1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
// Copyright 2016 - 2018 Ulrik Sverdrup "bluss"
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

use kernel::GemmKernel;
use kernel::GemmSelect;
#[allow(unused)]
use kernel::{U4, U8};
use archparam;

#[cfg(target_arch="x86")]
use core::arch::x86::*;
#[cfg(target_arch="x86_64")]
use core::arch::x86_64::*;
#[cfg(any(target_arch="x86", target_arch="x86_64"))]
use x86::{FusedMulAdd, AvxMulAdd, DMultiplyAdd};

#[cfg(any(target_arch="x86", target_arch="x86_64"))]
struct KernelAvx;
#[cfg(any(target_arch="x86", target_arch="x86_64"))]
struct KernelFma;
#[cfg(any(target_arch="x86", target_arch="x86_64"))]
struct KernelSse2;
struct KernelFallback;

type T = f64;

/// Detect which implementation to use and select it using the selector's
/// .select(Kernel) method.
///
/// This function is called one or more times during a whole program's
/// execution, it may be called for each gemm kernel invocation or fewer times.
#[inline]
pub(crate) fn detect<G>(selector: G) where G: GemmSelect<T> {
    // dispatch to specific compiled versions
    #[cfg(any(target_arch="x86", target_arch="x86_64"))]
    {
        if is_x86_feature_detected_!("fma") {
            return selector.select(KernelFma);
        } else if is_x86_feature_detected_!("avx") {
            return selector.select(KernelAvx);
        } else if is_x86_feature_detected_!("sse2") {
            return selector.select(KernelSse2);
        }
    }
    return selector.select(KernelFallback);
}


#[cfg(any(target_arch="x86", target_arch="x86_64"))]
macro_rules! loop_m {
    ($i:ident, $e:expr) => { loop8!($i, $e) };
}

#[cfg(any(target_arch="x86", target_arch="x86_64"))]
impl GemmKernel for KernelAvx {
    type Elem = T;

    type MRTy = U8;
    type NRTy = U4;

    #[inline(always)]
    fn align_to() -> usize { 32 }

    #[inline(always)]
    fn always_masked() -> bool { false }

    #[inline(always)]
    fn nc() -> usize { archparam::D_NC }
    #[inline(always)]
    fn kc() -> usize { archparam::D_KC }
    #[inline(always)]
    fn mc() -> usize { archparam::D_MC }

    #[inline(always)]
    unsafe fn kernel(
        k: usize,
        alpha: T,
        a: *const T,
        b: *const T,
        beta: T,
        c: *mut T,
        rsc: isize,
        csc: isize)
    {
        kernel_target_avx(k, alpha, a, b, beta, c, rsc, csc)
    }
}

#[cfg(any(target_arch="x86", target_arch="x86_64"))]
impl GemmKernel for KernelFma {
    type Elem = T;

    type MRTy = <KernelAvx as GemmKernel>::MRTy;
    type NRTy = <KernelAvx as GemmKernel>::NRTy;

    #[inline(always)]
    fn align_to() -> usize { KernelAvx::align_to() }

    #[inline(always)]
    fn always_masked() -> bool { KernelAvx::always_masked() }

    #[inline(always)]
    fn nc() -> usize { archparam::D_NC }
    #[inline(always)]
    fn kc() -> usize { archparam::D_KC }
    #[inline(always)]
    fn mc() -> usize { archparam::D_MC }

    #[inline(always)]
    unsafe fn kernel(
        k: usize,
        alpha: T,
        a: *const T,
        b: *const T,
        beta: T,
        c: *mut T,
        rsc: isize,
        csc: isize)
    {
        kernel_target_fma(k, alpha, a, b, beta, c, rsc, csc)
    }
}

#[cfg(any(target_arch="x86", target_arch="x86_64"))]
impl GemmKernel for KernelSse2 {
    type Elem = T;

    type MRTy = U4;
    type NRTy = U4;

    #[inline(always)]
    fn align_to() -> usize { 16 }

    #[inline(always)]
    fn always_masked() -> bool { true }

    #[inline(always)]
    fn nc() -> usize { archparam::D_NC }
    #[inline(always)]
    fn kc() -> usize { archparam::D_KC }
    #[inline(always)]
    fn mc() -> usize { archparam::D_MC }

    #[inline(always)]
    unsafe fn kernel(
        k: usize,
        alpha: T,
        a: *const T,
        b: *const T,
        beta: T,
        c: *mut T,
        rsc: isize,
        csc: isize)
    {
        kernel_target_sse2(k, alpha, a, b, beta, c, rsc, csc)
    }
}

impl GemmKernel for KernelFallback {
    type Elem = T;

    type MRTy = U4;
    type NRTy = U4;

