1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
// Copyright 2014-2016 bluss and ndarray developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

use crate::error::{from_kind, ErrorKind, ShapeError};
use crate::{Ix, Ixs, Slice, SliceOrIndex};
use num_integer::div_floor;

pub use self::axes::{axes_of, Axes, AxisDescription};
pub use self::axis::Axis;
pub use self::conversion::IntoDimension;
pub use self::dim::*;
pub use self::dimension_trait::Dimension;
pub use self::dynindeximpl::IxDynImpl;
pub use self::ndindex::NdIndex;
pub use self::remove_axis::RemoveAxis;

use std::isize;
use std::mem;

#[macro_use]
mod macros;
mod axes;
mod axis;
mod conversion;
pub mod dim;
mod dimension_trait;
mod dynindeximpl;
mod ndindex;
mod remove_axis;

/// Calculate offset from `Ix` stride converting sign properly
#[inline(always)]
pub fn stride_offset(n: Ix, stride: Ix) -> isize {
    (n as isize) * ((stride as Ixs) as isize)
}

/// Check whether the given `dim` and `stride` lead to overlapping indices
///
/// There is overlap if, when iterating through the dimensions in order of
/// increasing stride, the current stride is less than or equal to the maximum
/// possible offset along the preceding axes. (Axes of length ≤1 are ignored.)
///
/// The current implementation assumes that strides of axes with length > 1 are
/// nonnegative. Additionally, it does not check for overflow.
pub fn dim_stride_overlap<D: Dimension>(dim: &D, strides: &D) -> bool {
    let order = strides._fastest_varying_stride_order();
    let mut sum_prev_offsets = 0;
    for &index in order.slice() {
        let d = dim[index];
        let s = strides[index] as isize;
        match d {
            0 => return false,
            1 => {}
            _ => {
                if s <= sum_prev_offsets {
                    return true;
                }
                sum_prev_offsets += (d - 1) as isize * s;
            }
        }
    }
    false
}

/// Returns the `size` of the `dim`, checking that the product of non-zero axis
/// lengths does not exceed `isize::MAX`.
///
/// If `size_of_checked_shape(dim)` returns `Ok(size)`, the data buffer is a
/// slice or `Vec` of length `size`, and `strides` are created with
/// `self.default_strides()` or `self.fortran_strides()`, then the invariants
/// are met to construct an array from the data buffer, `dim`, and `strides`.
/// (The data buffer being a slice or `Vec` guarantees that it contains no more
/// than `isize::MAX` bytes.)
pub fn size_of_shape_checked<D: Dimension>(dim: &D) -> Result<usize, ShapeError> {
    let size_nonzero = dim
        .slice()
        .iter()
        .filter(|&&d| d != 0)
        .try_fold(1usize, |acc, &d| acc.checked_mul(d))
        .ok_or_else(|| from_kind(ErrorKind::Overflow))?;
    if size_nonzero > ::std::isize::MAX as usize {
        Err(from_kind(ErrorKind::Overflow))
    } else {
        Ok(dim.size())
    }
}

/// Checks whether the given data and dimension meet the invariants of the
/// `ArrayBase` type, assuming the strides are created using
/// `dim.default_strides()` or `dim.fortran_strides()`.
///
/// To meet the invariants,
///
/// 1. The product of non-zero axis lengths must not exceed `isize::MAX`.
///
/// 2. The result of `dim.size()` (assuming no overflow) must be less than or
///    equal to the length of the slice.
///
///    (Since `dim.default_strides()` and `dim.fortran_strides()` always return
///    contiguous strides for non-empty arrays, this ensures that for non-empty
///    arrays the difference between the least address and greatest address
///    accessible by moving along all axes is < the length of the slice. Since
///    `dim.default_strides()` and `dim.fortran_strides()` always return all
///    zero strides for empty arrays, this ensures that for empty arrays the
///    difference between the least address and greatest address accessible by
///    moving along all axes is ≤ the length of the slice.)
///
/// Note that since slices cannot contain more than `isize::MAX` bytes,
/// conditions 1 and 2 are sufficient to guarantee that the offset in units of
/// `A` and in units of bytes between the least address and greatest address
/// accessible by moving along all axes does not exceed `isize::MAX`.
pub fn can_index_slice_not_custom<A, D: Dimension>(data: &[A], dim: &D) -> Result<(), ShapeError> {
    // Condition 1.
    let len = size_of_shape_checked(dim)?;
    // Condition 2.
    if len > data.len() {
        return Err(from_kind(ErrorKind::OutOfBounds));
    }
    Ok(())
}

