1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
/* Copyright 2018-2019 Mozilla Foundation * * Licensed under the Apache License (Version 2.0), or the MIT license, * (the "Licenses") at your option. You may not use this file except in * compliance with one of the Licenses. You may obtain copies of the * Licenses at: * * http://www.apache.org/licenses/LICENSE-2.0 * http://opensource.org/licenses/MIT * * Unless required by applicable law or agreed to in writing, software * distributed under the Licenses is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the Licenses for the specific language governing permissions and * limitations under the Licenses. */ //! This module provides a [`Handle`] type, which you can think of something //! like a dynamically checked, type erased reference/pointer type. Depending on //! the usage pattern a handle can behave as either a borrowed reference, or an //! owned pointer. //! //! They can be losslessly converted [to](Handle::into_u64) and //! [from](Handle::from_u64) a 64 bit integer, for ease of passing over the FFI //! (and they implement [`IntoFfi`] using these primitives for this purpose). //! //! The benefit is primarially that they can detect common misuse patterns that //! would otherwise be silent bugs, such as use-after-free, double-free, passing //! a wrongly-typed pointer to a function, etc. //! //! Handles are provided when inserting an item into either a [`HandleMap`] or a //! [`ConcurrentHandleMap`]. //! //! # Comparison to types from other crates //! //! [`HandleMap`] is similar to types offered by other crates, such as //! `slotmap`, or `slab`. However, it has a number of key differences which make //! it better for our purposes as compared to the types in those crates: //! //! 1. Unlike `slab` (but like `slotmap`), we implement versioning, detecting //! ABA problems, which allows us to detect use after free. //! 2. Unlike `slotmap`, we don't have the `T: Copy` restriction. //! 3. Unlike either, we can detect when you use a Key in a map that did not //! allocate the key. This is true even when the map is from a `.so` file //! compiled separately. //! 3. Our implementation of doesn't use any `unsafe` (at the time of this //! writing). //! //! However, it comes with the following drawbacks: //! //! 1. `slotmap` holds its version information in a `u32`, and so it takes //! 2<sup>31</sup> colliding insertions and deletions before it could //! potentially fail to detect an ABA issue, wheras we use a `u16`, and are //! limited to 2<sup>15</sup>. //! 2. Similarly, we can only hold 2<sup>16</sup> items at once, unlike //! `slotmap`'s 2<sup>32</sup>. (Considering these items are typically things //! like database handles, this is probably plenty). //! 3. Our implementation is slower, and uses slightly more memory than //! `slotmap` (which is in part due to the lack of `unsafe` mentioned above) //! //! The first two issues seem exceptionally unlikely, even for extremely //! long-lived `HandleMap`, and we're still memory safe even if they occur (we //! just might fail to notice a bug). The third issue also seems unimportant for //! our use case. use crate::error::{ErrorCode, ExternError}; use crate::into_ffi::IntoFfi; use std::error::Error as StdError; use std::fmt; use std::ops; use std::sync::atomic::{AtomicUsize, Ordering}; use std::sync::{Mutex, RwLock}; /// `HandleMap` is a collection type which can hold any type of value, and /// offers a stable handle which can be used to retrieve it on insertion. These /// handles offer methods for converting [to](Handle::into_u64) and /// [from](Handle::from_u64) 64 bit integers, meaning they're very easy to pass /// over the FFI (they also implement [`IntoFfi`] for the same purpose). /// /// See the [module level docs](index.html) for more information. /// /// Note: In FFI code, most usage of `HandleMap` will be done through the /// [`ConcurrentHandleMap`] type, which is a thin wrapper around a /// `RwLock<HandleMap<Mutex<T>>>`. #[derive(Debug, Clone)] pub struct HandleMap<T> { // The value of `map_id` in each `Handle`. id: u16, // Index to the start of the free list. Always points to a free item -- // we never allow our free list to become empty. first_free: u16, // The number of entries with `data.is_some()`. This is never equal to // `entries.len()`, we always grow before that point to ensure we always have // a valid `first_free` index to add entries onto. This is our `len`. num_entries: usize, // The actual data. Note: entries.len() is our 'capacity'. entries: Vec<Entry<T>>, } #[derive(Debug, Clone)] struct Entry<T> { // initially 1, incremented on insertion