

CS208: Applied Privacy for Data Science DP Foundations: the Gaussian Mechanism

School of Engineering & Applied Sciences Harvard University

February 24, 2025

page_id	project	country	date	count
23110294	en.wikipedia.org	СН	2022-08-15	42
28278	fr.wikipedia.org	US	2022-08-15	17

Discussion

Assume the DP system for releasing DP page/country counts works as described. Should a user who visits a page have the ability to opt out of having their data used?

- Can data be the price of admission?
- If DP states the answer doesn't change if a user opts out, why not allow a user to opt out?
- Can't sophisticated users opt out anyway? Is that fair?

page_id	project	country	date	count
23110294	en.wikipedia.org	СН	2022-08-15	42
28278	fr.wikipedia.org	US	2022-08-15	17

- "contribution bounding: [DP] must hide all the contributions of a single Wikipedia user during a single day...we must truncate the input data to ensure that each user does not contribute more than a certain amount of data."
- "the data is grouped by page and country, using **the public data** to generate the list of possible counts. Listing these groups is an important step to achieve differential privacy

- "contribution bounding: [DP] must hide all the contributions of a single Wikipedia user during a single day...we must truncate the input data to ensure that each user does not contribute more than a certain amount of data."
- "the data is grouped by page and country, using **the public data** to generate the list of possible counts. Listing these groups is an important step to achieve differential privacy: if we simply use the counts that appear in the data, this can break privacy guarantees."
- "spurious data: for these [zero] counts, noise was added to a count of 0. To prevent too many of these to end up in the real data, we add a post-processing step to remove the counts below a certain threshold."

Approximate Differential Privacy

Def: *M* is (ε, δ) -DP if for all $x \sim x'$, we have $\forall T \ \Pr[M(x) \in T] \le e^{\varepsilon} \cdot \Pr[M(x') \in T] + \delta$

Benefits of Approximate DP

• More mechanisms, e.g. Gaussian Mechanism: $M(x,q) = q(x) + \mathcal{N}(0,\sigma^{2}),$ for $\sigma = \frac{\text{GS}_{q}}{\varepsilon} \cdot \sqrt{2\ln(2/\delta)}$

zero-Concentrated DP

zero-Concentrated DP (zCDP)

 $\rho\text{-zCDP}$: privacy loss is "subGaussian" – dominated by a Gaussian r.v. with mean ρ and variance 2ρ

- ε -DP implies ($\varepsilon^2/2$)-zCDP
- ρ -zCDP implies $\left(\rho + 2\sqrt{\rho \log(1/\delta)}, \delta\right)$ -DP for all δ
- Composition: $ho_i's$ add up
- Gaussian mechanism: $M(x,q) = q(x) + \mathcal{N}(0, (\Delta q)^2/2\rho)$ is ρ -zCDP

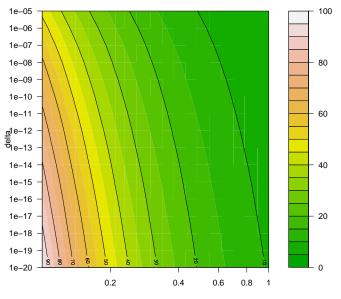
$$\rho = 0.15; \delta = 10^{-7} \Rightarrow .15 + 2\sqrt{.15 \log(1/10^{-7})}$$

Gaussian Mechanism

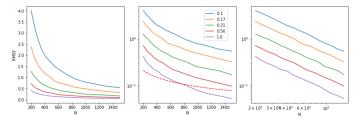
$$M(x,q) = q(x) + \mathcal{N}(0,\sigma^2),$$

for
$$\sigma = \frac{GS_q}{\epsilon} \sqrt{2 \ln(2/\delta)}.$$

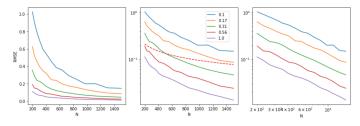
RMSE



epsilon



Gaussian Mechanism



Laplace Mechanism

Properties of the Definition

• Suffices to check pointwise: M is ϵ -DP if and only if $\forall x \sim x', \forall q, \forall t \ \Pr[M(x,q) = t] \le e^{\epsilon} \cdot \Pr[M(x',q) = t]$

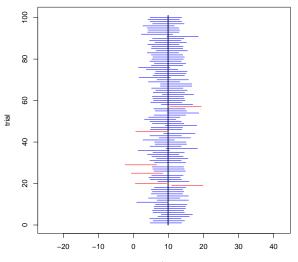
Replace with densities for continuous distributions

- Closed under post-processing: if M is ϵ -DP and f is any function, then M'(x,q) = f(M(x,q)) is also ϵ -DP.
- (Basic) composition: If M_i is ϵ_i -DP for i = 1, ..., k, then $M(x, (q_1, ..., q_k)) = (M_1(x, q_1), ..., M_k(x, q_k))$ is $(\epsilon_1 + \dots + \epsilon_k)$ -DP.
 - Use independent randomness for k queries.
 - Holds even if q_i 's are adaptively chosen by an adversary.

Confidence Interval Construction

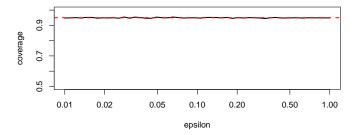
Given an estimate \hat{y} , of a quantity y^* , a confidence interval, $\operatorname{ci}(y^*|\hat{y}, \alpha) = [ci_{lower}, ci_{upper}]$ often simply $\operatorname{ci}_{1-\alpha}(y^*)$, has *proper coverage* if:

$$\operatorname{Prob}[y^* \in [ci_{lower}, ci_{upper}]] = 1 - \alpha$$

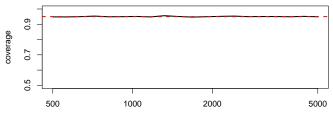


parameter space

Fraction Confidence Intervals Containing True Value



Fraction Confidence Intervals Containing True Value

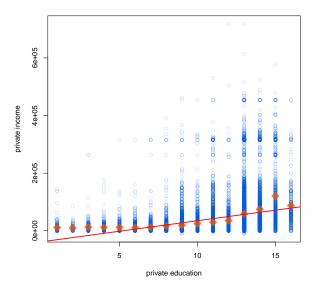


sample size n

Education Values

Codebook for Census PUMS 5 Percent CS208 Datasets

- educ 1: No schooling completed,
 - 2: Nursery school to 4th grade,
 - 3: 5th grade or 6th grade,
 - 4: 7th grade or 8th grade,
 - 5: 9th grade,
 - 6: 10th grade,
 - 7: 11th grade,
 - 8: 12th grade, no diploma,
 - 9: High school graduate,
 - 10: Some college, but less than 1 year,
 - 11: One or more years of college, no degree,
 - 12: Associate degree,
 - 13: Bachelor's degree,
 - 14: Master's degree,
 - 15: Professional degree,
 - 16: Doctorate degree.



Positive relationship of education and income in PUMS

What is the global sensitivity of the sample correlation?

$$\operatorname{corr}(X, Y) = \frac{1}{N-1} \sum_{i=1}^{N} \frac{(x_i - \bar{x})(y_i - \bar{y})}{s_x s_y}$$