1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
use core::cmp::Ordering; use Iter; pub trait Bits: Eq + PartialEq + PartialOrd + Ord + Copy { fn as_u64(self) -> u64; } impl Bits for u32 { fn as_u64(self) -> u64 { self as u64 } } impl Bits for u64 { fn as_u64(self) -> u64 { self } } /// Types that are IEEE754 floating point numbers. pub trait Ieee754: Copy + PartialEq + PartialOrd { /// Iterate over each value of `Self` in `[self, lim]`. /// /// The returned iterator will include subnormal numbers, and will /// only include one of `-0.0` and `0.0`. /// /// # Panics /// /// Panics if `self > lim`, or if either are NaN. /// /// # Examples /// /// ```rust /// use ieee754::Ieee754; /// /// // there are 840 single-precision floats in between 1.0 and 1.0001 /// // (inclusive). /// assert_eq!(1_f32.upto(1.0001).count(), 840); /// ``` fn upto(self, lim: Self) -> Iter<Self>; /// A type that represents the raw bits of `Self`. type Bits: Bits; /// A type large enough to store the true exponent of `Self`. type Exponent; /// A type large enough to store the raw exponent (i.e. with the bias). type RawExponent; /// A type large enough to store the significand of `Self`. type Significand; /// Return the next value after `self`. /// /// Calling this on NaN or positive infinity will yield nonsense. /// /// # Examples /// /// ```rust /// use ieee754::Ieee754; /// let x: f32 = 1.0; /// assert_eq!(x.next(), 1.000000119209); /// ``` fn next(self) -> Self; /// Return the previous value before `self`. /// /// Calling this on NaN or negative infinity will yield nonsense. /// /// # Examples /// /// ```rust /// use ieee754::Ieee754; /// let x: f32 = 1.0; /// assert_eq!(x.prev(), 0.99999995); /// ``` fn prev(self) -> Self; /// Return the unit-in-the-last-place ulp of `self`. That is, /// `x.abs().next() - x.abs()`, but handling overflow properly. /// /// Returns `None` if `self` is not finite. /// /// # Examples /// /// Single precision: /// /// ```rust /// use std::f32; /// use ieee754::Ieee754; /// /// assert_eq!(0_f32.ulp(), Some(1.4e-45)); /// /// assert_eq!(1_f32.ulp(), Some(1.1920928955078125e-07)); /// assert_eq!((-1_f32).ulp(), Some(1.1920928955078125e-07)); /// /// // 2^23 /// assert_eq!(8_388_608_f32.ulp(), Some(1.0)); /// // 2^24 - 1, the largest f32 with ULP 1 /// assert_eq!(16_777_215_f32.ulp(), Some(1.0)); /// // 2^24 /// assert_eq!(16_777_216_f32.ulp(), Some(2.0)); /// /// // non-finite /// assert_eq!(f32::INFINITY.ulp(), None); /// assert_eq!(f32::NAN.ulp(), None); /// ``` /// /// Double precision: /// /// ```rust /// use std::f64; /// use ieee754::Ieee754; /// /// assert_eq!(0_f64.ulp(), Some(4.9e-324)); /// /// assert_eq!(1_f64.ulp(), Some(2.220446049250313e-16)); /// assert_eq!((-1_f64).ulp(), Some(2.220446049250313e-16)); /// /// // 2^52 /// assert_eq!(4_503_599_627_370_496_f64.ulp(), Some(1.0)); /// // 2^53 - 1, the largest f64 with ULP 1 /// assert_eq!(9_007_199_254_740_991_f64.ulp(), Some(1.0)); /// // 2^53 /// assert_eq!(9_007_199_254_740_992_f64.ulp(), Some(2.0)); /// /// // non-finite /// assert_eq!(f64::INFINITY.ulp(), None); /// assert_eq!(f64::NAN.ulp(), None); /// ``` fn ulp(self) -> Option<Self>; /// View `self` as a collection of bits. /// /// # Examples /// /// ```rust /// use ieee754::Ieee754; /// let x: f32 = 1.0; /// assert_eq!