and removal. Thus, // if version is even, state should always be EntryState::Active. version: u16, state: EntryState<T>, } #[derive(Debug, Clone)] enum EntryState<T> { // Not part of the free list Active(T), // The u16 is the next index in the free list. InFreeList(u16), // Part of the free list, but the sentinel. EndOfFreeList, } impl<T> EntryState<T> { #[cfg(any(debug_assertions, test))] fn is_end_of_list(&self) -> bool { match self { EntryState::EndOfFreeList => true, _ => false, } } #[inline] fn is_occupied(&self) -> bool { self.get_item().is_some() } #[inline] fn get_item(&self) -> Option<&T> { match self { EntryState::Active(v) => Some(v), _ => None, } } #[inline] fn get_item_mut(&mut self) -> Option<&mut T> { match self { EntryState::Active(v) => Some(v), _ => None, } } } // Small helper to check our casts. #[inline] fn to_u16(v: usize) -> u16 { use std::u16::MAX as U16_MAX; // Shouldn't ever happen. assert!(v <= (U16_MAX as usize), "Bug: Doesn't fit in u16: {}", v); v as u16 } /// The maximum capacity of a [`HandleMap`]. Attempting to instantiate one with /// a larger capacity will cause a panic. /// /// Note: This could go as high as `(1 << 16) - 2`, but doing is seems more /// error prone. For the sake of paranoia, we limit it to this size, which is /// already quite a bit larger than it seems like we're likely to ever need. pub const MAX_CAPACITY: usize = (1 << 15) - 1; // Never having to worry about capacity == 0 simplifies the code at the cost of // worse memory usage. It doesn't seem like there's any reason to make this // public. const MIN_CAPACITY: usize = 4; /// An error representing the ways a `Handle` may be invalid. #[derive(Debug, Clone, PartialEq, Eq, PartialOrd, Ord)] pub enum HandleError { /// Identical to invalid handle, but has a slightly more helpful /// message for the most common case 0. NullHandle, /// Returned from [`Handle::from_u64`] if [`Handle::is_valid`] fails. InvalidHandle, /// Returned from get/get_mut/delete if the handle is stale (this indicates /// something equivalent to a use-after-free / double-free, etc). StaleVersion, /// Returned if the handle index references an index past the end of the /// HandleMap. IndexPastEnd, /// The handle has a map_id for a different map than the one it was /// attempted to be used with. WrongMap, } impl StdError for HandleError {} impl fmt::Display for HandleError { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { use HandleError::*; match self { NullHandle => { f.write_str("Tried to use a null handle (this object has probably been closed)") } InvalidHandle => f.write_str("u64 could not encode a valid Handle"), StaleVersion => f.write_str("Handle has stale version number"), IndexPastEnd => f.write_str("Handle references a index past the end of this HandleMap"), WrongMap => f.write_str("Handle is from a different map"), } } } impl From<HandleError> for ExternError { fn from(e: HandleError) -> Self { ExternError::new_error(ErrorCode::INVALID_HANDLE, e.to_string()) } } impl<T> HandleMap<T> { /// Create a new `HandleMap` with the default capacity. pub fn new() -> Self { Self::new_with_capacity(MIN_CAPACITY) } /// Allocate a new `HandleMap`. Note that the actual capacity may be larger /// than the requested value. /// /// Panics if `request` is greater than [`handle_map::MAX_CAPACITY`](MAX_CAPACITY) pub fn new_with_capacity(request: usize) -> Self { assert!( request <= MAX_CAPACITY, "HandleMap capacity is limited to {} (request was {})", MAX_CAPACITY, request ); let capacity = request.max(MIN_CAPACITY); let id = next_handle_map_id(); let mut entries = Vec::with_capacity(capacity); // Initialize each entry with version 1, and as a member of the free list for i in 0..(capacity - 1) { entries.push(Entry { version: 1, state: EntryState::InFreeList(to_u16(i + 1)), }); } // And the final entry is at the end of the free list // (but still has version 1). entries.push(Entry { version: 1, state: EntryState::EndOfFreeList, }); Self { id, first_free: 0, num_entries: 0, entries, } } /// Get the number of entries in the `HandleMap`. #[inline] pub fn len(&self) -> usize { self.num_entries } /// Returns true if the HandleMap is empty. #[inline] pub fn is_empty(&self) -> bool { self.len() == 0 } /// Returns the number of slots allocated in the handle map. #[inline] pub fn capacity(&self) -> usize { // It's not a bug that this isn't entries.capacity() -- We're returning // how many slots exist, not something about the backing memory allocation self.entries.len() } fn ensure_capacity(&mut self, cap_at_least: usize) { assert_ne!(self.len(), self.capacity(), "Bug: should have grown by now"); assert!