    #[inline(always)]
    fn align_to() -> usize { 0 }

    #[inline(always)]
    fn always_masked() -> bool { true }

    #[inline(always)]
    fn nc() -> usize { archparam::D_NC }
    #[inline(always)]
    fn kc() -> usize { archparam::D_KC }
    #[inline(always)]
    fn mc() -> usize { archparam::D_MC }

    #[inline(always)]
    unsafe fn kernel(
        k: usize,
        alpha: T,
        a: *const T,
        b: *const T,
        beta: T,
        c: *mut T,
        rsc: isize,
        csc: isize)
    {
        kernel_fallback_impl(k, alpha, a, b, beta, c, rsc, csc)
    }
}

// no inline for unmasked kernels
#[cfg(any(target_arch="x86", target_arch="x86_64"))]
#[target_feature(enable="fma")]
unsafe fn kernel_target_fma(k: usize, alpha: T, a: *const T, b: *const T,
                            beta: T, c: *mut T, rsc: isize, csc: isize)
{
    kernel_x86_avx::<FusedMulAdd>(k, alpha, a, b, beta, c, rsc, csc)
}

// no inline for unmasked kernels
#[cfg(any(target_arch="x86", target_arch="x86_64"))]
#[target_feature(enable="avx")]
unsafe fn kernel_target_avx(k: usize, alpha: T, a: *const T, b: *const T,
                            beta: T, c: *mut T, rsc: isize, csc: isize)
{
    kernel_x86_avx::<AvxMulAdd>(k, alpha, a, b, beta, c, rsc, csc)
}

#[inline]
#[target_feature(enable="sse2")]
#[cfg(any(target_arch="x86", target_arch="x86_64"))]
unsafe fn kernel_target_sse2(k: usize, alpha: T, a: *const T, b: *const T,
                                 beta: T, c: *mut T, rsc: isize, csc: isize)
{
    kernel_fallback_impl(k, alpha, a, b, beta, c, rsc, csc)
}

#[inline(always)]
#[cfg(any(target_arch="x86", target_arch="x86_64"))]
unsafe fn kernel_x86_avx<MA>(k: usize, alpha: T, a: *const T, b: *const T,
                             beta: T, c: *mut T, rsc: isize, csc: isize)
    where MA: DMultiplyAdd
{
    const MR: usize = KernelAvx::MR;
    const NR: usize = KernelAvx::NR;

    debug_assert_ne!(k, 0);

    let mut ab = [_mm256_setzero_pd(); MR];

    let (mut a, mut b) = (a, b);

    // With MR=8, we load sets of 4 doubles from a
    let mut a_0123 = _mm256_load_pd(a);
    let mut a_4567 = _mm256_load_pd(a.add(4));

    // With NR=4, we load 4 doubles from b
    let mut b_0123 = _mm256_load_pd(b);

    unroll_by_with_last!(4 => k, is_last, {
        // We need to multiply each element of b with each element of a_0
        // and a_1. To do so, we need to generate all possible permutations
        // for the doubles in b, but without two permutations having the
        // same double at the same spot.
        //
        // So, if we are given the permutations (indices of the doubles
        // in the packed 4-vector):
        //
        // 0 1 2 3
        //
        // Then another valid permutation has to shuffle all elements
        // around without a single element remaining at the same index
        // it was before.
        //
        // A possible set of valid combination then are:
        //
        // 0 1 2 3 (the original)
        // 1 0 3 2 (chosen because of _mm256_shuffle_pd)
        // 2 3 0 1 (chosen because of _mm256_permute2f128_pd)
        // 3 0 1 2 (chosen because of _mm256_shuffle_pd applied after _mm256_permute2f128_pd)
        let b_1032 = _mm256_shuffle_pd(b_0123, b_0123, 0b0101);

        // Both packed 4-vectors are the same, so one could also perform
        // the selection 0b0000_0001 or 0b0011_0010.
        // The confusing part is that of the lower 4 bits and upper 4 bits
        // only 2 bits are used in each. The same choice could have been
        // encoded in a nibble (4 bits) total, i.e. 0b1100, had the intrinsics
        // been defined differently. The highest bit in each nibble controls
        // zero-ing behaviour though.
        // let b_2301 = _mm256_permute2f128_pd(b_0123, b_0123, 0b0011_0000);
        // 0b0011_0000 = 0x30; makes it clearer which bits we are acting on.
        let b_3210 = _mm256_permute2f128_pd(b_1032, b_1032, 0x03);
        let b_2301 = _mm256_shuffle_pd(b_3210, b_3210, 0b0101);

