝑘𝑘 ∼ Lap ⁄1 𝜀𝜀 if dataset adjacency is wrt 𝑑𝑑Sym

(add/remove a row)
• 𝑍𝑍𝑘𝑘 ∼ Lap ⁄2 𝜀𝜀 if dataset adjacency is wrt 𝑑𝑑Ham

(change a row)



DP Histograms

Thm: Let 𝐵𝐵1, … ,𝐵𝐵𝑘𝑘 be disjoint subsets of the row-space 𝒳𝒳.
• Define 𝑞𝑞𝑗𝑗 𝑥𝑥 = {𝑖𝑖 ∶ 𝑥𝑥𝑖𝑖 ∈ 𝐵𝐵𝑗𝑗 . 
• Then 𝑀𝑀 𝑥𝑥 = 𝑞𝑞1 𝑥𝑥 + 𝑍𝑍1, … , 𝑞𝑞𝑘𝑘 𝑥𝑥 + 𝑍𝑍𝑘𝑘 is 𝜀𝜀-DP for
• 𝑍𝑍𝑘𝑘 ∼ Lap ⁄1 𝜀𝜀 if dataset adjacency is wrt 𝑑𝑑Sym

(add/remove a row)

Proof 1:



DP Histograms

Thm: Let 𝐵𝐵1, … ,𝐵𝐵𝑘𝑘 be disjoint subsets of the row-space 𝒳𝒳.
• Define 𝑞𝑞𝑗𝑗 𝑥𝑥 = {𝑖𝑖 ∶ 𝑥𝑥𝑖𝑖 ∈ 𝐵𝐵𝑗𝑗 . 
• Then 𝑀𝑀 𝑥𝑥 = 𝑞𝑞1 𝑥𝑥 + 𝑍𝑍1, … , 𝑞𝑞𝑘𝑘 𝑥𝑥 + 𝑍𝑍𝑘𝑘 is 𝜀𝜀-DP for
• 𝑍𝑍𝑘𝑘 ∼ Lap ⁄1 𝜀𝜀 if dataset adjacency is wrt 𝑑𝑑Sym

(add/remove a row)

Proof 2:  
• Transformation 𝑥𝑥 ↦ (𝑞𝑞1 𝑥𝑥 , … , 𝑞𝑞𝑘𝑘 𝑥𝑥 ) is a 1-stable map 

from 𝑑𝑑Sym to the ℓ1 metric on ℝ𝑘𝑘: 𝑦𝑦 − 𝑧𝑧 1 = ∑𝑗𝑗=1𝑘𝑘 𝑦𝑦𝑗𝑗 − 𝑧𝑧𝑗𝑗 .
• Chain this transformation with the Vector Laplace

mechanism. 



Approximate Differential Privacy

Def: 𝑀𝑀 is (𝜀𝜀, 𝛿𝛿)-DP if for all 𝑥𝑥 ∼ 𝑥𝑥𝑥, we have
∀ 𝑇𝑇 Pr 𝑀𝑀 𝑥𝑥 ∈ 𝑇𝑇 ≤ e𝜀𝜀 ⋅ Pr 𝑀𝑀 𝑥𝑥′ ∈ 𝑇𝑇 + 𝛿𝛿

• Intuitively: 𝜀𝜀-DP with probability at least 1 − 𝛿𝛿.
• Picking a random row & publishing is 0, ⁄1 𝑛𝑛 -DP, so want 𝛿𝛿 ≪ 1/𝑛𝑛.
• Ideally 𝛿𝛿 is “cryptographically small,” e.g. 𝛿𝛿 = 2−50.
• MIA interpretation: TPR ≤ 𝑒𝑒𝜀𝜀 ⋅ FPR + 𝛿𝛿
• Satisfies post-processing, basic composition (add 𝛿𝛿𝑖𝑖 ’s).
• Group privacy for groups up to size 𝑂𝑂 ⁄1 𝜀𝜀 .
• Does not suffice to check pointwise (need to consider sets 𝑇𝑇).



Benefits of Approximate DP
•



# Queries vs. Accuracy Tradeoff
•

DP possible
Membership attacks possible

Reconstruction attacks possible



Privacy Measures

• Pure DP:
– privacy loss ln ⁄Pr[𝑀𝑀 𝑥𝑥 = 𝑦𝑦] Pr[𝑀𝑀 𝑥𝑥′ = 𝑦𝑦] always ≤ 𝜀𝜀
– TPR ≤ 𝑒𝑒𝜀𝜀 ⋅ FPR at all FPR

• Approx DP: 
– privacy loss ≤ 𝜀𝜀, except with probability 𝛿𝛿 over 𝑦𝑦 ← 𝑀𝑀(𝑥𝑥)
– TPR ≤ 𝑒𝑒𝜀𝜀 ⋅ FPR + 𝛿𝛿 at all FPR

• Other Measures:
– bound distribution of the privacy loss random variable
– or full FPR-TPR tradeoff
– reason more cleanly or tightly about composition



zero-Concentrated DP (zCDP)

𝜌𝜌-zCDP: privacy loss is “subGaussian” – dominated by a 
Gaussian r.v. with mean 𝜌𝜌 and variance 2𝜌𝜌

• 𝜀𝜀-DP implies ( ⁄𝜀𝜀2 2)-zCDP
• 𝜌𝜌-zCDP implies 𝜌𝜌 + 2 𝜌𝜌 log ⁄1 𝛿𝛿 , 𝛿𝛿 -DP for all 𝛿𝛿
• Composition: 𝜌𝜌𝑖𝑖′𝑠𝑠 add up
• Gaussian mechanism:
𝑀𝑀 𝑥𝑥, 𝑞𝑞 = 𝑞𝑞 𝑥𝑥 + 𝒩𝒩 0, Δ𝑞𝑞 2/2𝜌𝜌 is 𝜌𝜌-zCDP

Benefits of approx. DP, advanced composition, Gaussian 
mechanism with only a single parameter to track



f-DP
Privacy guarantees specified by a 𝑓𝑓 ∶ 0,1 → 0,1 s.t.

FNR ≥ 𝑓𝑓(FPR) at all FPR ∈ 0,1
in distinguishing 𝐻𝐻0 = 𝑀𝑀(𝑥𝑥) from 𝐻𝐻1 = 𝑀𝑀(𝑥𝑥′) for 𝑥𝑥 ∼ 𝑥𝑥𝑥

Illustrating the def (𝜀𝜀, 𝛿𝛿)-DP as 𝑓𝑓-DP Gaussian mechanism

𝑓𝑓-DP is equivalent to giving a full 𝜀𝜀 vs. 𝛿𝛿 curve (rather than a single pair).



An Amazing Possibility

•

• The row domain 𝒳𝒳 being bounded is enough to
have error that grows much more slowly than ⁄𝑘𝑘 𝑛𝑛 .

• But many challenges in making this result practical
(including computational complexity).
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