(cap_at_least <= MAX_CAPACITY, "HandleMap overfilled"); if self.capacity() > cap_at_least { return; } let mut next_cap = self.capacity(); while next_cap <= cap_at_least { next_cap *= 2; } next_cap = next_cap.min(MAX_CAPACITY); let need_extra = next_cap.saturating_sub(self.entries.capacity()); self.entries.reserve(need_extra); assert!( !self.entries[self.first_free as usize].state.is_occupied(), "Bug: HandleMap.first_free points at occupied index" ); // Insert new entries at the front of our list. while self.entries.len() < next_cap - 1 { // This is a little wasteful but whatever. Add each new entry to the // front of the free list one at a time. self.entries.push(Entry { version: 1, state: EntryState::InFreeList(self.first_free), }); self.first_free = to_u16(self.entries.len() - 1); } self.debug_check_valid(); } #[inline] fn debug_check_valid(&self) { // Run the expensive validity check in tests and in debug builds. #[cfg(any(debug_assertions, test))] { self.assert_valid(); } } #[cfg(any(debug_assertions, test))] fn assert_valid(&self) { assert_ne!(self.len(), self.capacity()); assert!(self.capacity() <= MAX_CAPACITY, "Entries too large"); // Validate that our free list is correct. let number_of_ends = self .entries .iter() .filter(|e| e.state.is_end_of_list()) .count(); assert_eq!( number_of_ends, 1, "More than one entry think's it's the end of the list, or no entries do" ); // Check that the free list hits every unoccupied item. // The tuple is: `(should_be_in_free_list, is_in_free_list)`. let mut free_indices = vec![(false, false); self.capacity()]; for (i, e) in self.entries.iter().enumerate() { if !e.state.is_occupied() { free_indices[i].0 = true; } } let mut next = self.first_free; loop { let ni = next as usize; assert!( ni <= free_indices.len(), "Free list contains out of bounds index!" ); assert!( free_indices[ni].0, "Free list has an index that shouldn't be free! {}", ni ); assert!( !free_indices[ni].1, "Free list hit an index ({}) more than once! Cycle detected!", ni ); free_indices[ni].1 = true; match &self.entries[ni].state { EntryState::InFreeList(next_index) => next = *next_index, EntryState::EndOfFreeList => break, // Hitting `Active` here is probably not possible because of the checks above, but who knows. EntryState::Active(..) => unreachable!("Bug: Active item in free list at {}", next), } } let mut occupied_count = 0; for (i, &(should_be_free, is_free)) in free_indices.iter().enumerate() { assert_eq!( should_be_free, is_free, "Free list missed item, or contains an item it shouldn't: {}", i ); if !should_be_free { occupied_count += 1; } } assert_eq!( self.num_entries, occupied_count, "num_entries doesn't reflect the actual number of entries" ); } /// Insert an item into the map, and return a handle to it. pub fn insert(&mut self, v: T) -> Handle { let need_cap = self.len() + 1; self.ensure_capacity(need_cap); let index = self.first_free; let result = { // Scoped mutable borrow of entry. let entry = &mut self.entries[index as usize]; let new_first_free = match entry.state { EntryState::InFreeList(i) => i, _ => panic!("Bug: next_index pointed at non-free list entry (or end of list)"), }; entry.version += 1; if entry.version == 0 { entry.version += 2; } entry.state = EntryState::Active(v); self.first_free = new_first_free; self.num_entries += 1; Handle { map_id: self.id, version: entry.version, index, } }; self.debug_check_valid(); result } // Helper to contain the handle validation boilerplate. Returns `h.index as usize`. fn check_handle(&self, h: Handle) -> Result<usize, HandleError> { if h.map_id != self.id { log::info!( "HandleMap access with handle having wrong map id: {:?} (our map id is {})", h, self.id ); return Err(HandleError::WrongMap); } let index = h.index as usize; if index >= self.entries.len() { log::info!("HandleMap accessed with handle past end of map: {:?}", h); return Err(HandleError::IndexPastEnd); } if self.entries[index].version != h.version { log::info!( "HandleMap accessed with handle with wrong version {:?} (entry version is {})", h, self.entries[index].version ); return Err(HandleError::StaleVersion); } // At this point, we know the handle version matches the entry version, // but if someone created a specially invalid handle, they could have // its version match the version they expect an unoccupied index to // have. // // We don't use any unsafe, so the worse thing that can happen here is // that we get confused and panic, but still that's not great, so we // check for this explicitly. // // Note that `active` versions are always even, as they start at 1, and // are incremented on both insertion and deletion. // // Anyway, this is just for sanity checking, we already check this in // practice when we convert `u64`s into `Handle`s, which is the only // way we ever use these in the real world. if (h.version % 2) != 0 { log::info!