/// Returns the absolute difference in units of `A` between least and greatest
/// address accessible by moving along all axes.
///
/// Returns `Ok` only if
///
/// 1. The ndim of `dim` and `strides` is the same.
///
/// 2. The absolute difference in units of `A` and in units of bytes between
///    the least address and greatest address accessible by moving along all axes
///    does not exceed `isize::MAX`.
///
/// 3. The product of non-zero axis lengths does not exceed `isize::MAX`. (This
///    also implies that the length of any individual axis does not exceed
///    `isize::MAX`.)
pub fn max_abs_offset_check_overflow<A, D>(dim: &D, strides: &D) -> Result<usize, ShapeError>
where
    D: Dimension,
{
    // Condition 1.
    if dim.ndim() != strides.ndim() {
        return Err(from_kind(ErrorKind::IncompatibleLayout));
    }

    // Condition 3.
    let _ = size_of_shape_checked(dim)?;

    // Determine absolute difference in units of `A` between least and greatest
    // address accessible by moving along all axes.
    let max_offset: usize = izip!(dim.slice(), strides.slice())
        .try_fold(0usize, |acc, (&d, &s)| {
            let s = s as isize;
            // Calculate maximum possible absolute movement along this axis.
            let off = d.saturating_sub(1).checked_mul(s.abs() as usize)?;
            acc.checked_add(off)
        })
        .ok_or_else(|| from_kind(ErrorKind::Overflow))?;
    // Condition 2a.
    if max_offset > isize::MAX as usize {
        return Err(from_kind(ErrorKind::Overflow));
    }

    // Determine absolute difference in units of bytes between least and
    // greatest address accessible by moving along all axes
    let max_offset_bytes = max_offset
        .checked_mul(mem::size_of::<A>())
        .ok_or_else(|| from_kind(ErrorKind::Overflow))?;
    // Condition 2b.
    if max_offset_bytes > isize::MAX as usize {
        return Err(from_kind(ErrorKind::Overflow));
    }

    Ok(max_offset)
}

/// Checks whether the given data, dimension, and strides meet the invariants
/// of the `ArrayBase` type (except for checking ownership of the data).
///
/// To meet the invariants,
///
/// 1. The ndim of `dim` and `strides` must be the same.
///
/// 2. The product of non-zero axis lengths must not exceed `isize::MAX`.
///
/// 3. For axes with length > 1, the stride must be nonnegative. This is
///    necessary to make sure the pointer cannot move backwards outside the
///    slice. For axes with length ≤ 1, the stride can be anything.
///
/// 4. If the array will be empty (any axes are zero-length), the difference
///    between the least address and greatest address accessible by moving
///    along all axes must be ≤ `data.len()`. (It's fine in this case to move
///    one byte past the end of the slice since the pointers will be offset but
///    never dereferenced.)
///
///    If the array will not be empty, the difference between the least address
///    and greatest address accessible by moving along all axes must be <
///    `data.len()`. This and #3 ensure that all dereferenceable pointers point
///    to elements within the slice.
///
/// 5. The strides must not allow any element to be referenced by two different
///    indices.
///
/// Note that since slices cannot contain more than `isize::MAX` bytes,
/// condition 4 is sufficient to guarantee that the absolute difference in
/// units of `A` and in units of bytes between the least address and greatest
/// address accessible by moving along all axes does not exceed `isize::MAX`.
pub fn can_index_slice<A, D: Dimension>(
    data: &[A],
    dim: &D,
    strides: &D,
) -> Result<(), ShapeError> {
    // Check conditions 1 and 2 and calculate `max_offset`.
    let max_offset = max_abs_offset_check_overflow::<A, _>(dim, strides)?;

    // Check condition 4.
    let is_empty = dim.slice().iter().any(|&d| d == 0);
    if is_empty && max_offset > data.len() {
        return Err(from_kind(ErrorKind::OutOfBounds));
    }
    if !is_empty && max_offset >= data.len() {
        return Err(from_kind(ErrorKind::OutOfBounds));
    }

    // Check condition 3.
    for (&d, &s) in izip!(dim.slice(), strides.slice()) {
        let s = s as isize;
        if d > 1 && s < 0 {
            return Err(from_kind(ErrorKind::Unsupported));
        }
    }

    // Check condition 5.
    if !is_empty && dim_stride_overlap(dim, strides) {
        return Err(from_kind(ErrorKind::Unsupported));
    }

    Ok(())
}

/// Stride offset checked general version (slices)
#[inline]
pub fn stride_offset_checked(dim: &[Ix], strides: &[Ix], index: &[Ix]) -> Option<isize> {
    if index.len() != dim.len() {
        return None;
    }
    let mut offset = 0;
    for (&d, &i, &s) in izip!(dim, index, strides) {
        if i >= d {
            return None;
        }
        offset += stride_offset(i, s);
    }
    Some(offset)
}