        // The ideal distribution of a_i b_j pairs in the resulting panel of
        // c in order to have the matching products / sums of products in the
        // right places would look like this after the first iteration:
        //
        // ab_0 || a0 b0 | a0 b1 | a0 b2 | a0 b3
        // ab_1 || a1 b0 | a1 b1 | a1 b2 | a1 b3
        // ab_2 || a2 b0 | a2 b1 | a2 b2 | a2 b3
        // ab_3 || a3 b0 | a3 b1 | a3 b2 | a3 b3
        //      || -----------------------------
        // ab_4 || a4 b0 | a4 b1 | a4 b2 | a4 b3
        // ab_5 || a5 b0 | a5 b1 | a5 b2 | a5 b3
        // ab_6 || a6 b0 | a6 b1 | a6 b2 | a6 b3
        // ab_7 || a7 b0 | a7 b1 | a7 b2 | a7 b3
        //
        // As this is not possible / would require too many extra variables
        // and thus operations, we get the following configuration, and thus
        // have to be smart about putting the correct values into their
        // respective places at the end.
        //
        // ab_0 || a0 b0 | a1 b1 | a2 b2 | a3 b3
        // ab_1 || a0 b1 | a1 b0 | a2 b3 | a3 b2
        // ab_2 || a0 b2 | a1 b3 | a2 b0 | a3 b1
        // ab_3 || a0 b3 | a1 b2 | a2 b1 | a3 b0
        //      || -----------------------------
        // ab_4 || a4 b0 | a5 b1 | a6 b2 | a7 b3
        // ab_5 || a4 b1 | a5 b0 | a6 b3 | a7 b2
        // ab_6 || a4 b2 | a5 b3 | a6 b0 | a7 b1
        // ab_7 || a4 b3 | a5 b2 | a6 b1 | a7 b0

        // Add and multiply in one go
        ab[0] = MA::multiply_add(a_0123, b_0123, ab[0]);
        ab[1] = MA::multiply_add(a_0123, b_1032, ab[1]);
        ab[2] = MA::multiply_add(a_0123, b_2301, ab[2]);
        ab[3] = MA::multiply_add(a_0123, b_3210, ab[3]);

        ab[4] = MA::multiply_add(a_4567, b_0123, ab[4]);
        ab[5] = MA::multiply_add(a_4567, b_1032, ab[5]);
        ab[6] = MA::multiply_add(a_4567, b_2301, ab[6]);
        ab[7] = MA::multiply_add(a_4567, b_3210, ab[7]);

        if !is_last {
            a = a.add(MR);
            b = b.add(NR);

            a_0123 = _mm256_load_pd(a);
            a_4567 = _mm256_load_pd(a.add(4));
            b_0123 = _mm256_load_pd(b);
        }
    });