(x.bits(), 0x3f80_0000); /// ``` fn bits(self) -> Self::Bits; /// View a collections of bits as a floating point number. /// /// # Examples /// /// ```rust /// use ieee754::Ieee754; /// let float: f32 = Ieee754::from_bits(0xbf80_0000); /// assert_eq!(float, -1.0); /// ``` fn from_bits(x: Self::Bits) -> Self; /// Get the bias of the stored exponent. /// /// # Examples /// /// ```rust /// use ieee754::Ieee754; /// /// assert_eq!(f32::exponent_bias(), 127); /// assert_eq!(f64::exponent_bias(), 1023); /// ``` fn exponent_bias() -> Self::Exponent; /// Break `self` into the three constituent parts of an IEEE754 float. /// /// The exponent returned is the raw bits, use `exponent_bias` to /// compute the offset required or use `decompose` to obtain this /// in precomputed form. /// /// # Examples /// /// Single precision: /// /// ```rust /// use ieee754::Ieee754; /// /// assert_eq!(1_f32.decompose_raw(), (false, 127, 0)); /// assert_eq!(1234.567_f32.decompose_raw(), (false, 137, 0x1a5225)); /// /// assert_eq!((-0.525_f32).decompose_raw(), (true, 126, 0x66666)); /// /// assert_eq!(std::f32::INFINITY.decompose_raw(), (false, 255, 0)); /// /// let (sign, expn, signif) = std::f32::NAN.decompose_raw(); /// assert_eq!((sign, expn), (false, 255)); /// assert!(signif != 0); /// ``` /// /// Double precision: /// /// ```rust /// use ieee754::Ieee754; /// /// assert_eq!(1_f64.decompose_raw(), (false, 1023, 0)); /// assert_eq!(1234.567_f64.decompose_raw(), (false, 1033, 0x34a449ba5e354)); /// /// assert_eq!((-0.525_f64).decompose_raw(), (true, 1022, 0xcccc_cccc_cccd)); /// /// assert_eq!(std::f64::INFINITY.decompose_raw(), (false, 2047, 0)); /// /// let (sign, expn, signif) = std::f64::NAN.decompose_raw(); /// assert_eq!((sign, expn), (false, 2047)); /// assert!(signif != 0); /// ``` fn decompose_raw(self) -> (bool, Self::RawExponent, Self::Significand); /// Create a `Self` out of the three constituent parts of an IEEE754 float. /// /// This returns (-1)<sup><code>sign</code></sup> × /// 1.<code>signif</code> × 2<sup><code>expn</code> - bias</sup>, where /// /// - `sign` is treated as if `true` == `1` (meaning `true` is /// negative), /// - 1.<code>signif</code> refers to placing the bits of `signif` /// as the fractional part of a number between 1 and 2, and /// - bias is the exponent bias for this float (see [`exponent_bias`]). /// /// The exponent should be the raw bits: use `exponent_bias` to /// compute the offset required, or use `recompose` to feed in an /// unbiased exponent. /// /// # Examples /// /// Single precision: /// /// ```rust /// use ieee754::Ieee754; /// /// assert_eq!(f32::recompose_raw(false, 127, 0), 1.0); /// assert_eq!(f32::recompose_raw(false, 137, 0x1a5225), 1234.567); /// assert_eq!(f32::recompose_raw(true, 126, 0x66666), -0.525); /// /// assert_eq!(f32::recompose_raw(false, 255, 0), std::f32::INFINITY); /// /// assert!(f32::recompose_raw(false, 255, 1).is_nan()); /// ``` /// /// Double precision: /// /// ```rust /// use ieee754::Ieee754; /// /// assert_eq!(f64::recompose_raw(false, 1023, 0), 1.0); /// assert_eq!