/// Implementation-specific extensions to `Dimension`
pub trait DimensionExt {
    // note: many extensions go in the main trait if they need to be special-
    // cased per dimension
    /// Get the dimension at `axis`.
    ///
    /// *Panics* if `axis` is out of bounds.
    fn axis(&self, axis: Axis) -> Ix;

    /// Set the dimension at `axis`.
    ///
    /// *Panics* if `axis` is out of bounds.
    fn set_axis(&mut self, axis: Axis, value: Ix);
}

impl<D> DimensionExt for D
where
    D: Dimension,
{
    #[inline]
    fn axis(&self, axis: Axis) -> Ix {
        self[axis.index()]
    }

    #[inline]
    fn set_axis(&mut self, axis: Axis, value: Ix) {
        self[axis.index()] = value;
    }
}

impl<'a> DimensionExt for [Ix] {
    #[inline]
    fn axis(&self, axis: Axis) -> Ix {
        self[axis.index()]
    }

    #[inline]
    fn set_axis(&mut self, axis: Axis, value: Ix) {
        self[axis.index()] = value;
    }
}

/// Collapse axis `axis` and shift so that only subarray `index` is
/// available.
///
/// **Panics** if `index` is larger than the size of the axis
// FIXME: Move to Dimension trait
pub fn do_collapse_axis<D: Dimension>(
    dims: &mut D,
    strides: &D,
    axis: usize,
    index: usize,
) -> isize {
    let dim = dims.slice()[axis];
    let stride = strides.slice()[axis];
    ndassert!(
        index < dim,
        "collapse_axis: Index {} must be less than axis length {} for \
         array with shape {:?}",
        index,
        dim,
        *dims
    );
    dims.slice_mut()[axis] = 1;
    stride_offset(index, stride)
}

/// Compute the equivalent unsigned index given the axis length and signed index.
#[inline]
pub fn abs_index(len: Ix, index: Ixs) -> Ix {
    if index < 0 {
        len - (-index as Ix)
    } else {
        index as Ix
    }
}

/// Determines nonnegative start and end indices, and performs sanity checks.
///
/// The return value is (start, end, step).
///
/// **Panics** if stride is 0 or if any index is out of bounds.
fn to_abs_slice(axis_len: usize, slice: Slice) -> (usize, usize, isize) {
    let Slice { start, end, step } = slice;
    let start = abs_index(axis_len, start);
    let mut end = abs_index(axis_len, end.unwrap_or(axis_len as isize));
    if end < start {
        end = start;
    }
    ndassert!(
        start <= axis_len,
        "Slice begin {} is past end of axis of length {}",
        start,
        axis_len,
    );
    ndassert!(
        end <= axis_len,
        "Slice end {} is past end of axis of length {}",
        end,
        axis_len,
    );
    ndassert!(step != 0, "Slice stride must not be zero");
    (start, end, step)
}

/// Modify dimension, stride and return data pointer offset
///
/// **Panics** if stride is 0 or if any index is out of bounds.
pub fn do_slice(dim: &mut usize, stride: &mut usize, slice: Slice) -> isize {
    let (start, end, step) = to_abs_slice(*dim, slice);

    let m = end - start;
    let s = (*stride) as isize;

    // Compute data pointer offset.
    let offset = if m == 0 {
        // In this case, the resulting array is empty, so we *can* avoid performing a nonzero
        // offset.
        //
        // In two special cases (which are the true reason for this `m == 0` check), we *must* avoid
        // the nonzero offset corresponding to the general case.
        //
        // * When `end == 0 && step < 0`. (These conditions imply that `m == 0` since `to_abs_slice`
        //   ensures that `0 <= start <= end`.) We cannot execute `stride_offset(end - 1, *stride)`
        //   because the `end - 1` would underflow.
        //
        // * When `start == *dim && step > 0`. (These conditions imply that `m == 0` since
        //   `to_abs_slice` ensures that `start <= end <= *dim`.) We cannot use the offset returned
        //   by `stride_offset(start, *stride)` because that would be past the end of the axis.
        0
    } else if step < 0 {
        // When the step is negative, the new first element is `end - 1`, not `start`, since the
        // direction is reversed.
        stride_offset(end - 1, *stride)
    } else {
        stride_offset(start, *stride)
    };

    // Update dimension.
    let abs_step = step.abs() as usize;
    *dim = if abs_step == 1 {
        m
    } else {
        let d = m / abs_step;
        let r = m % abs_step;
        d + if r > 0 { 1 } else { 0 }
    };