    // Our products/sums are currently stored according to the
    // table below. Each row corresponds to one packed simd
    // 4-vector.
    //
    // ab_0 || a0 b0 | a1 b1 | a2 b2 | a3 b3
    // ab_1 || a0 b1 | a1 b0 | a2 b3 | a3 b2
    // ab_2 || a0 b2 | a1 b3 | a2 b0 | a3 b1
    // ab_3 || a0 b3 | a1 b2 | a2 b1 | a3 b0
    //      || -----------------------------
    // ab_4 || a4 b0 | a5 b1 | a6 b2 | a7 b3
    // ab_5 || a4 b1 | a5 b0 | a6 b3 | a7 b2
    // ab_6 || a4 b2 | a5 b3 | a6 b0 | a7 b1
    // ab_7 || a4 b3 | a5 b2 | a6 b1 | a7 b0
    //
    // This is the final results, where indices are stored
    // in their proper location.
    //
    //      || a0 b0 | a0 b1 | a0 b2 | a0 b3
    //      || a1 b0 | a1 b1 | a1 b2 | a1 b3
    //      || a2 b0 | a2 b1 | a2 b2 | a2 b3
    //      || a3 b0 | a3 b1 | a3 b2 | a3 b3
    //      || -----------------------------
    //      || a4 b0 | a4 b1 | a4 b2 | a4 b3
    //      || a5 b0 | a5 b1 | a5 b2 | a5 b3
    //      || a6 b0 | a6 b1 | a6 b2 | a6 b3
    //      || a7 b0 | a7 b1 | a7 b2 | a7 b3
    //
    // Given the simd intrinsics available through avx, we have two
    // ways of achieving this format. By either:
    //
    // a) Creating packed 4-vectors of rows, or
    // b) creating packed 4-vectors of columns.
    //
    // ** We will use option a) because it has slightly cheaper throughput
    // characteristics (see below).
    //
    // # a) Creating packed 4-vectors of columns
    //
    // To create packed 4-vectors of columns, we make us of
    // _mm256_blend_pd operations, followed by _mm256_permute2f128_pd.
    //
    // The first operation has latency 1 (all architectures), and 0.33
    // throughput (Skylake, Broadwell, Haswell), or 0.5 (Ivy Bridge).
    //
    // The second operation has latency 3 (on Skylake, Broadwell, Haswell),
    // or latency 2 (on Ivy Brdige), and throughput 1 (all architectures).
    //
    // We start by applying _mm256_blend_pd on adjacent rows:
    //
    // Step 0.0
    // a0 b0 | a1 b1 | a2 b2 | a3 b3
    // a0 b1 | a1 b0 | a2 b3 | a3 b2
    // => _mm256_blend_pd with 0b1010
    // a0 b0 | a1 b0 | a2 b2 | a3 b2 (only columns 0 and 2)
    //
    // Step 0.1
    // a0 b1 | a1 b0 | a2 b3 | a3 b2 (flipped the order)
    // a0 b0 | a1 b1 | a2 b2 | a3 b3
    // => _mm256_blend_pd with 0b1010
    // a0 b1 | a1 b1 | a2 b3 | a3 b3 (only columns 1 and 3)
    //
    // Step 0.2
    // a0 b2 | a1 b3 | a2 b0 | a3 b1
    // a0 b3 | a1 b2 | a2 b1 | a3 b0
    // => _mm256_blend_pd with 0b1010
    // a0 b2 | a1 b2 | a2 b0 | a3 b0 (only columns 0 and 2)
    //
    // Step 0.3
    // a0 b3 | a1 b2 | a2 b1 | a3 b0 (flipped the order)
    // a0 b2 | a1 b3 | a2 b0 | a3 b1
    // => _mm256_blend_pd with 0b1010
    // a0 b3 | a1 b3 | a2 b1 | a3 b1 (only columns 1 and 3)
    //
    // Step 1.0 (combining steps 0.0 and 0.2)
    //
    // a0 b0 | a1 b0 | a2 b2 | a3 b2
    // a0 b2 | a1 b2 | a2 b0 | a3 b0
    // => _mm256_permute2f128_pd with 0x30 = 0b0011_0000
    // a0 b0 | a1 b0 | a2 b0 | a3 b0
    //
    // Step 1.1 (combining steps 0.0 and 0.2)
    //
    // a0 b0 | a1 b0 | a2 b2 | a3 b2
    // a0 b2 | a1 b2 | a2 b0 | a3 b0
    // => _mm256_permute2f128_pd with 0x12 = 0b0001_0010
    // a0 b2 | a1 b2 | a2 b2 | a3 b2
    //
    // Step 1.2 (combining steps 0.1 and 0.3)
    // a0 b1 | a1 b1 | a2 b3 | a3 b3
    // a0 b3 | a1 b3 | a2 b1 | a3 b1
    // => _mm256_permute2f128_pd with 0x30 = 0b0011_0000
    // a0 b1 | a1 b1 | a2 b1 | a3 b1
    //
    // Step 1.3 (combining steps 0.1 and 0.3)
    // a0 b1 | a1 b1 | a2 b3 | a3 b3
    // a0 b3 | a1 b3 | a2 b1 | a3 b1
    // => _mm256_permute2f128_pd with 0x12 = 0b0001_0010
    // a0 b3 | a1 b3 | a2 b3 | a3 b3
    //
    // # b) Creating packed 4-vectors of rows
    //
    // To create packed 4-vectors of rows, we make use of
    // _mm256_shuffle_pd operations followed by _mm256_permute2f128_pd.
    //
    // The first operation has a latency 1, throughput 1 (on architectures
    // Skylake, Broadwell, Haswell, and Ivy Bridge).
    //
    // The second operation has latency 3 (on Skylake, Broadwell, Haswell),
    // or latency 2 (on Ivy Brdige), and throughput 1 (all architectures).
    //
    // To achieve this, we can execute a _mm256_shuffle_pd on
    // rows 0 and 1 stored in ab_0 and ab_1:
    //
    // Step 0.0
    // a0 b0 | a1 b1 | a2 b2 | a3 b3
    // a0 b1 | a1 b0 | a2 b3 | a3 b2
    // => _mm256_shuffle_pd with 0000
    // a0 b0 | a0 b1 | a2 b2 | a2 b3 (only rows 0 and 2)
    //
    // Step 0.1
    // a0 b1 | a1 b0 | a2 b3 | a3 b2 (flipped the order)
    // a0 b0 | a1 b1 | a2 b2 | a3 b3
    // => _mm256_shuffle_pd with 1111
    // a1 b0 | a1 b1 | a3 b2 | a3 b3 (only rows 1 and 3)
    //
    // Next, we perform the same operation on the other two rows:
    //
    // Step 0.2
    // a0 b2 | a1 b3 | a2 b0 | a3 b1
    // a0 b3 | a1 b2 | a2 b1 | a3 b0
    // => _mm256_shuffle_pd with 0000
    // a0 b2 | a0 b3 | a2 b0 | a2 b1 (only rows 0 and 2)
    //
    // Step 0.3
    // a0 b3 | a1 b2 | a2 b1 | a3 b0
    // a0 b2 | a1 b3 | a2 b0 | a3 b1
    // => _mm256_shuffle_pd with 1111
    // a1 b2 | a1 b3 | a3 b0 | a3 b1 (only rows 1 and 3)
    //
    // Next, we can apply _mm256_permute2f128_pd to select the
    // correct columns on the matching rows:
    //
    // Step 1.0 (combining Steps 0.0 and 0.2):
    // a0 b0 | a0 b1 | a2 b2 | a2 b3
    // a0 b2 | a0 b3 | a2 b0 | a2 b1
    // => _mm256_permute_2f128_pd with 0x20 = 0b0010_0000
    // a0 b0 | a0 b1 | a0 b2 | a0 b3
    //
    // Step 1.1 (combining Steps 0.0 and 0.2):
    // a0 b0 | a0 b1 | a2 b2 | a2 b3
    // a0 b2 | a0 b3 | a2 b0 | a2 b1
    // => _mm256_permute_2f128_pd with 0x03 = 0b0001_0011
    // a2 b0 | a2 b1 | a2 b2 | a2 b3
    //
    // Step 1.2 (combining Steps 0.1 and 0.3):
    // a1 b0 | a1 b1 | a3 b2 | a3 b3
    // a1 b2 | a1 b3 | a3 b0 | a3 b1
    // => _mm256_permute_2f128_pd with 0x20 = 0b0010_0000
    // a1 b0 | a1 b1 | a1 b2 | a1 b3
    //
    // Step 1.3 (combining Steps 0.1 and 0.3):
    // a1 b0 | a1 b1 | a3 b2 | a3 b3
    // a1 b2 | a1 b3 | a3 b0 | a3 b1
    // => _mm256_permute_2f128_pd with 0x03 = 0b0001_0011
    // a3 b0 | a3 b1 | a3 b2 | a3 b3

