1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
/*! The `memchr` crate provides heavily optimized routines for searching bytes. The `memchr` function is traditionally provided by libc, however, the performance of `memchr` can vary significantly depending on the specific implementation of libc that is used. They can range from manually tuned Assembly implementations (like that found in GNU's libc) all the way to non-vectorized C implementations (like that found in MUSL). To smooth out the differences between implementations of libc, at least on `x86_64` for Rust 1.27+, this crate provides its own implementation of `memchr` that should perform competitively with the one found in GNU's libc. The implementation is in pure Rust and has no dependency on a C compiler or an Assembler. Additionally, GNU libc also provides an extension, `memrchr`. This crate provides its own implementation of `memrchr` as well, on top of `memchr2`, `memchr3`, `memrchr2` and `memrchr3`. The difference between `memchr` and `memchr2` is that that `memchr2` permits finding all occurrences of two bytes instead of one. Similarly for `memchr3`. */ #![cfg_attr(not(feature = "std"), no_std)] #![deny(missing_docs)] #![doc(html_root_url = "https://docs.rs/memchr/2.0.0")] // Supporting 8-bit (or others) would be fine. If you need it, please submit a // bug report at https://github.com/BurntSushi/rust-memchr #[cfg(not(any( target_pointer_width = "16", target_pointer_width = "32", target_pointer_width = "64" )))] compile_error!("memchr currently not supported on non-32 or non-64 bit"); #[cfg(feature = "std")] extern crate core; #[cfg(all(test, all(not(miri), feature = "std")))] #[macro_use] extern crate quickcheck; use core::iter::Rev; pub use iter::{Memchr, Memchr2, Memchr3}; // N.B. If you're looking for the cfg knobs for libc, see build.rs. #[cfg(memchr_libc)] mod c; #[allow(dead_code)] mod fallback; mod iter; mod naive; #[cfg(all(test, all(not(miri), feature = "std")))] mod tests; #[cfg(all(test, any(miri, not(feature = "std"))))] #[path = "tests/miri.rs"] mod tests; #[cfg(all(not(miri), target_arch = "x86_64", memchr_runtime_simd))] mod x86; /// An iterator over all occurrences of the needle in a haystack. #[inline] pub fn memchr_iter(needle: u8, haystack: &[u8]) -> Memchr { Memchr::new(needle, haystack) } /// An iterator over all occurrences of the needles in a haystack. #[inline] pub fn memchr2_iter(needle1: u8, needle2: u8, haystack: &[u8]) -> Memchr2 { Memchr2::new(needle1, needle2, haystack) } /// An iterator over all occurrences of the needles in a haystack. #[inline] pub fn memchr3_iter( needle1: u8, needle2: u8, needle3: u8, haystack: &[u8], ) -> Memchr3 { Memchr3::new(needle1, needle2, needle3, haystack) } /// An iterator over all occurrences of the needle in a haystack, in reverse. #[inline] pub fn memrchr_iter(needle: u8, haystack: &[u8]) -> Rev<Memchr> { Memchr::new(needle, haystack).rev() } /// An iterator over all occurrences of the needles in a haystack, in reverse. #[inline] pub fn memrchr2_iter( needle1: u8, needle2: u8, haystack: &[u8], ) -> Rev<Memchr2> { Memchr2::new(needle1, needle2, haystack).rev() } /// An iterator over all occurrences of the needles in a haystack, in reverse. #[inline] pub fn memrchr3_iter( needle1: u8, needle2: u8, needle3: u8, haystack: &[u8], ) -> Rev<Memchr3> { Memchr3::new(needle1, needle2, needle3, haystack).rev() } /// Search for the first occurrence of a byte in a slice. /// /// This returns the index corresponding to the first occurrence of `needle` in /// `haystack`, or `None` if one is not found. /// /// While this is operationally the same as something like /// `haystack.iter().position(|&b| b == needle)`, `memchr` will use a highly /// optimized routine that can be up to an order of magnitude faster in some /// cases. /// /// # Example /// /// This shows how to find the first position of a byte in a byte string. /// /// ``` /// use memchr::memchr; /// /// let haystack = b"the quick brown fox"; /// assert_eq!