    // Update stride. The additional check is necessary to avoid possible
    // overflow in the multiplication.
    *stride = if *dim <= 1 { 0 } else { (s * step) as usize };

    offset
}

/// Solves `a * x + b * y = gcd(a, b)` for `x`, `y`, and `gcd(a, b)`.
///
/// Returns `(g, (x, y))`, where `g` is `gcd(a, b)`, and `g` is always
/// nonnegative.
///
/// See https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm
fn extended_gcd(a: isize, b: isize) -> (isize, (isize, isize)) {
    if a == 0 {
        (b.abs(), (0, b.signum()))
    } else if b == 0 {
        (a.abs(), (a.signum(), 0))
    } else {
        let mut r = (a, b);
        let mut s = (1, 0);
        let mut t = (0, 1);
        while r.1 != 0 {
            let q = r.0 / r.1;
            r = (r.1, r.0 - q * r.1);
            s = (s.1, s.0 - q * s.1);
            t = (t.1, t.0 - q * t.1);
        }
        if r.0 > 0 {
            (r.0, (s.0, t.0))
        } else {
            (-r.0, (-s.0, -t.0))
        }
    }
}

/// Solves `a * x + b * y = c` for `x` where `a`, `b`, `c`, `x`, and `y` are
/// integers.
///
/// If the return value is `Some((x0, xd))`, there is a solution. `xd` is
/// always positive. Solutions `x` are given by `x0 + xd * t` where `t` is any
/// integer. The value of `y` for any `x` is then `y = (c - a * x) / b`.
///
/// If the return value is `None`, no solutions exist.
///
/// **Note** `a` and `b` must be nonzero.
///
/// See https://en.wikipedia.org/wiki/Diophantine_equation#One_equation
/// and https://math.stackexchange.com/questions/1656120#1656138
fn solve_linear_diophantine_eq(a: isize, b: isize, c: isize) -> Option<(isize, isize)> {
    debug_assert_ne!(a, 0);
    debug_assert_ne!(b, 0);
    let (g, (u, _)) = extended_gcd(a, b);
    if c % g == 0 {
        Some((c / g * u, (b / g).abs()))
    } else {
        None
    }
}

/// Returns `true` if two (finite length) arithmetic sequences intersect.
///
/// `min*` and `max*` are the (inclusive) bounds of the sequences, and they
/// must be elements in the sequences. `step*` are the steps between
/// consecutive elements (the sign is irrelevant).
///
/// **Note** `step1` and `step2` must be nonzero.
fn arith_seq_intersect(
    (min1, max1, step1): (isize, isize, isize),
    (min2, max2, step2): (isize, isize, isize),
) -> bool {
    debug_assert!(max1 >= min1);
    debug_assert!(max2 >= min2);
    debug_assert_eq!((max1 - min1) % step1, 0);
    debug_assert_eq!((max2 - min2) % step2, 0);

    // Handle the easy case where we don't have to solve anything.
    if min1 > max2 || min2 > max1 {
        false
    } else {
        // The sign doesn't matter semantically, and it's mathematically convenient
        // for `step1` and `step2` to be positive.
        let step1 = step1.abs();
        let step2 = step2.abs();
        // Ignoring the min/max bounds, the sequences are
        //   a(x) = min1 + step1 * x
        //   b(y) = min2 + step2 * y
        //
        // For intersections a(x) = b(y), we have:
        //   min1 + step1 * x = min2 + step2 * y
        //   ⇒ -step1 * x + step2 * y = min1 - min2
        // which is a linear Diophantine equation.
        if let Some((x0, xd)) = solve_linear_diophantine_eq(-step1, step2, min1 - min2) {
            // Minimum of [min1, max1] ∩ [min2, max2]
            let min = ::std::cmp::max(min1, min2);
            // Maximum of [min1, max1] ∩ [min2, max2]
            let max = ::std::cmp::min(max1, max2);
            // The potential intersections are
            //   a(x) = min1 + step1 * (x0 + xd * t)
            // where `t` is any integer.
            //
            // There is an intersection in `[min, max]` if there exists an
            // integer `t` such that
            //   min ≤ a(x) ≤ max
            //   ⇒ min ≤ min1 + step1 * (x0 + xd * t) ≤ max
            //   ⇒ min ≤ min1 + step1 * x0 + step1 * xd * t ≤ max
            //   ⇒ min - min1 - step1 * x0 ≤ (step1 * xd) * t ≤ max - min1 - step1 * x0
            //
            // Therefore, the least possible intersection `a(x)` that is ≥ `min` has
            //   t = ⌈(min - min1 - step1 * x0) / (step1 * xd)⌉
            // If this `a(x) is also ≤ `max`, then there is an intersection in `[min, max]`.
            //
            // The greatest possible intersection `a(x)` that is ≤ `max` has
            //   t = ⌊(max - min1 - step1 * x0) / (step1 * xd)⌋
            // If this `a(x) is also ≥ `min`, then there is an intersection in `[min, max]`.
            min1 + step1 * (x0 - xd * div_floor(min - min1 - step1 * x0, -step1 * xd)) <= max
                || min1 + step1 * (x0 + xd * div_floor(max - min1 - step1 * x0, step1 * xd)) >= min
        } else {
            false
        }
    }
}