(f64::recompose_raw(false, 1033, 0x34a449ba5e354), 1234.567); /// assert_eq!(f64::recompose_raw(true, 1022, 0xcccc_cccc_cccd), -0.525); /// /// assert_eq!(f64::recompose_raw(false, 2047, 0), std::f64::INFINITY); /// /// assert!(f64::recompose_raw(false, 2047, 1).is_nan()); /// ``` fn recompose_raw(sign: bool, expn: Self::RawExponent, signif: Self::Significand) -> Self; /// Break `self` into the three constituent parts of an IEEE754 float. /// /// The exponent returned is the true exponent, after accounting /// for the bias it is stored with. The significand does not /// include the implicit highest bit (if it exists), e.g. the /// 24-bit for single precision. /// /// # Examples /// /// Single precision: /// /// ```rust /// use ieee754::Ieee754; /// /// assert_eq!(1_f32.decompose(), (false, 0, 0)); /// assert_eq!(1234.567_f32.decompose(), (false, 10, 0x1a5225)); /// /// assert_eq!((-0.525_f32).decompose(), (true, -1, 0x66666)); /// /// assert_eq!(std::f32::INFINITY.decompose(), (false, 128, 0)); /// /// let (sign, expn, signif) = std::f32::NAN.decompose(); /// assert_eq!((sign, expn), (false, 128)); /// assert!(signif != 0); /// ``` /// /// Double precision: /// /// ```rust /// use ieee754::Ieee754; /// /// assert_eq!(1_f64.decompose(), (false, 0, 0)); /// assert_eq!(1234.567_f64.decompose(), (false, 10, 0x34a449ba5e354)); /// /// assert_eq!((-0.525_f64).decompose(), (true, -1, 0xcccc_cccc_cccd)); /// /// assert_eq!(std::f64::INFINITY.decompose(), (false, 1024, 0)); /// /// let (sign, expn, signif) = std::f64::NAN.decompose(); /// assert_eq!((sign, expn), (false, 1024)); /// assert!(signif != 0); /// ``` fn decompose(self) -> (bool, Self::Exponent, Self::Significand); /// Create a `Self` out of the three constituent parts of an IEEE754 float. /// /// This returns (-1)<sup><code>sign</code></sup> × /// 1.<code>signif</code> × 2<sup><code>expn</code></sup>, where /// /// - `sign` is treated as if `true` == `1` (meaning `true` is /// negative), and /// - 1.<code>signif</code> refers to placing the bits of `signif` /// as the fractional part of a number between 1 and 2. /// /// The exponent should be the true exponent, not accounting for any /// bias. The significand should not include the implicit highest /// bit (if it exists), e.g. the 24-th bit for single precision. /// /// # Examples /// /// Single precision: /// /// ```rust /// use ieee754::Ieee754; /// /// // normal numbers /// assert_eq!(f32::recompose(false, 0, 0), 1.0); /// assert_eq!(f32::recompose(false, 10, 0x1a5225), 1234.567); /// assert_eq!(f32::recompose(true, -1, 0x66666), -0.525); /// /// // infinity /// assert_eq!(f32::recompose(false, 128, 0), std::f32::INFINITY); /// /// // NaN /// assert!(f32::recompose(false, 128, 1).is_nan()); /// ``` /// /// Double precision: /// /// ```rust /// use ieee754::Ieee754; /// /// // normal numbers /// assert_eq!(f64::recompose(false, 0, 0), 1.0); /// assert_eq!(f64::recompose(false, 10, 0x34a449ba5e354), 1234.567); /// assert_eq!(f64::recompose(true, -1, 0xcccc_cccc_cccd), -0.525); /// /// // infinity /// assert_eq!(f64::recompose(false, 1024, 0), std::f64::INFINITY); /// /// // NaN /// assert!