(memchr(b'k', haystack), Some(8)); /// ``` #[inline] pub fn memchr(needle: u8, haystack: &[u8]) -> Option<usize> { #[cfg(miri)] #[inline(always)] fn imp(n1: u8, haystack: &[u8]) -> Option<usize> { naive::memchr(n1, haystack) } #[cfg(all(target_arch = "x86_64", memchr_runtime_simd, not(miri)))] #[inline(always)] fn imp(n1: u8, haystack: &[u8]) -> Option<usize> { x86::memchr(n1, haystack) } #[cfg(all( memchr_libc, not(all(target_arch = "x86_64", memchr_runtime_simd)), not(miri), ))] #[inline(always)] fn imp(n1: u8, haystack: &[u8]) -> Option<usize> { c::memchr(n1, haystack) } #[cfg(all( not(memchr_libc), not(all(target_arch = "x86_64", memchr_runtime_simd)), not(miri), ))] #[inline(always)] fn imp(n1: u8, haystack: &[u8]) -> Option<usize> { fallback::memchr(n1, haystack) } if haystack.is_empty() { None } else { imp(needle, haystack) } } /// Like `memchr`, but searches for either of two bytes instead of just one. /// /// This returns the index corresponding to the first occurrence of `needle1` /// or the first occurrence of `needle2` in `haystack` (whichever occurs /// earlier), or `None` if neither one is found. /// /// While this is operationally the same as something like /// `haystack.iter().position(|&b| b == needle1 || b == needle2)`, `memchr2` /// will use a highly optimized routine that can be up to an order of magnitude /// faster in some cases. /// /// # Example /// /// This shows how to find the first position of either of two bytes in a byte /// string. /// /// ``` /// use memchr::memchr2; /// /// let haystack = b"the quick brown fox"; /// assert_eq!(memchr2(b'k', b'q', haystack), Some(4)); /// ``` #[inline] pub fn memchr2(needle1: u8, needle2: u8, haystack: &[u8]) -> Option<usize> { #[cfg(miri)] #[inline(always)] fn imp(n1: u8, n2: u8, haystack: &[u8]) -> Option<usize> { naive::memchr2(n1, n2, haystack) } #[cfg(all(target_arch = "x86_64", memchr_runtime_simd, not(miri)))] #[inline(always)] fn imp(n1: u8, n2: u8, haystack: &[u8]) -> Option<usize> { x86::memchr2(n1, n2, haystack) } #[cfg(all( not(all(target_arch = "x86_64", memchr_runtime_simd)), not(miri), ))] #[inline(always)] fn imp(n1: u8, n2: u8, haystack: &[u8]) -> Option<usize> { fallback::memchr2(n1, n2, haystack) } if haystack.is_empty() { None } else { imp(needle1, needle2, haystack) } } /// Like `memchr`, but searches for any of three bytes instead of just one. /// /// This returns the index corresponding to the first occurrence of `needle1`, /// the first occurrence of `needle2`, or the first occurrence of `needle3` in /// `haystack` (whichever occurs earliest), or `None` if none are found. /// /// While this is operationally the same as something like /// `haystack.iter().position(|&b| b == needle1 || b == needle2 || /// b == needle3)`, `memchr3` will use a highly optimized routine that can be /// up to an order of magnitude faster in some cases. /// /// # Example /// /// This shows how to find the first position of any of three bytes in a byte /// string. /// /// ``` /// use memchr::memchr3; /// /// let haystack = b"the quick brown fox"; /// assert_eq!(memchr3(b'k', b'q', b'e', haystack), Some(2)); /// ``` #[inline] pub fn memchr3( needle1: u8, needle2: u8, needle3: u8, haystack: &[u8], ) -> Option<usize> { #[cfg(miri)] #[inline(always)] fn imp(n1: u8, n2: u8, n3: u8, haystack: &[u8]) -> Option<usize> { naive::memchr3(n1, n2, n3, haystack) } #[cfg(all(target_arch = "x86_64", memchr_runtime_simd, not(miri)))] #[inline(always)] fn imp(n1: u8, n2: u8, n3: u8, haystack: &[u8]) -> Option<usize> { x86::memchr3(n1, n2, n3, haystack) } #[cfg(all( not(all(target_arch = "x86_64", memchr_runtime_simd)), not(miri), ))] #[inline(always)] fn imp(n1: u8, n2: u8, n3: u8, haystack: &[u8]) -> Option<usize> { fallback::memchr3(n1, n2, n3, haystack) } if haystack.is_empty() { None } else { imp(needle1, needle2, needle3, haystack) } } /// Search for the last occurrence of a byte in a slice. /// /// This returns the index corresponding to the last occurrence of `needle` in /// `haystack`, or `None` if one is not found. /// /// While this is operationally the same as something like /// `haystack.iter().rposition(|&b| b == needle)`, `memrchr` will use a highly /// optimized routine that can be up to an order of magnitude faster in some /// cases. /// /// # Example /// /// This shows how to find the last position of a byte in a byte string. /// /// ``` /// use memchr::memrchr; /// /// let haystack = b"the quick brown fox"; /// assert_eq!