/// Returns the minimum and maximum values of the indices (inclusive).
///
/// If the slice is empty, then returns `None`, otherwise returns `Some((min, max))`.
fn slice_min_max(axis_len: usize, slice: Slice) -> Option<(usize, usize)> {
    let (start, end, step) = to_abs_slice(axis_len, slice);
    if start == end {
        None
    } else if step > 0 {
        Some((start, end - 1 - (end - start - 1) % (step as usize)))
    } else {
        Some((start + (end - start - 1) % (-step as usize), end - 1))
    }
}

/// Returns `true` iff the slices intersect.
pub fn slices_intersect<D: Dimension>(
    dim: &D,
    indices1: &D::SliceArg,
    indices2: &D::SliceArg,
) -> bool {
    debug_assert_eq!(indices1.as_ref().len(), indices2.as_ref().len());
    for (&axis_len, &si1, &si2) in izip!(dim.slice(), indices1.as_ref(), indices2.as_ref()) {
        // The slices do not intersect iff any pair of `SliceOrIndex` does not intersect.
        match (si1, si2) {
            (
                SliceOrIndex::Slice {
                    start: start1,
                    end: end1,
                    step: step1,
                },
                SliceOrIndex::Slice {
                    start: start2,
                    end: end2,
                    step: step2,
                },
            ) => {
                let (min1, max1) = match slice_min_max(axis_len, Slice::new(start1, end1, step1)) {
                    Some(m) => m,
                    None => return false,
                };
                let (min2, max2) = match slice_min_max(axis_len, Slice::new(start2, end2, step2)) {
                    Some(m) => m,
                    None => return false,
                };
                if !arith_seq_intersect(
                    (min1 as isize, max1 as isize, step1),
                    (min2 as isize, max2 as isize, step2),
                ) {
                    return false;
                }
            }
            (SliceOrIndex::Slice { start, end, step }, SliceOrIndex::Index(ind))
            | (SliceOrIndex::Index(ind), SliceOrIndex::Slice { start, end, step }) => {
                let ind = abs_index(axis_len, ind);
                let (min, max) = match slice_min_max(axis_len, Slice::new(start, end, step)) {
                    Some(m) => m,
                    None => return false,
                };
                if ind < min || ind > max || (ind - min) % step.abs() as usize != 0 {
                    return false;
                }
            }
            (SliceOrIndex::Index(ind1), SliceOrIndex::Index(ind2)) => {
                let ind1 = abs_index(axis_len, ind1);
                let ind2 = abs_index(axis_len, ind2);
                if ind1 != ind2 {
                    return false;
                }
            }
        }
    }
    true
}

pub fn merge_axes<D>(dim: &mut D, strides: &mut D, take: Axis, into: Axis) -> bool
where
    D: Dimension,
{
    let into_len = dim.axis(into);
    let into_stride = strides.axis(into) as isize;
    let take_len = dim.axis(take);
    let take_stride = strides.axis(take) as isize;
    let merged_len = into_len * take_len;
    if take_len <= 1 {
        dim.set_axis(into, merged_len);
        dim.set_axis(take, if merged_len == 0 { 0 } else { 1 });
        true
    } else if into_len <= 1 {
        strides.set_axis(into, take_stride as usize);
        dim.set_axis(into, merged_len);
        dim.set_axis(take, if merged_len == 0 { 0 } else { 1 });
        true
    } else if take_stride == into_len as isize * into_stride {
        dim.set_axis(into, merged_len);
        dim.set_axis(take, 1);
        true
    } else {
        false
    }
}

#[cfg(test)]
mod test {
    use super::{
        arith_seq_intersect, can_index_slice, can_index_slice_not_custom, extended_gcd,
        max_abs_offset_check_overflow, slice_min_max, slices_intersect,
        solve_linear_diophantine_eq, IntoDimension,
    };
    use crate::error::{from_kind, ErrorKind};
    use crate::slice::Slice;
    use crate::{Dim, Dimension, Ix0, Ix1, Ix2, Ix3, IxDyn};
    use num_integer::gcd;
    use quickcheck::{quickcheck, TestResult};

    #[test]
    fn slice_indexing_uncommon_strides() {
        let v: Vec<_> = (0..12).collect();
        let dim = (2, 3, 2).into_dimension();
        let strides = (1, 2, 6).into_dimension();
        assert!(super::can_index_slice(&v, &dim, &strides).is_ok());

        let strides = (2, 4, 12).into_dimension();
        assert_eq!(
            super::can_index_slice(&v, &dim, &strides),
            Err(from_kind(ErrorKind::OutOfBounds))
        );
    }