( "HandleMap given handle with matching but illegal version: {:?}", h, ); return Err(HandleError::StaleVersion); } Ok(index) } /// Delete an item from the HandleMap. pub fn delete(&mut self, h: Handle) -> Result<(), HandleError> { self.remove(h).map(drop) } /// Remove an item from the HandleMap, returning the old value. pub fn remove(&mut self, h: Handle) -> Result<T, HandleError> { let index = self.check_handle(h)?; let prev = { // Scoped mutable borrow of entry. let entry = &mut self.entries[index]; entry.version += 1; let index = h.index; let last_state = std::mem::replace(&mut entry.state, EntryState::InFreeList(self.first_free)); self.num_entries -= 1; self.first_free = index; if let EntryState::Active(value) = last_state { value } else { // This indicates either a bug in HandleMap or memory // corruption. Abandon all hope. unreachable!( "Handle {:?} passed validation but references unoccupied entry", h ); } }; self.debug_check_valid(); Ok(prev) } /// Get a reference to the item referenced by the handle, or return a /// [`HandleError`] describing the problem. pub fn get(&self, h: Handle) -> Result<&T, HandleError> { let idx = self.check_handle(h)?; let entry = &self.entries[idx]; // This should be caught by check_handle above, but we avoid panicking // because we'd rather not poison any locks we don't have to poison let item = entry .state .get_item() .ok_or_else(|| HandleError::InvalidHandle)?; Ok(item) } /// Get a mut reference to the item referenced by the handle, or return a /// [`HandleError`] describing the problem. pub fn get_mut(&mut self, h: Handle) -> Result<&mut T, HandleError> { let idx = self.check_handle(h)?; let entry = &mut self.entries[idx]; // This should be caught by check_handle above, but we avoid panicking // because we'd rather not poison any locks we don't have to poison let item = entry .state .get_item_mut() .ok_or_else(|| HandleError::InvalidHandle)?; Ok(item) } } impl<T> Default for HandleMap<T> { #[inline] fn default() -> Self { HandleMap::new() } } impl<T> ops::Index<Handle> for HandleMap<T> { type Output = T; #[inline] fn index(&self, h: Handle) -> &T { self.get(h) .expect("Indexed into HandleMap with invalid handle!") } } // We don't implement IndexMut intentionally (implementing ops::Index is // dubious enough) /// A Handle we allow to be returned over the FFI by implementing [`IntoFfi`]. /// This type is intentionally not `#[repr(C)]`, and getting the data out of the /// FFI is done using `Handle::from_u64`, or it's implemetation of `From<u64>`. /// /// It consists of, at a minimum: /// /// - A "map id" (used to ensure you're using it with the correct map) /// - a "version" (incremented when the value in the index changes, used to /// detect multiple frees, use after free, and ABA and ABA) /// - and a field indicating which index it goes into. /// /// In practice, it may also contain extra information to help detect other /// errors (currently it stores a "magic value" used to detect invalid /// [`Handle`]s). /// /// These fields may change but the following guarantees are made about the /// internal representation: /// /// - This will always be representable in 64 bits. /// - The bits, when interpreted as a signed 64 bit integer, will be positive /// (that is to say, it will *actually* be representable in 63 bits, since /// this makes the most significant bit unavailable for the purposes of /// encoding). This guarantee makes things slightly less dubious when passing /// things to Java, gives us some extra validation ability, etc. #[derive(Copy, Clone, Debug, PartialEq)] pub struct Handle { map_id: u16, version: u16, index: u16, } // We stuff this into the top 16 bits of the handle when u16 encoded to detect // various sorts of weirdness. It's the letters 'A' and 'S' as ASCII, but the // only important thing about it is that the most significant bit be unset. const HANDLE_MAGIC: u16 = 0x4153_u16; impl Handle { /// Convert a `Handle` to a `u64`. You can also use `Into::into` directly. /// Most uses of this will be automatic due to our [`IntoFfi`] implementation. #[inline] pub fn into_u64(self) -> u64 { let map_id = u64::from(self.map_id); let version = u64::from(self.version); let index = u64::from(self.index); // SOMEDAY: we could also use this as a sort of CRC if we were really paranoid. // e.g. `magic = combine_to_u16(map_id, version, index)`. let magic = u64::from(HANDLE_MAGIC); (magic << 48) | (map_id << 32) | (index << 16) | version } /// Convert a `u64` to a `Handle`. Inverse of `into_u64`. We also implement /// `From::from` (which will panic instead of returning Err). /// /// Returns [`HandleError::InvalidHandle`](HandleError) if the bits cannot /// possibly represent a valid handle. pub fn from_u64(v: u64) -> Result<Self, HandleError> { if !Handle::is_valid(v) { log::warn!