    // We use scheme a) as the default case, i.e. if c is column-major, rsc==1, or if
    // c is of general form. Row-major c matrices, csc==1, are treated using schema b).
    if csc == 1 {
        // Scheme b), step 0.0
        // a0 b0 | a1 b1 | a2 b2 | a3 b3
        // a0 b1 | a1 b0 | a2 b3 | a3 b2
        let a0b0_a0b1_a2b2_a2b3 = _mm256_shuffle_pd(ab[0], ab[1], 0b0000);

        // Scheme b), step 0.1
        // a0 b1 | a1 b0 | a2 b3 | a3 b2 (flipped the order)
        // a0 b0 | a1 b1 | a2 b2 | a3 b3
        let a1b0_a1b1_a3b2_a3b3 = _mm256_shuffle_pd(ab[1], ab[0], 0b1111);

        // Scheme b), step 0.2
        // a0 b2 | a1 b3 | a2 b0 | a3 b1
        // a0 b3 | a1 b2 | a2 b1 | a3 b0
        let a0b2_a0b3_a2b0_a2b1 = _mm256_shuffle_pd(ab[2], ab[3], 0b0000);

        // Scheme b), step 0.3
        // a0 b3 | a1 b2 | a2 b1 | a3 b0 (flipped the order)
        // a0 b2 | a1 b3 | a2 b0 | a3 b1
        let a1b2_a1b3_a3b0_a3b1 = _mm256_shuffle_pd(ab[3], ab[2], 0b1111);

        let a4b0_a4b1_a6b2_a6b3 = _mm256_shuffle_pd(ab[4], ab[5], 0b0000);
        let a5b0_a5b1_a7b2_a7b3 = _mm256_shuffle_pd(ab[5], ab[4], 0b1111);

        let a4b2_a4b3_a6b0_a6b1 = _mm256_shuffle_pd(ab[6], ab[7], 0b0000);
        let a5b2_a5b3_a7b0_a7b1 = _mm256_shuffle_pd(ab[7], ab[6], 0b1111);

        // Next, we can apply _mm256_permute2f128_pd to select the
        // correct columns on the matching rows:
        //
        // Step 1.0 (combining Steps 0.0 and 0.2):
        // a0 b0 | a0 b1 | a2 b2 | a2 b3
        // a0 b2 | a0 b3 | a2 b0 | a2 b1
        // => _mm256_permute_2f128_pd with 0x20 = 0b0010_0000
        // a0 b0 | a0 b1 | a0 b2 | a0 b3
        //
        // Step 1.1 (combining Steps 0.0 and 0.2):
        // a0 b0 | a0 b1 | a2 b2 | a2 b3
        // a0 b2 | a0 b3 | a2 b0 | a2 b1
        // => _mm256_permute_2f128_pd with 0x03 = 0b0001_0011
        // a2 b0 | a2 b1 | a2 b2 | a2 b3
        //
        // Step 1.2 (combining Steps 0.1 and 0.3):
        // a1 b0 | a1 b1 | a3 b2 | a3 b3
        // a1 b2 | a1 b3 | a3 b0 | a3 b1
        // => _mm256_permute_2f128_pd with 0x20 = 0b0010_0000
        // a1 b0 | a1 b1 | a1 b2 | a1 b3
        //
        // Step 1.3 (combining Steps 0.1 and 0.3):
        // a1 b0 | a1 b1 | a3 b2 | a3 b3
        // a1 b2 | a1 b3 | a3 b0 | a3 b1
        // => _mm256_permute_2f128_pd with 0x03 = 0b0001_0011
        // a3 b0 | a3 b1 | a3 b2 | a3 b3