    #[test]
    fn overlapping_strides_dim() {
        let dim = (2, 3, 2).into_dimension();
        let strides = (5, 2, 1).into_dimension();
        assert!(super::dim_stride_overlap(&dim, &strides));
        let strides = (6, 2, 1).into_dimension();
        assert!(!super::dim_stride_overlap(&dim, &strides));
        let strides = (6, 0, 1).into_dimension();
        assert!(super::dim_stride_overlap(&dim, &strides));
        let dim = (2, 2).into_dimension();
        let strides = (3, 2).into_dimension();
        assert!(!super::dim_stride_overlap(&dim, &strides));
    }

    #[test]
    fn max_abs_offset_check_overflow_examples() {
        let dim = (1, ::std::isize::MAX as usize, 1).into_dimension();
        let strides = (1, 1, 1).into_dimension();
        max_abs_offset_check_overflow::<u8, _>(&dim, &strides).unwrap();
        let dim = (1, ::std::isize::MAX as usize, 2).into_dimension();
        let strides = (1, 1, 1).into_dimension();
        max_abs_offset_check_overflow::<u8, _>(&dim, &strides).unwrap_err();
        let dim = (0, 2, 2).into_dimension();
        let strides = (1, ::std::isize::MAX as usize, 1).into_dimension();
        max_abs_offset_check_overflow::<u8, _>(&dim, &strides).unwrap_err();
        let dim = (0, 2, 2).into_dimension();
        let strides = (1, ::std::isize::MAX as usize / 4, 1).into_dimension();
        max_abs_offset_check_overflow::<i32, _>(&dim, &strides).unwrap_err();
    }

    #[test]
    fn can_index_slice_ix0() {
        can_index_slice::<i32, _>(&[1], &Ix0(), &Ix0()).unwrap();
        can_index_slice::<i32, _>(&[], &Ix0(), &Ix0()).unwrap_err();
    }

    #[test]
    fn can_index_slice_ix1() {
        can_index_slice::<i32, _>(&[], &Ix1(0), &Ix1(0)).unwrap();
        can_index_slice::<i32, _>(&[], &Ix1(0), &Ix1(1)).unwrap();
        can_index_slice::<i32, _>(&[], &Ix1(1), &Ix1(0)).unwrap_err();
        can_index_slice::<i32, _>(&[], &Ix1(1), &Ix1(1)).unwrap_err();
        can_index_slice::<i32, _>(&[1], &Ix1(1), &Ix1(0)).unwrap();
        can_index_slice::<i32, _>(&[1], &Ix1(1), &Ix1(2)).unwrap();
        can_index_slice::<i32, _>(&[1], &Ix1(1), &Ix1(-1isize as usize)).unwrap();
        can_index_slice::<i32, _>(&[1], &Ix1(2), &Ix1(1)).unwrap_err();
        can_index_slice::<i32, _>(&[1, 2], &Ix1(2), &Ix1(0)).unwrap_err();
        can_index_slice::<i32, _>(&[1, 2], &Ix1(2), &Ix1(1)).unwrap();
        can_index_slice::<i32, _>(&[1, 2], &Ix1(2), &Ix1(-1isize as usize)).unwrap_err();
    }

    #[test]
    fn can_index_slice_ix2() {
        can_index_slice::<i32, _>(&[], &Ix2(0, 0), &Ix2(0, 0)).unwrap();
        can_index_slice::<i32, _>(&[], &Ix2(0, 0), &Ix2(2, 1)).unwrap();
        can_index_slice::<i32, _>(&[], &Ix2(0, 1), &Ix2(0, 0)).unwrap();
        can_index_slice::<i32, _>(&[], &Ix2(0, 1), &Ix2(2, 1)).unwrap();
        can_index_slice::<i32, _>(&[], &Ix2(0, 2), &Ix2(0, 0)).unwrap();
        can_index_slice::<i32, _>(&[], &Ix2(0, 2), &Ix2(2, 1)).unwrap_err();
        can_index_slice::<i32, _>(&[1], &Ix2(1, 2), &Ix2(5, 1)).unwrap_err();
        can_index_slice::<i32, _>(&[1, 2], &Ix2(1, 2), &Ix2(5, 1)).unwrap();
        can_index_slice::<i32, _>(&[1, 2], &Ix2(1, 2), &Ix2(5, 2)).unwrap_err();
        can_index_slice::<i32, _>(&[1, 2, 3, 4, 5], &Ix2(2, 2), &Ix2(3, 1)).unwrap();
        can_index_slice::<i32, _>(&[1, 2, 3, 4], &Ix2(2, 2), &Ix2(3, 1)).unwrap_err();
    }