(memrchr(b'o', haystack), Some(17)); /// ``` #[inline] pub fn memrchr(needle: u8, haystack: &[u8]) -> Option<usize> { #[cfg(miri)] #[inline(always)] fn imp(n1: u8, haystack: &[u8]) -> Option<usize> { naive::memrchr(n1, haystack) } #[cfg(all(target_arch = "x86_64", memchr_runtime_simd, not(miri)))] #[inline(always)] fn imp(n1: u8, haystack: &[u8]) -> Option<usize> { x86::memrchr(n1, haystack) } #[cfg(all( memchr_libc, target_os = "linux", not(all(target_arch = "x86_64", memchr_runtime_simd)), not(miri) ))] #[inline(always)] fn imp(n1: u8, haystack: &[u8]) -> Option<usize> { c::memrchr(n1, haystack) } #[cfg(all( not(all(memchr_libc, target_os = "linux")), not(all(target_arch = "x86_64", memchr_runtime_simd)), not(miri), ))] #[inline(always)] fn imp(n1: u8, haystack: &[u8]) -> Option<usize> { fallback::memrchr(n1, haystack) } if haystack.is_empty() { None } else { imp(needle, haystack) } } /// Like `memrchr`, but searches for either of two bytes instead of just one. /// /// This returns the index corresponding to the last occurrence of `needle1` /// or the last occurrence of `needle2` in `haystack` (whichever occurs later), /// or `None` if neither one is found. /// /// While this is operationally the same as something like /// `haystack.iter().rposition(|&b| b == needle1 || b == needle2)`, `memrchr2` /// will use a highly optimized routine that can be up to an order of magnitude /// faster in some cases. /// /// # Example /// /// This shows how to find the last position of either of two bytes in a byte /// string. /// /// ``` /// use memchr::memrchr2; /// /// let haystack = b"the quick brown fox"; /// assert_eq!(memrchr2(b'k', b'q', haystack), Some(8)); /// ``` #[inline] pub fn memrchr2(needle1: u8, needle2: u8, haystack: &[u8]) -> Option<usize> { #[cfg(miri)] #[inline(always)] fn imp(n1: u8, n2: u8, haystack: &[u8]) -> Option<usize> { naive::memrchr2(n1, n2, haystack) } #[cfg(all(target_arch = "x86_64", memchr_runtime_simd, not(miri)))] #[inline(always)] fn imp(n1: u8, n2: u8, haystack: &[u8]) -> Option<usize> { x86::memrchr2(n1, n2, haystack) } #[cfg(all( not(all(target_arch = "x86_64", memchr_runtime_simd)), not(miri), ))] #[inline(always)] fn imp(n1: u8, n2: u8, haystack: &[u8]) -> Option<usize> { fallback::memrchr2(n1, n2, haystack) } if haystack.is_empty() { None } else { imp(needle1, needle2, haystack) } } /// Like `memrchr`, but searches for any of three bytes instead of just one. /// /// This returns the index corresponding to the last occurrence of `needle1`, /// the last occurrence of `needle2`, or the last occurrence of `needle3` in /// `haystack` (whichever occurs later), or `None` if none are found. /// /// While this is operationally the same as something like /// `haystack.iter().rposition(|&b| b == needle1 || b == needle2 || /// b == needle3)`, `memrchr3` will use a highly optimized routine that can be /// up to an order of magnitude faster in some cases. /// /// # Example /// /// This shows how to find the last position of any of three bytes in a byte /// string. /// /// ``` /// use memchr::memrchr3; /// /// let haystack = b"the quick brown fox"; /// assert_eq!(memrchr3(b'k', b'q', b'e', haystack), Some(8)); /// ``` #[inline] pub fn memrchr3( needle1: u8, needle2: u8, needle3: u8, haystack: &[u8], ) -> Option<usize> { #[cfg(miri)] #[inline(always)] fn imp(n1: u8, n2: u8, n3: u8, haystack: &[u8]) -> Option<usize> { naive::memrchr3(n1, n2, n3, haystack) } #[cfg(all(target_arch = "x86_64", memchr_runtime_simd, not(miri)))] #[inline(always)] fn imp(n1: u8, n2: u8, n3: u8, haystack: &[u8]) -> Option<usize> { x86::memrchr3(n1, n2, n3, haystack) } #[cfg(all( not(all(target_arch = "x86_64", memchr_runtime_simd)), not(miri), ))] #[inline(always)] fn imp(n1: u8, n2: u8, n3: u8, haystack: &[u8]) -> Option<usize> { fallback::memrchr3(n1, n2, n3, haystack) } if haystack.is_empty() { None } else { imp(needle1, needle2, needle3, haystack) } }