(f64::recompose(false, 1024, 1).is_nan()); /// ``` fn recompose(sign: bool, expn: Self::Exponent, signif: Self::Significand) -> Self; /// Compare `x` and `y` using the IEEE-754 `totalOrder` predicate /// (Section 5.10). /// /// This orders NaNs before or after all non-NaN floats, depending /// on the sign bit. Using -qNaN to represent a quiet NaN with /// negative sign bit and similarly for a signalling NaN (sNaN), /// the order is: /// /// ```txt /// -qNaN < -sNaN < -∞ < -12.34 < -0.0 < +0.0 < +12.34 < +∞ < +sNaN < +qNaN /// ``` /// /// (NaNs are ordered according to their payload.) /// /// # Examples /// /// Sorting: /// /// ```rust /// use std::f32; /// /// use ieee754::Ieee754; /// /// let mut data = vec![0.0, f32::NEG_INFINITY, -1.0, f32::INFINITY, /// f32::NAN, -0.0, 12.34e5, -f32::NAN]; /// data.sort_by(|a, b| a.total_cmp(b)); /// /// assert_eq!(format!("{:.0?}", data), /// "[NaN, -inf, -1, -0, 0, 1234000, inf, NaN]"); /// ``` /// /// Single precision: /// /// ```rust /// use std::cmp::Ordering; /// use std::f32; /// /// use ieee754::Ieee754; /// /// // normal comparison /// assert_eq!(0_f32.total_cmp(&0_f32), Ordering::Equal); /// assert_eq!(0_f32.total_cmp(&1_f32), Ordering::Less); /// assert_eq!(1e10_f32.total_cmp(&f32::NEG_INFINITY), Ordering::Greater); /// /// // signed zero /// assert_eq!(0_f32.total_cmp(&-0_f32), Ordering::Greater); /// /// // NaNs /// assert_eq!(f32::NAN.total_cmp(&0_f32), Ordering::Greater); /// assert_eq!(f32::NAN.total_cmp(&f32::INFINITY), Ordering::Greater); /// assert_eq!((-f32::NAN).total_cmp(&f32::NEG_INFINITY), Ordering::Less); /// ``` /// /// Double precision: /// /// ```rust /// use std::cmp::Ordering; /// use std::f64; /// /// use ieee754::Ieee754; /// /// // normal comparison /// assert_eq!(0_f64.total_cmp(&0_f64), Ordering::Equal); /// assert_eq!(0_f64.total_cmp(&1_f64), Ordering::Less); /// assert_eq!(1e10_f64.total_cmp(&f64::NEG_INFINITY), Ordering::Greater); /// /// // signed zero /// assert_eq!(0_f64.total_cmp(&-0_f64), Ordering::Greater); /// /// // NaNs /// assert_eq!(f64::NAN.total_cmp(&0_f64), Ordering::Greater); /// assert_eq!(f64::NAN.total_cmp(&f64::INFINITY), Ordering::Greater); /// assert_eq!((-f64::NAN).total_cmp(&f64::NEG_INFINITY), Ordering::Less); /// ``` fn total_cmp(&self, other: &Self) -> Ordering; /// Return the absolute value of `x`. /// /// This provides a no_std/core-only version of the built-in `abs` in /// `std`, until /// [#50145](https://github.com/rust-lang/rust/issues/50145) is /// addressed. /// /// # Examples /// /// Single precision: /// /// ```rust /// #![no_std] /// # extern crate std; // this makes this "test" a lie, unfortunately /// # extern crate ieee754; /// use core::f32; /// /// use ieee754::Ieee754; /// /// # fn main() { /// assert_eq!((0_f32).abs(), 0.0); /// /// assert_eq!((12.34_f32).abs(), 12.34); /// assert_eq!((-12.34_f32).abs(), 12.34); /// /// assert_eq!(f32::INFINITY.abs(), f32::INFINITY); /// assert_eq!(f32::NEG_INFINITY.abs(), f32::INFINITY); /// assert!(f32::NAN.abs().is_nan()); /// # } /// ``` /// /// Double precision: /// /// ```rust /// #![no_std] /// # extern crate std; // this makes this "test" a lie, unfortunately /// # extern crate ieee754; /// use core::f64; /// /// use ieee754::Ieee754; /// /// # fn main() { /// assert_eq!