    #[test]
    fn can_index_slice_ix3() {
        can_index_slice::<i32, _>(&[], &Ix3(0, 0, 1), &Ix3(2, 1, 3)).unwrap();
        can_index_slice::<i32, _>(&[], &Ix3(1, 1, 1), &Ix3(2, 1, 3)).unwrap_err();
        can_index_slice::<i32, _>(&[1], &Ix3(1, 1, 1), &Ix3(2, 1, 3)).unwrap();
        can_index_slice::<i32, _>(&[1; 11], &Ix3(2, 2, 3), &Ix3(6, 3, 1)).unwrap_err();
        can_index_slice::<i32, _>(&[1; 12], &Ix3(2, 2, 3), &Ix3(6, 3, 1)).unwrap();
    }

    #[test]
    fn can_index_slice_zero_size_elem() {
        can_index_slice::<(), _>(&[], &Ix1(0), &Ix1(1)).unwrap();
        can_index_slice::<(), _>(&[()], &Ix1(1), &Ix1(1)).unwrap();
        can_index_slice::<(), _>(&[(), ()], &Ix1(2), &Ix1(1)).unwrap();

        // These might seem okay because the element type is zero-sized, but
        // there could be a zero-sized type such that the number of instances
        // in existence are carefully controlled.
        can_index_slice::<(), _>(&[], &Ix1(1), &Ix1(1)).unwrap_err();
        can_index_slice::<(), _>(&[()], &Ix1(2), &Ix1(1)).unwrap_err();

        can_index_slice::<(), _>(&[(), ()], &Ix2(2, 1), &Ix2(1, 0)).unwrap();
        can_index_slice::<(), _>(&[], &Ix2(0, 2), &Ix2(0, 0)).unwrap();

        // This case would be probably be sound, but that's not entirely clear
        // and it's not worth the special case code.
        can_index_slice::<(), _>(&[], &Ix2(0, 2), &Ix2(2, 1)).unwrap_err();
    }

    quickcheck! {
        fn can_index_slice_not_custom_same_as_can_index_slice(data: Vec<u8>, dim: Vec<usize>) -> bool {
            let dim = IxDyn(&dim);
            let result = can_index_slice_not_custom(&data, &dim);
            if dim.size_checked().is_none() {
                // Avoid overflow `dim.default_strides()` or `dim.fortran_strides()`.
                result.is_err()
            } else {
                result == can_index_slice(&data, &dim, &dim.default_strides()) &&
                    result == can_index_slice(&data, &dim, &dim.fortran_strides())
            }
        }
    }

    quickcheck! {
        fn extended_gcd_solves_eq(a: isize, b: isize) -> bool {
            let (g, (x, y)) = extended_gcd(a, b);
            a * x + b * y == g
        }

        fn extended_gcd_correct_gcd(a: isize, b: isize) -> bool {
            let (g, _) = extended_gcd(a, b);
            g == gcd(a, b)
        }
    }

    #[test]
    fn extended_gcd_zero() {
        assert_eq!(extended_gcd(0, 0), (0, (0, 0)));
        assert_eq!(extended_gcd(0, 5), (5, (0, 1)));
        assert_eq!(extended_gcd(5, 0), (5, (1, 0)));
        assert_eq!(extended_gcd(0, -5), (5, (0, -1)));
        assert_eq!(extended_gcd(-5, 0), (5, (-1, 0)));
    }

    quickcheck! {
        fn solve_linear_diophantine_eq_solution_existence(
            a: isize, b: isize, c: isize
        ) -> TestResult {
            if a == 0 || b == 0 {
                TestResult::discard()
            } else {
                TestResult::from_bool(
                    (c % gcd(a, b) == 0) == solve_linear_diophantine_eq(a, b, c).is_some()
                )
            }
        }

        fn solve_linear_diophantine_eq_correct_solution(
            a: isize, b: isize, c: isize, t: isize
        ) -> TestResult {
            if a == 0 || b == 0 {
                TestResult::discard()
            } else {
                match solve_linear_diophantine_eq(a, b, c) {
                    Some((x0, xd)) => {
                        let x = x0 + xd * t;
                        let y = (c - a * x) / b;
                        TestResult::from_bool(a * x + b * y == c)
                    }
                    None => TestResult::discard(),
                }
            }
        }
    }

    quickcheck! {
        fn arith_seq_intersect_correct(
            first1: isize, len1: isize, step1: isize,
            first2: isize, len2: isize, step2: isize
        ) -> TestResult {
            use std::cmp;

            if len1 == 0 || len2 == 0 {
                // This case is impossible to reach in `arith_seq_intersect()`
                // because the `min*` and `max*` arguments are inclusive.
                return TestResult::discard();
            }
            let len1 = len1.abs();
            let len2 = len2.abs();