        // Scheme b), step 1.0
        let a0b0_a0b1_a0b2_a0b3 = _mm256_permute2f128_pd(
            a0b0_a0b1_a2b2_a2b3,
            a0b2_a0b3_a2b0_a2b1,
            0x20
        );
        // Scheme b), step 1.1
        let a2b0_a2b1_a2b2_a2b3 = _mm256_permute2f128_pd(
            a0b0_a0b1_a2b2_a2b3,
            a0b2_a0b3_a2b0_a2b1,
            0x13
        );
        // Scheme b) step 1.2
        let a1b0_a1b1_a1b2_a1b3 = _mm256_permute2f128_pd(
            a1b0_a1b1_a3b2_a3b3,
            a1b2_a1b3_a3b0_a3b1,
            0x20
        );
        // Scheme b) step 1.3
        let a3b0_a3b1_a3b2_a3b3 = _mm256_permute2f128_pd(
            a1b0_a1b1_a3b2_a3b3,
            a1b2_a1b3_a3b0_a3b1,
            0x13
        );

        // As above, but for ab[4..7]
        let a4b0_a4b1_a4b2_a4b3 = _mm256_permute2f128_pd(
            a4b0_a4b1_a6b2_a6b3,
            a4b2_a4b3_a6b0_a6b1,
            0x20
        );

        let a6b0_a6b1_a6b2_a6b3 = _mm256_permute2f128_pd(
            a4b0_a4b1_a6b2_a6b3,
            a4b2_a4b3_a6b0_a6b1,
            0x13
        );

        let a5b0_a5b1_a5b2_a5b3 = _mm256_permute2f128_pd(
            a5b0_a5b1_a7b2_a7b3,
            a5b2_a5b3_a7b0_a7b1,
            0x20
        );

        let a7b0_a7b1_a7b2_a7b3 = _mm256_permute2f128_pd(
            a5b0_a5b1_a7b2_a7b3,
            a5b2_a5b3_a7b0_a7b1,
            0x13
        );

        ab[0] = a0b0_a0b1_a0b2_a0b3;
        ab[1] = a1b0_a1b1_a1b2_a1b3;
        ab[2] = a2b0_a2b1_a2b2_a2b3;
        ab[3] = a3b0_a3b1_a3b2_a3b3;

        ab[4] = a4b0_a4b1_a4b2_a4b3;
        ab[5] = a5b0_a5b1_a5b2_a5b3;
        ab[6] = a6b0_a6b1_a6b2_a6b3;
        ab[7] = a7b0_a7b1_a7b2_a7b3;

    //  rsc == 1 and general matrix orders
    } else {
        // Scheme a), step 0.0
        // ab[0] = a0 b0 | a1 b1 | a2 b2 | a3 b3
        // ab[1] = a0 b1 | a1 b0 | a2 b3 | a3 b2
        let a0b0_a1b0_a2b2_a3b2 = _mm256_blend_pd(ab[0], ab[1], 0b1010);
        // Scheme a), step 0.1
        let a0b1_a1b1_a2b3_a3b3 = _mm256_blend_pd(ab[1], ab[0], 0b1010);

        // Scheme a), steps 0.2
        // ab[2] = a0 b2 | a1 b3 | a2 b0 | a3 b1
        // ab[3] = a0 b3 | a1 b2 | a2 b1 | a3 b0
        let a0b2_a1b2_a2b0_a3b0 = _mm256_blend_pd(ab[2], ab[3], 0b1010);
        // Scheme a), steps 0.3
        let a0b3_a1b3_a2b1_a3b1 = _mm256_blend_pd(ab[3], ab[2], 0b1010);

        // ab[4] = a4 b0 | a5 b1 | a6 b2 | a7 b3
        // ab[5] = a4 b1 | a5 b0 | a6 b3 | a7 b2
        let a4b0_a5b0_a6b2_a7b2 = _mm256_blend_pd(ab[4], ab[5], 0b1010);
        let a4b1_a5b1_a6b3_a7b3 = _mm256_blend_pd(ab[5], ab[4], 0b1010);

        // ab[6] = a0 b2 | a1 b3 | a2 b0 | a3 b1
        // ab[7] = a0 b3 | a1 b2 | a2 b1 | a3 b0
        let a4b2_a5b2_a6b0_a7b0 = _mm256_blend_pd(ab[6], ab[7], 0b1010);
        let a4b3_a5b3_a6b1_a7b1 = _mm256_blend_pd(ab[7], ab[6], 0b1010);