((0_f64).abs(), 0.0); /// /// assert_eq!((12.34_f64).abs(), 12.34); /// assert_eq!((-12.34_f64).abs(), 12.34); /// /// assert_eq!(f64::INFINITY.abs(), f64::INFINITY); /// assert_eq!(f64::NEG_INFINITY.abs(), f64::INFINITY); /// assert!(f64::NAN.abs().is_nan()); /// # } /// ``` fn abs(self) -> Self; /// Return a float with the magnitude of `self` but the sign of /// `sign`. /// /// If `sign` is NaN, this still uses its sign bit, and does not /// (necessarily) return NaN. /// /// # Examples /// /// Single precision: /// /// ```rust /// use std::f32; /// /// use ieee754::Ieee754; /// /// // normal numbers /// assert_eq!(1_f32.copy_sign(1.0), 1.0); /// assert_eq!(2_f32.copy_sign(-1.0), -2.0); /// assert_eq!((-3_f32).copy_sign(1.0), 3.0); /// assert_eq!((-4_f32).copy_sign(-1.0), -4.0); /// /// // infinities /// assert_eq!(5_f32.copy_sign(f32::NEG_INFINITY), -5.0); /// assert_eq!(f32::NEG_INFINITY.copy_sign(1.0), f32::INFINITY); /// /// // signs of zeros matter /// assert_eq!((-6_f32).copy_sign(0.0), 6.0); /// assert_eq!(7_f32.copy_sign(-0.0), -7.0); /// /// // NaNs only propagate on the self argument /// assert!(f32::NAN.copy_sign(1.0).is_nan()); /// assert_eq!(8_f32.copy_sign(-f32::NAN), -8.0); /// ``` /// /// Double precision: /// /// ```rust /// use std::f64; /// /// use ieee754::Ieee754; /// /// // normal numbers /// assert_eq!(1_f64.copy_sign(1.0), 1.0); /// assert_eq!(2_f64.copy_sign(-1.0), -2.0); /// assert_eq!((-3_f64).copy_sign(1.0), 3.0); /// assert_eq!((-4_f64).copy_sign(-1.0), -4.0); /// /// // infinities /// assert_eq!(5_f64.copy_sign(f64::NEG_INFINITY), -5.0); /// assert_eq!(f64::NEG_INFINITY.copy_sign(1.0), f64::INFINITY); /// /// // signs of zeros matter /// assert_eq!((-6_f64).copy_sign(0.0), 6.0); /// assert_eq!(7_f64.copy_sign(-0.0), -7.0); /// /// // NaNs only propagate on the self argument /// assert!(f64::NAN.copy_sign(1.0).is_nan()); /// assert_eq!(8_f64.copy_sign(-f64::NAN), -8.0); /// ``` fn copy_sign(self, sign: Self) -> Self; /// Return the sign of `x`. /// /// This provides a no_std/core-only function similar to the /// built-in `signum` in `std` (until /// [#50145](https://github.com/rust-lang/rust/issues/50145) is /// addressed). This `sign` function differs at two values; it /// matches the mathematical definitions when `self == 0.0` : /// /// | `x` | `x.signum()` (`std`) | `x.sign()` (`ieee754`) | /// |--:|--:|--:| /// |< 0.0|−1.0|−1.0| /// |−0.0|−1.0|**−0.0**| /// |+0.0|+1.0|**+0.0**| /// |> 0.0|+1.0|+1.0| /// |NaN|NaN|NaN| /// /// # Examples /// /// Single precision: /// /// ```rust /// use std::f32; /// use std::cmp::Ordering; /// /// use ieee754::Ieee754; /// /// // zeros /// assert_eq!(0_f32.sign().total_cmp(&0.0), Ordering::Equal); /// assert_eq!((-0_f32).sign().total_cmp(&-0.0), Ordering::Equal); /// /// // normal numbers /// assert_eq!((12.34_f32).sign(), 1.0); /// assert_eq!((-12.34_f32).sign(), -1.0); /// /// // extremes /// assert_eq!(f32::INFINITY.sign(), 1.0); /// assert_eq!(f32::NEG_INFINITY.sign(), -1.0); /// assert!(f32::NAN.sign().is_nan()); /// ``` /// /// Double precision: /// /// ```rust /// use std::f64; /// use std::cmp::Ordering; /// /// use ieee754::Ieee754; /// /// // zeros /// assert_eq!