("Illegal handle! {:x}", v); if v == 0 { Err(HandleError::NullHandle) } else { Err(HandleError::InvalidHandle) } } else { let map_id = (v >> 32) as u16; let index = (v >> 16) as u16; let version = v as u16; Ok(Self { map_id, version, index, }) } } /// Returns whether or not `v` makes a bit pattern that could represent an /// encoded [`Handle`]. #[inline] pub fn is_valid(v: u64) -> bool { (v >> 48) == u64::from(HANDLE_MAGIC) && // The "bottom" field is the version. We increment it both when // inserting and removing, and they're all initially 1. So, all valid // handles that we returned should have an even version. ((v & 1) == 0) } } impl From<u64> for Handle { fn from(u: u64) -> Self { Handle::from_u64(u).expect("Illegal handle!") } } impl From<Handle> for u64 { #[inline] fn from(h: Handle) -> u64 { h.into_u64() } } unsafe impl IntoFfi for Handle { type Value = u64; // Note: intentionally does not encode a valid handle for any map. #[inline] fn ffi_default() -> u64 { 0u64 } #[inline] fn into_ffi_value(self) -> u64 { self.into_u64() } } /// `ConcurrentHandleMap` is a relatively thin wrapper around /// `RwLock<HandleMap<Mutex<T>>>`. Due to the nested locking, it's not possible /// to implement the same API as [`HandleMap`], however it does implement an API /// that offers equivalent functionality, as well as several functions that /// greatly simplify FFI usage (see example below). /// /// See the [module level documentation](index.html) for more info. /// /// # Example /// /// ```rust,no_run /// # #[macro_use] extern crate lazy_static; /// # extern crate ffi_support; /// # use ffi_support::*; /// # use std::sync::*; /// /// // Somewhere... /// struct Thing { value: f64 } /// /// lazy_static! { /// static ref ITEMS: ConcurrentHandleMap<Thing> = ConcurrentHandleMap::new(); /// } /// /// #[no_mangle] /// pub extern "C" fn mylib_new_thing(value: f64, err: &mut ExternError) -> u64 { /// // Most uses will be `ITEMS.insert_with_result`. Note that this already /// // calls `call_with_output` (or `call_with_result` if this were /// // `insert_with_result`) for you. /// ITEMS.insert_with_output(err, || Thing { value }) /// } /// /// #[no_mangle] /// pub extern "C" fn mylib_thing_value(h: u64, err: &mut ExternError) -> f64 { /// // Or `ITEMS.call_with_result` for the fallible functions. /// ITEMS.call_with_output(err, h, |thing| thing.value) /// } /// /// #[no_mangle] /// pub extern "C" fn mylib_thing_set_value(h: u64, new_value: f64, err: &mut ExternError) { /// ITEMS.call_with_output_mut(err, h, |thing| { /// thing.value = new_value; /// }) /// } /// /// // Note: defines the following function: /// // pub extern "C" fn mylib_destroy_thing(h: u64, err: &mut ExternError) /// define_handle_map_deleter!(ITEMS, mylib_destroy_thing); /// ``` pub struct ConcurrentHandleMap<T> { /// The underlying map. Public so that more advanced use-cases /// may use it as they please. pub map: RwLock<HandleMap<Mutex<T>>>, } impl<T> ConcurrentHandleMap<T> { /// Construct a new `ConcurrentHandleMap`. pub fn new() -> Self { Self { map: RwLock::new(HandleMap::new()), } } /// Get the number of entries in the `ConcurrentHandleMap`. /// /// This takes the map's `read` lock. #[inline] pub fn len(&self) -> usize { let map = self.map.read().unwrap(); map.len() } /// Returns true if the `ConcurrentHandleMap` is empty. /// /// This takes the map's `read` lock. #[inline] pub fn is_empty(&self) -> bool { self.len() == 0 } /// Insert an item into the map, returning the newly allocated handle to the /// item. /// /// # Locking /// /// Note that this requires taking the map's write lock, and so it will /// block until all other threads have finished any read/write operations. pub fn insert(&self, v: T) -> Handle { // Fails if the lock is poisoned. Not clear what we should do here... We // could always insert anyway (by matching on LockResult), but that // seems... really quite dubious. let mut map = self.map.write().unwrap(); map.insert(Mutex::new(v)) } /// Remove an item from the map. /// /// # Locking /// /// Note that this requires taking the map's write lock, and so it will /// block until all other threads have finished any read/write operations. pub fn delete(&self, h: Handle) -> Result<(), HandleError> { // We use `remove` and not delete (and use the inner block) to ensure // that if `v`'s destructor panics, we aren't holding the write lock // when it happens, so that the map itself doesn't get poisoned. let v = { let mut map = self.map.write().unwrap(); map.remove(h) }; v.map(drop) } /// Convenient wrapper for `delete` which takes a `u64` that it will /// convert to a handle. /// /// The main benefit (besides convenience) of this over the version /// that takes a [`Handle`] is that it allows handling handle-related errors /// in one place. pub fn delete_u64(&self, h: u64) -> Result<(), HandleError> { self.delete(Handle::from_u64(h)?) } /// Remove an item from the map, returning either the item, /// or None if its guard mutex got poisoned at some point. /// /// # Locking /// /// Note that this requires taking the map's write lock, and so it will /// block until all other threads have finished any read/write operations. pub fn remove(&self, h: Handle) -> Result<Option<T>, HandleError> { let mut map = self.map.write().unwrap(); let mutex = map.remove(h)?; Ok(mutex.into_inner().ok()) } /// Convenient wrapper for `remove` which takes a `u64` that it will /// convert to a handle. /// /// The main benefit (besides convenience) of this over the version /// that takes a [`Handle`] is that it allows handling handle-related errors /// in one place. pub fn remove_u64(&self, h: u64) -> Result<Option<T>, HandleError> { self.remove(Handle::from_u64(h)?) } /// Call `callback` with a non-mutable reference to the item from the map, /// after acquiring the necessary locks. /// /// # Locking /// /// Note that this requires taking both: /// /// - The map's read lock, and so it will block until all other threads have /// finished any write operations. /// - The mutex on the slot the handle is mapped to. /// /// And so it will block if there are ongoing write operations, or if /// another thread is reading from the same handle. /// /// # Panics /// /// This will panic if a previous `get()` or `get_mut()` call has panicked /// inside it's callback. The solution to this /// /// (It may also panic if the handle map detects internal state corruption, /// however this should not happen except for bugs in the handle map code). pub fn get<F, E, R>(&self, h: Handle, callback: F) -> Result<R, E> where F: FnOnce(&T) -> Result<R, E>, E: From<HandleError>, { self.get_mut(h, |v| callback(v)) } /// Call `callback` with a mutable reference to the item from the map, after /// acquiring the necessary locks. /// /// # Locking /// /// Note that this requires taking both: /// /// - The map's read lock, and so it will block until all other threads have /// finished any write operations. /// - The mutex on the slot the handle is mapped to. /// /// And so it will block if there are ongoing write operations, or if /// another thread is reading from the same handle. /// /// # Panics /// /// This will panic if a previous `get()` or `get_mut()` call has panicked /// inside it's callback. The only solution to this is to remove and reinsert /// said item. /// /// (It may also panic if the handle map detects internal state corruption, /// however this should not happen except for bugs in the handle map code). pub fn get_mut<F, E, R>(&self, h: Handle, callback: F) -> Result<R, E> where F: FnOnce(&mut T) -> Result<R, E>, E: From<HandleError>, { // XXX figure out how to handle poison... let map = self.map.read().unwrap(); let mtx = map.get(h)?; let mut hm = mtx.lock().unwrap(); callback(&mut *hm) } /// Convenient wrapper for `get` which takes a `u64` that it will convert to /// a handle. /// /// The other benefit (besides convenience) of this over the version /// that takes a [`Handle`] is that it allows handling handle-related errors /// in one place. /// /// # Locking /// /// Note that this requires taking both: /// /// - The map's read lock, and so it will block until all other threads have /// finished any write operations. /// - The mutex on the slot the handle is mapped to. /// /// And so it will block if there are ongoing write operations, or if /// another thread is reading from the same handle. pub fn get_u64<F, E, R>(&self, u: u64, callback: F) -> Result<R, E> where F: FnOnce(&T) -> Result<R, E>, E: From<HandleError>, { self.get(Handle::from_u64(u)?, callback) } /// Convenient wrapper for `get_mut` which takes a `u64` that it will /// convert to a handle. /// /// The main benefit (besides convenience) of this over the version /// that takes a [`Handle`] is that it allows handling handle-related errors /// in one place. /// /// # Locking /// /// Note that this requires taking both: /// /// - The map's read lock, and