        // Scheme a), step 1.0
        let a0b0_a1b0_a2b0_a3b0 = _mm256_permute2f128_pd(
            a0b0_a1b0_a2b2_a3b2,
            a0b2_a1b2_a2b0_a3b0,
            0x30
        );
        // Scheme a), step 1.1
        let a0b2_a1b2_a2b2_a3b2 = _mm256_permute2f128_pd(
            a0b0_a1b0_a2b2_a3b2,
            a0b2_a1b2_a2b0_a3b0,
            0x12,
        );
        // Scheme a) step 1.2
        let a0b1_a1b1_a2b1_a3b1 = _mm256_permute2f128_pd(
            a0b1_a1b1_a2b3_a3b3,
            a0b3_a1b3_a2b1_a3b1,
            0x30
        );
        // Scheme a) step 1.3
        let a0b3_a1b3_a2b3_a3b3 = _mm256_permute2f128_pd(
            a0b1_a1b1_a2b3_a3b3,
            a0b3_a1b3_a2b1_a3b1,
            0x12
        );

        // As above, but for ab[4..7]
        let a4b0_a5b0_a6b0_a7b0 = _mm256_permute2f128_pd(
            a4b0_a5b0_a6b2_a7b2,
            a4b2_a5b2_a6b0_a7b0,
            0x30
        );
        let a4b2_a5b2_a6b2_a7b2 = _mm256_permute2f128_pd(
            a4b0_a5b0_a6b2_a7b2,
            a4b2_a5b2_a6b0_a7b0,
            0x12,
        );
        let a4b1_a5b1_a6b1_a7b1 = _mm256_permute2f128_pd(
            a4b1_a5b1_a6b3_a7b3,
            a4b3_a5b3_a6b1_a7b1,
            0x30
        );
        let a4b3_a5b3_a6b3_a7b3 = _mm256_permute2f128_pd(
            a4b1_a5b1_a6b3_a7b3,
            a4b3_a5b3_a6b1_a7b1,
            0x12
        );

        ab[0] = a0b0_a1b0_a2b0_a3b0;
        ab[1] = a0b1_a1b1_a2b1_a3b1;
        ab[2] = a0b2_a1b2_a2b2_a3b2;
        ab[3] = a0b3_a1b3_a2b3_a3b3;

        ab[4] = a4b0_a5b0_a6b0_a7b0;
        ab[5] = a4b1_a5b1_a6b1_a7b1;
        ab[6] = a4b2_a5b2_a6b2_a7b2;
        ab[7] = a4b3_a5b3_a6b3_a7b3;
    }

    // Compute α (A B)
    // Compute here if we don't have fma, else pick up α further down

    let alphav = _mm256_broadcast_sd(&alpha);
    if !MA::IS_FUSED {
        loop_m!(i, ab[i] = _mm256_mul_pd(alphav, ab[i]));
    }

    macro_rules! c {
        ($i:expr, $j:expr) =>
            (c.offset(rsc * $i as isize + csc * $j as isize));
    }

    // C ← α A B + β C
    let mut cv = [_mm256_setzero_pd(); MR];

    if beta != 0. {
        // Read C
        if rsc == 1 {
            loop4!(i, cv[i] = _mm256_loadu_pd(c![0, i]));
            loop4!(i, cv[i + 4] = _mm256_loadu_pd(c![4, i]));
        } else if csc == 1 {
            loop4!(i, cv[i] = _mm256_loadu_pd(c![i, 0]));
            loop4!(i, cv[i+4] = _mm256_loadu_pd(c![i+4, 0]));
        } else {
            loop4!(i, cv[i] = _mm256_setr_pd(
                    *c![0, i],
                    *c![1, i],
                    *c![2, i],
                    *c![3, i]
            ));
            loop4!(i, cv[i + 4] = _mm256_setr_pd(
                    *c![4, i],
                    *c![5, i],
                    *c![6, i],
                    *c![7, i]
            ));
        }
        // Compute β C
        // _mm256_set1_pd and _mm256_broadcast_sd seem to achieve the same thing.
        let beta_v = _mm256_broadcast_sd(&beta);
        loop_m!(i, cv[i] = _mm256_mul_pd(cv[i], beta_v));
    }

    // Compute (α A B) + (β C)
    if !MA::IS_FUSED {
        loop_m!(i, cv[i] = _mm256_add_pd(cv[i], ab[i]));
    } else {
        loop_m!(i, cv[i] = MA::multiply_add(alphav, ab[i], cv[i]));
    }

    if rsc == 1 {
        loop4!(i, _mm256_storeu_pd(c![0, i], cv[i]));
        loop4!(i, _mm256_storeu_pd(c![4, i], cv[i + 4]));
    } else if csc == 1 {
        loop4!(i, _mm256_storeu_pd(c![i, 0], cv[i]));
        loop4!(i, _mm256_storeu_pd(c![i+4, 0], cv[i + 4]));
    } else {
        // Permute to bring each element in the vector to the front and store
        loop4!(i, {
            // E.g. c_0_lo = a0b0 | a1b0
            let c_lo: __m128d = _mm256_extractf128_pd(cv[i], 0);
            // E.g. c_0_hi = a2b0 | a3b0
            let c_hi: __m128d = _mm256_extractf128_pd(cv[i], 1);

