1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
//! Adler-32 checksum implementation. //! //! This implementation features: //! //! - Permissively licensed (0BSD) clean-room implementation. //! - Zero dependencies. //! - Zero `unsafe`. //! - Decent performance (3-4 GB/s). //! - `#![no_std]` support (with `default-features = false`). #![doc(html_root_url = "https://docs.rs/adler/1.0.2")] // Deny a few warnings in doctests, since rustdoc `allow`s many warnings by default #![doc(test(attr(deny(unused_imports, unused_must_use))))] #![cfg_attr(docsrs, feature(doc_cfg))] #![warn(missing_debug_implementations)] #![forbid(unsafe_code)] #![cfg_attr(not(feature = "std"), no_std)] #[cfg(not(feature = "std"))] extern crate core as std; mod algo; use std::hash::Hasher; #[cfg(feature = "std")] use std::io::{self, BufRead}; /// Adler-32 checksum calculator. /// /// An instance of this type is equivalent to an Adler-32 checksum: It can be created in the default /// state via [`new`] (or the provided `Default` impl), or from a precalculated checksum via /// [`from_checksum`], and the currently stored checksum can be fetched via [`checksum`]. /// /// This type also implements `Hasher`, which makes it easy to calculate Adler-32 checksums of any /// type that implements or derives `Hash`. This also allows using Adler-32 in a `HashMap`, although /// that is not recommended (while every checksum is a hash function, they are not necessarily a /// good one). /// /// # Examples /// /// Basic, piecewise checksum calculation: /// /// ``` /// use adler::Adler32; /// /// let mut adler = Adler32::new(); /// /// adler.write_slice(&[0, 1, 2]); /// adler.write_slice(&[3, 4, 5]); /// /// assert_eq!(adler.checksum(), 0x00290010); /// ``` /// /// Using `Hash` to process structures: /// /// ``` /// use std::hash::Hash; /// use adler::Adler32; /// /// #[derive(Hash)] /// struct Data { /// byte: u8, /// word: u16, /// big: u64, /// } /// /// let mut adler = Adler32::new(); /// /// let data = Data { byte: 0x1F, word: 0xABCD, big: !0 }; /// data.hash(&mut adler); /// /// // hash value depends on architecture endianness /// if cfg!(target_endian = "little") { /// assert_eq!(adler.checksum(), 0x33410990); /// } /// if cfg!(target_endian = "big") { /// assert_eq!(adler.checksum(), 0x331F0990); /// } /// /// ``` /// /// [`new`]: #method.new /// [`from_checksum`]: #method.from_checksum /// [`checksum`]: #method.checksum #[derive(Debug, Copy, Clone)] pub struct Adler32 { a: u16, b: u16, } impl Adler32 { /// Creates a new Adler-32 instance with default state. #[inline] pub fn new() -> Self { Self::default() } /// Creates an `Adler32` instance from a precomputed Adler-32 checksum. /// /// This allows resuming checksum calculation without having to keep the `Adler32` instance /// around. /// /// # Example /// /// ``` /// # use adler::Adler32; /// let parts = [ /// "rust", /// "acean", /// ]; /// let whole = adler::adler32_slice(b"rustacean"); /// /// let mut sum = Adler32::new(); /// sum.write_slice(parts[0].as_bytes()); /// let partial = sum.checksum(); /// /// // ...later /// /// let mut sum = Adler32::from_checksum(partial); /// sum.write_slice(parts[1].as_bytes()); /// assert_eq!