so it will block until all other threads have /// finished any write operations. /// - The mutex on the slot the handle is mapped to. /// /// And so it will block if there are ongoing write operations, or if /// another thread is reading from the same handle. pub fn get_mut_u64<F, E, R>(&self, u: u64, callback: F) -> Result<R, E> where F: FnOnce(&mut T) -> Result<R, E>, E: From<HandleError>, { self.get_mut(Handle::from_u64(u)?, callback) } /// Helper that performs both a [`call_with_result`] and [`get`](ConcurrentHandleMap::get_mut). pub fn call_with_result_mut<R, E, F>( &self, out_error: &mut ExternError, h: u64, callback: F, ) -> R::Value where F: std::panic::UnwindSafe + FnOnce(&mut T) -> Result<R, E>, ExternError: From<E>, R: IntoFfi, { use crate::call_with_result; call_with_result(out_error, || -> Result<_, ExternError> { // We can't reuse get_mut here because it would require E: // From<HandleError>, which is inconvenient... let h = Handle::from_u64(h)?; let map = self.map.read().unwrap(); let mtx = map.get(h)?; let mut hm = mtx.lock().unwrap(); Ok(callback(&mut *hm)?) }) } /// Helper that performs both a [`call_with_result`] and [`get`](ConcurrentHandleMap::get). pub fn call_with_result<R, E, F>( &self, out_error: &mut ExternError, h: u64, callback: F, ) -> R::Value where F: std::panic::UnwindSafe + FnOnce(&T) -> Result<R, E>, ExternError: From<E>, R: IntoFfi, { self.call_with_result_mut(out_error, h, |r| callback(r)) } /// Helper that performs both a [`call_with_output`] and [`get`](ConcurrentHandleMap::get). pub fn call_with_output<R, F>( &self, out_error: &mut ExternError, h: u64, callback: F, ) -> R::Value where F: std::panic::UnwindSafe + FnOnce(&T) -> R, R: IntoFfi, { self.call_with_result(out_error, h, |r| -> Result<_, HandleError> { Ok(callback(r)) }) } /// Helper that performs both a [`call_with_output`] and [`get_mut`](ConcurrentHandleMap::get). pub fn call_with_output_mut<R, F>( &self, out_error: &mut ExternError, h: u64, callback: F, ) -> R::Value where F: std::panic::UnwindSafe + FnOnce(&mut T) -> R, R: IntoFfi, { self.call_with_result_mut(out_error, h, |r| -> Result<_, HandleError> { Ok(callback(r)) }) } /// Use `constructor` to create and insert a `T`, while inside a /// [`call_with_result`] call (to handle panics and map errors onto an /// `ExternError`). pub fn insert_with_result<E, F>(&self, out_error: &mut ExternError, constructor: F) -> u64 where F: std::panic::UnwindSafe + FnOnce() -> Result<T, E>, ExternError: From<E>, { use crate::call_with_result; call_with_result(out_error, || -> Result<_, ExternError> { // Note: it's important that we don't call the constructor while // we're holding the write lock, because we don't want to poison // the entire map if it panics! let to_insert = constructor()?; Ok(self.insert(to_insert)) }) } /// Equivalent to /// [`insert_with_result`](ConcurrentHandleMap::insert_with_result) for the /// case where the constructor cannot produce an error. /// /// The name is somewhat dubious, since there's no `output`, but it's intended to make it /// clear that it contains a [`call_with_output`] internally. pub fn insert_with_output<F>(&self, out_error: &mut ExternError, constructor: F) -> u64 where F: std::panic::UnwindSafe + FnOnce() -> T, { // The Err type isn't important here beyond being convertable to ExternError self.insert_with_result(out_error, || -> Result<_, HandleError> { Ok(constructor()) }) } } impl<T> Default for ConcurrentHandleMap<T> { #[inline] fn default() -> Self { Self::new() } } // Returns the next map_id. fn next_handle_map_id() -> u16 { let id = HANDLE_MAP_ID_COUNTER .fetch_add(1, Ordering::SeqCst) .wrapping_add(1); id as u16 } // Note: These IDs are only used to detect using a key against the wrong HandleMap. // We ensure they're randomly initialized, to prevent using them across separately // compiled .so files. lazy_static::lazy_static! { // This should be `AtomicU16`, but those aren't stablilized yet. // Instead, we just cast to u16 on read. static ref HANDLE_MAP_ID_COUNTER: AtomicUsize = { // Abuse HashMap's RandomState to get a strong RNG without bringing in // the `rand` crate (OTOH maybe we should just bring in the rand crate?) use std::collections::hash_map::RandomState; use std::hash::{BuildHasher, Hasher}; let init = RandomState::new().build_hasher().finish() as usize; AtomicUsize::new(init) }; } #[cfg(test)] mod test { use super::*; #[derive(PartialEq, Debug)] pub(super) struct Foobar(usize); #[test] fn test_invalid_handle() { assert_eq!(Handle::from_u64(0), Err(HandleError::NullHandle)); // Valid except `version` is odd assert_eq!