            _mm_storel_pd(c![0, i], c_lo);
            _mm_storeh_pd(c![1, i], c_lo);
            _mm_storel_pd(c![2, i], c_hi);
            _mm_storeh_pd(c![3, i], c_hi);

            // E.g. c_0_lo = a0b0 | a1b0
            let c_lo: __m128d = _mm256_extractf128_pd(cv[i+4], 0);
            // E.g. c_0_hi = a2b0 | a3b0
            let c_hi: __m128d = _mm256_extractf128_pd(cv[i+4], 1);

            _mm_storel_pd(c![4, i], c_lo);
            _mm_storeh_pd(c![5, i], c_lo);
            _mm_storel_pd(c![6, i], c_hi);
            _mm_storeh_pd(c![7, i], c_hi);
        });
    }
}

#[inline]
unsafe fn kernel_fallback_impl(k: usize, alpha: T, a: *const T, b: *const T,
                                   beta: T, c: *mut T, rsc: isize, csc: isize)
{
    const MR: usize = KernelFallback::MR;
    const NR: usize = KernelFallback::NR;
    let mut ab: [[T; NR]; MR] = [[0.; NR]; MR];
    let mut a = a;
    let mut b = b;
    debug_assert_eq!(beta, 0., "Beta must be 0 or is not masked");

    // Compute matrix multiplication into ab[i][j]
    unroll_by!(4 => k, {
        loop4!(i, loop4!(j, ab[i][j] += at(a, i) * at(b, j)));

        a = a.offset(MR as isize);
        b = b.offset(NR as isize);
    });

    macro_rules! c {
        ($i:expr, $j:expr) => (c.offset(rsc * $i as isize + csc * $j as isize));
    }

    // set C = α A B
    loop4!(j, loop4!(i, *c![i, j] = alpha * ab[i][j]));
}

#[inline(always)]
unsafe fn at(ptr: *const T, i: usize) -> T {
    *ptr.offset(i as isize)
}

#[cfg(test)]
mod tests {
    use super::*;
    use aligned_alloc::Alloc;

    fn aligned_alloc<K>(elt: K::Elem, n: usize) -> Alloc<K::Elem>
        where K: GemmKernel,
              K::Elem: Copy,
    {
        unsafe {
            Alloc::new(n, K::align_to()).init_with(elt)
        }
    }

    use super::T;

    fn test_a_kernel<K: GemmKernel<Elem=T>>(_name: &str) {
        const K: usize = 4;
        let mr = K::MR;
        let nr = K::NR;
        let mut a = aligned_alloc::<K>(1., mr * K);
        let mut b = aligned_alloc::<K>(0., nr * K);
        for (i, x) in a.iter_mut().enumerate() {
            *x = i as _;
        }

        for i in 0..K {
            b[i + i * nr] = 1.;
        }
        let mut c = vec![0.; mr * nr];
        unsafe {
            K::kernel(K, 1., &a[0], &b[0], 0., &mut c[0], 1, mr as isize);
            // col major C
        }
        assert_eq!(&a[..], &c[..a.len()]);
    }

    #[test]
    fn test_kernel_fallback_impl() {
        test_a_kernel::<KernelFallback>("kernel");
    }

    #[test]
    #[cfg(any(target_arch="x86", target_arch="x86_64"))]
    fn test_loop_m_n() {
        let mut m = [[0; 4]; KernelAvx::MR];
        loop_m!(i, loop4!(j, m[i][j] += 1));
        for arr in &m[..] {
            for elt in &arr[..] {
                assert_eq!(*elt, 1);
            }
        }
    }

    #[cfg(any(target_arch="x86", target_arch="x86_64"))]
    mod test_arch_kernels {
        use super::test_a_kernel;
        use super::super::*;
        #[cfg(features = "std")]
        use std::println;
        macro_rules! test_arch_kernels_x86 {
            ($($feature_name:tt, $name:ident, $kernel_ty:ty),*) => {
                $(
                #[test]
                fn $name() {
                    if is_x86_feature_detected_!($feature_name) {
                        test_a_kernel::<$kernel_ty>(stringify!($name));
                    } else {
                        #[cfg(features = "std")]
                        println!("Skipping, host does not have feature: {:?}", $feature_name);
                    }
                }
                )*
            }
        }

        test_arch_kernels_x86! {
            "fma", fma, KernelFma,
            "avx", avx, KernelAvx,
            "sse2", sse2, KernelSse2
        }
    }
}