(sum.checksum(), whole); /// ``` #[inline] pub fn from_checksum(sum: u32) -> Self { Adler32 { a: sum as u16, b: (sum >> 16) as u16, } } /// Returns the calculated checksum at this point in time. #[inline] pub fn checksum(&self) -> u32 { (u32::from(self.b) << 16) | u32::from(self.a) } /// Adds `bytes` to the checksum calculation. /// /// If efficiency matters, this should be called with Byte slices that contain at least a few /// thousand Bytes. pub fn write_slice(&mut self, bytes: &[u8]) { self.compute(bytes); } } impl Default for Adler32 { #[inline] fn default() -> Self { Adler32 { a: 1, b: 0 } } } impl Hasher for Adler32 { #[inline] fn finish(&self) -> u64 { u64::from(self.checksum()) } fn write(&mut self, bytes: &[u8]) { self.write_slice(bytes); } } /// Calculates the Adler-32 checksum of a byte slice. /// /// This is a convenience function around the [`Adler32`] type. /// /// [`Adler32`]: struct.Adler32.html pub fn adler32_slice(data: &[u8]) -> u32 { let mut h = Adler32::new(); h.write_slice(data); h.checksum() } /// Calculates the Adler-32 checksum of a `BufRead`'s contents. /// /// The passed `BufRead` implementor will be read until it reaches EOF (or until it reports an /// error). /// /// If you only have a `Read` implementor, you can wrap it in `std::io::BufReader` before calling /// this function. /// /// # Errors /// /// Any error returned by the reader are bubbled up by this function. /// /// # Examples /// /// ```no_run /// # fn run() -> Result<(), Box<dyn std::error::Error>> { /// use adler::adler32; /// /// use std::fs::File; /// use std::io::BufReader; /// /// let file = File::open("input.txt")?; /// let mut file = BufReader::new(file); /// /// adler32(&mut file)?; /// # Ok(()) } /// # fn main() { run().unwrap() } /// ``` #[cfg(feature = "std")] #[cfg_attr(docsrs, doc(cfg(feature = "std")))] pub fn adler32<R: BufRead>(mut reader: R) -> io::Result<u32> { let mut h = Adler32::new(); loop { let len = { let buf = reader.fill_buf()?; if buf.is_empty() { return Ok(h.checksum()); } h.write_slice(buf); buf.len() }; reader.consume(len); } } #[cfg(test)] mod tests { use super::*; #[test] fn zeroes() { assert_eq!(adler32_slice(&[]), 1); assert_eq!(adler32_slice(&[0]), 1 | 1 << 16); assert_eq!(adler32_slice(&[0, 0]), 1 | 2 << 16); assert_eq!(adler32_slice(&[0; 100]), 0x00640001); assert_eq!(adler32_slice(&[0; 1024]), 0x04000001); assert_eq!(adler32_slice(&[0; 1024 * 1024]), 0x00f00001); } #[test] fn ones() { assert_eq!(adler32_slice(&[0xff; 1024]), 0x79a6fc2e); assert_eq!(adler32_slice(&[0xff; 1024 * 1024]), 0x8e88ef11); } #[test] fn mixed() { assert_eq!(adler32_slice(&[1]), 2 | 2 << 16); assert_eq!(adler32_slice(&[40]), 41 | 41 << 16); assert_eq!(adler32_slice(&[0xA5; 1024 * 1024]), 0xd5009ab1); } /// Example calculation from https://en.wikipedia.org/wiki/Adler-32. #[test] fn wiki() { assert_eq!(adler32_slice(b"Wikipedia"), 0x11E60398); } #[test] fn resume() { let mut adler = Adler32::new(); adler.write_slice(&[0xff; 1024]); let partial = adler.checksum(); assert_eq!(partial, 0x79a6fc2e); // from above adler.write_slice(&[0xff; 1024 * 1024 - 1024]); assert_eq!(adler.checksum(), 0x8e88ef11); // from above // Make sure that we can resume computing from the partial checksum via `from_checksum`. let mut adler = Adler32::from_checksum(partial); adler.write_slice(&[0xff; 1024 * 1024 - 1024]); assert_eq!(adler.checksum(), 0x8e88ef11); // from above } #[cfg(feature = "std")] #[test] fn bufread() { use std::io::BufReader; fn test(data: &[u8], checksum: u32) { // `BufReader` uses an 8 KB buffer, so this will test buffer refilling. let mut buf = BufReader::new(data); let real_sum = adler32(&mut buf).unwrap(); assert_eq!(checksum, real_sum); } test(&[], 1); test(&[0; 1024], 0x04000001); test(&[0; 1024 * 1024], 0x00f00001); test(&[0xA5; 1024 * 1024], 0xd5009ab1); } }