( Handle::from_u64((u64::from(HANDLE_MAGIC) << 48) | 0x1234_0012_0001), Err(HandleError::InvalidHandle) ); assert_eq!( Handle::from_u64((u64::from(HANDLE_MAGIC) << 48) | 0x1234_0012_0002), Ok(Handle { version: 0x0002, index: 0x0012, map_id: 0x1234, }) ); } #[test] fn test_correct_value_single() { let mut map = HandleMap::new(); let handle = map.insert(Foobar(1234)); assert_eq!(map.get(handle).unwrap(), &Foobar(1234)); map.delete(handle).unwrap(); assert_eq!(map.get(handle), Err(HandleError::StaleVersion)); } #[test] fn test_correct_value_multiple() { let mut map = HandleMap::new(); let handle1 = map.insert(Foobar(1234)); let handle2 = map.insert(Foobar(4321)); assert_eq!(map.get(handle1).unwrap(), &Foobar(1234)); assert_eq!(map.get(handle2).unwrap(), &Foobar(4321)); map.delete(handle1).unwrap(); assert_eq!(map.get(handle1), Err(HandleError::StaleVersion)); assert_eq!(map.get(handle2).unwrap(), &Foobar(4321)); } #[test] fn test_wrong_map() { let mut map1 = HandleMap::new(); let mut map2 = HandleMap::new(); let handle1 = map1.insert(Foobar(1234)); let handle2 = map2.insert(Foobar(1234)); assert_eq!(map1.get(handle1).unwrap(), &Foobar(1234)); assert_eq!(map2.get(handle2).unwrap(), &Foobar(1234)); assert_eq!(map1.get(handle2), Err(HandleError::WrongMap)); assert_eq!(map2.get(handle1), Err(HandleError::WrongMap)); } #[test] fn test_bad_index() { let map: HandleMap<Foobar> = HandleMap::new(); assert_eq!( map.get(Handle { map_id: map.id, version: 2, index: 100 }), Err(HandleError::IndexPastEnd) ); } #[test] fn test_resizing() { let mut map = HandleMap::new(); let mut handles = vec![]; for i in 0..1000 { handles.push(map.insert(Foobar(i))) } for (i, &h) in handles.iter().enumerate() { assert_eq!(map.get(h).unwrap(), &Foobar(i)); assert_eq!(map.remove(h).unwrap(), Foobar(i)); } let mut handles2 = vec![]; for i in 1000..2000 { // Not really related to this test, but it's convenient to check this here. let h = map.insert(Foobar(i)); let hu = h.into_u64(); assert_eq!(Handle::from_u64(hu).unwrap(), h); handles2.push(hu); } for (i, (&h0, h1u)) in handles.iter().zip(handles2).enumerate() { // It's still a stale version, even though the slot is occupied again. assert_eq!(map.get(h0), Err(HandleError::StaleVersion)); let h1 = Handle::from_u64(h1u).unwrap(); assert_eq!(map.get(h1).unwrap(), &Foobar(i + 1000)); } } /// Tests that check our behavior when panicing. /// /// Naturally these require panic=unwind, which means we can't run them when /// generating coverage (well, `-Zprofile`-based coverage can't -- although /// ptrace-based coverage like tarpaulin can), and so we turn them off. /// /// (For clarity, `cfg(coverage)` is not a standard thing. We add it in /// `automation/emit_coverage_info.sh`, and you can force it by adding /// "--cfg coverage" to your RUSTFLAGS manually if you need to do so). #[cfg(not(coverage))] mod panic_tests { use super::*; struct PanicOnDrop(()); impl Drop for PanicOnDrop { fn drop(&mut self) { panic!("intentional panic (drop)"); } } #[test] fn test_panicking_drop() { let map = ConcurrentHandleMap::new(); let h = map.insert(PanicOnDrop(())).into_u64(); let mut e = ExternError::success(); crate::call_with_result(&mut e, || map.delete_u64(h)); assert_eq!(e.get_code(), crate::ErrorCode::PANIC); let _ = unsafe { e.get_and_consume_message() }; assert!(!map.map.is_poisoned()); let inner = map.map.read().unwrap(); inner.assert_valid(); assert_eq!(inner.len(), 0); } #[test] fn test_panicking_call_with() { let map = ConcurrentHandleMap::new(); let h = map.insert(Foobar(0)).into_u64(); let mut e = ExternError::success(); map.call_with_output(&mut e, h, |_thing| { panic!("intentional panic (call_with_output)"); }); assert_eq!(e.get_code(), crate::ErrorCode::PANIC); let _ = unsafe { e.get_and_consume_message() }; { assert!(!map.map.is_poisoned()); let inner = map.map.read().unwrap(); inner.assert_valid(); assert_eq!(inner.len(), 1); let mut seen = false; for e in &inner.entries { if let EntryState::Active(v) = &e.state { assert!(!seen); assert!(v.is_poisoned()); seen = true; } } } assert!(map.delete_u64(h).is_ok()); assert!(!map.map.is_poisoned()); let inner = map.map.read().unwrap(); inner.assert_valid(); assert_eq!(inner.len(), 0); } #[test] fn test_panicking_insert_with() { let map = ConcurrentHandleMap::new(); let mut e = ExternError::success(); let res = map.insert_with_output(&mut e, || { panic!("intentional panic (insert_with_output)"); }); assert_eq!(e.get_code(), crate::ErrorCode::PANIC); let _ = unsafe { e.get_and_consume_message() }; assert_eq!(res, 0); assert!(!map.map.is_poisoned()); let inner = map.map.read().unwrap(); inner.assert_valid(); assert_eq!(inner.len(), 0); } } }