(0_f64.sign().total_cmp(&0.0), Ordering::Equal); /// assert_eq!((-0_f64).sign().total_cmp(&-0.0), Ordering::Equal); /// /// // normal numbers /// assert_eq!((12.34_f64).sign(), 1.0); /// assert_eq!((-12.34_f64).sign(), -1.0); /// /// // extremes /// assert_eq!(f64::INFINITY.sign(), 1.0); /// assert_eq!(f64::NEG_INFINITY.sign(), -1.0); /// assert!(f64::NAN.sign().is_nan()); /// ``` fn sign(self) -> Self; /// Compute the (generalized) **signed** relative error of `self` /// as an approximation to `exact`. /// /// This computes the signed value: positive indicates `self` in /// the opposite direction to 0 from `exact`; negative indicates /// `self` is in the same direction as 0 from `exact`. Use /// `x.rel_error(exact).abs()` to get the non-signed relative /// error. /// /// The "generalized" refers to `exact` being 0 or ±∞ the handling /// of which is designed to indicate a "failure" (infinite error), /// if `self` doesn't precisely equal `exact`. This behaviour is /// designed for checking output of algorithms on floats when it /// is often desirable to match 0.0 and ±∞ perfectly. /// /// The values of this function are: /// /// |`exact`|`x`|`x.rel_error(exact)`| /// |--:|--:|--:| /// |NaN|any value|NaN| /// |any value|NaN|NaN| /// |0|equal to `exact`|0| /// |0|not equal to `exact`|signum(`x`) × ∞| /// |±∞|equal to `exact`|0| /// |±∞|not equal to `exact`|-∞| /// |any other value|any value|`(x - exact) / exact`| /// /// The sign of a zero-valued argument has no effect on the result /// of this function. /// /// # Examples /// /// Single precision: /// /// ```rust /// use std::f32; /// /// use ieee754::Ieee754; /// /// assert_eq!(4_f32.rel_error(4.0), 0.0); /// assert_eq!(3_f32.rel_error(4.0), -0.25); /// assert_eq!(5_f32.rel_error(4.0), 0.25); /// /// // zero /// assert_eq!(0_f32.rel_error(0.0), 0.0); /// assert_eq!(1_f32.rel_error(0.0), f32::INFINITY); /// assert_eq!((-1_f32).rel_error(0.0), f32::NEG_INFINITY); /// /// // infinities /// assert_eq!(f32::INFINITY.rel_error(f32::INFINITY), 0.0); /// assert_eq!(0_f32.rel_error(f32::INFINITY), f32::NEG_INFINITY); /// /// assert_eq!(f32::NEG_INFINITY.rel_error(f32::NEG_INFINITY), 0.0); /// assert_eq!(0_f32.rel_error(f32::NEG_INFINITY), f32::NEG_INFINITY); /// /// // NaNs /// assert!(f32::NAN.rel_error(4.0).is_nan()); /// assert!(4_f32.rel_error(f32::NAN).is_nan()); /// ``` /// /// Double precision: /// /// ```rust /// use std::f64; /// use ieee754::Ieee754; /// /// assert_eq!(4_f64.rel_error(4.0), 0.0); /// assert_eq!(3_f64.rel_error(4.0), -0.25); /// assert_eq!(5_f64.rel_error(4.0), 0.25); /// /// // zero /// assert_eq!(0_f64.rel_error(0.0), 0.0); /// assert_eq!(1_f64.rel_error(0.0), f64::INFINITY); /// assert_eq!((-1_f64).rel_error(0.0), f64::NEG_INFINITY); /// /// // infinities /// assert_eq!(f64::INFINITY.rel_error(f64::INFINITY), 0.0); /// assert_eq!(0_f64.rel_error(f64::INFINITY), f64::NEG_INFINITY); /// /// assert_eq!(f64::NEG_INFINITY.rel_error(f64::NEG_INFINITY), 0.0); /// assert_eq!(0_f64.rel_error(f64::NEG_INFINITY), f64::NEG_INFINITY); /// /// // NaNs /// assert!(f64::NAN.rel_error(4.0).is_nan()); /// assert!(4_f64.rel_error(f64::NAN).is_nan()); /// ``` fn rel_error(self, exact: Self) -> Self; }