            // Convert to `min*` and `max*` arguments for `arith_seq_intersect()`.
            let last1 = first1 + step1 * (len1 - 1);
            let (min1, max1) = (cmp::min(first1, last1), cmp::max(first1, last1));
            let last2 = first2 + step2 * (len2 - 1);
            let (min2, max2) = (cmp::min(first2, last2), cmp::max(first2, last2));

            // Naively determine if the sequences intersect.
            let seq1: Vec<_> = (0..len1)
                .map(|n| first1 + step1 * n)
                .collect();
            let intersects = (0..len2)
                .map(|n| first2 + step2 * n)
                .any(|elem2| seq1.contains(&elem2));

            TestResult::from_bool(
                arith_seq_intersect(
                    (min1, max1, if step1 == 0 { 1 } else { step1 }),
                    (min2, max2, if step2 == 0 { 1 } else { step2 })
                ) == intersects
            )
        }
    }

    #[test]
    fn slice_min_max_empty() {
        assert_eq!(slice_min_max(0, Slice::new(0, None, 3)), None);
        assert_eq!(slice_min_max(10, Slice::new(1, Some(1), 3)), None);
        assert_eq!(slice_min_max(10, Slice::new(-1, Some(-1), 3)), None);
        assert_eq!(slice_min_max(10, Slice::new(1, Some(1), -3)), None);
        assert_eq!(slice_min_max(10, Slice::new(-1, Some(-1), -3)), None);
    }

    #[test]
    fn slice_min_max_pos_step() {
        assert_eq!(slice_min_max(10, Slice::new(1, Some(8), 3)), Some((1, 7)));
        assert_eq!(slice_min_max(10, Slice::new(1, Some(9), 3)), Some((1, 7)));
        assert_eq!(slice_min_max(10, Slice::new(-9, Some(8), 3)), Some((1, 7)));
        assert_eq!(slice_min_max(10, Slice::new(-9, Some(9), 3)), Some((1, 7)));
        assert_eq!(slice_min_max(10, Slice::new(1, Some(-2), 3)), Some((1, 7)));
        assert_eq!(slice_min_max(10, Slice::new(1, Some(-1), 3)), Some((1, 7)));
        assert_eq!(slice_min_max(10, Slice::new(-9, Some(-2), 3)), Some((1, 7)));
        assert_eq!(slice_min_max(10, Slice::new(-9, Some(-1), 3)), Some((1, 7)));
        assert_eq!(slice_min_max(10, Slice::new(1, None, 3)), Some((1, 7)));
        assert_eq!(slice_min_max(10, Slice::new(-9, None, 3)), Some((1, 7)));
        assert_eq!(slice_min_max(11, Slice::new(1, None, 3)), Some((1, 10)));
        assert_eq!(slice_min_max(11, Slice::new(-10, None, 3)), Some((1, 10)));
    }

    #[test]
    fn slice_min_max_neg_step() {
        assert_eq!(slice_min_max(10, Slice::new(1, Some(8), -3)), Some((1, 7)));
        assert_eq!(slice_min_max(10, Slice::new(2, Some(8), -3)), Some((4, 7)));
        assert_eq!(slice_min_max(10, Slice::new(-9, Some(8), -3)), Some((1, 7)));
        assert_eq!(slice_min_max(10, Slice::new(-8, Some(8), -3)), Some((4, 7)));
        assert_eq!(slice_min_max(10, Slice::new(1, Some(-2), -3)), Some((1, 7)));
        assert_eq!(slice_min_max(10, Slice::new(2, Some(-2), -3)), Some((4, 7)));
        assert_eq!(
            slice_min_max(10, Slice::new(-9, Some(-2), -3)),
            Some((1, 7))
        );
        assert_eq!(
            slice_min_max(10, Slice::new(-8, Some(-2), -3)),
            Some((4, 7))
        );
        assert_eq!(slice_min_max(9, Slice::new(2, None, -3)), Some((2, 8)));
        assert_eq!(slice_min_max(9, Slice::new(-7, None, -3)), Some((2, 8)));
        assert_eq!(slice_min_max(9, Slice::new(3, None, -3)), Some((5, 8)));
        assert_eq!(slice_min_max(9, Slice::new(-6, None, -3)), Some((5, 8)));
    }

    #[test]
    fn slices_intersect_true() {
        assert!(slices_intersect(&Dim([4, 5]), s![.., ..], s![.., ..]));
        assert!(slices_intersect(&Dim([4, 5]), s![0, ..], s![0, ..]));
        assert!(slices_intersect(&Dim([4, 5]), s![..;2, ..], s![..;3, ..]));
        assert!(slices_intersect(&Dim([4, 5]), s![.., ..;2], s![.., 1..;3]));
        assert!(slices_intersect(&Dim([4, 10]), s![.., ..;9], s![.., 3..;6]));
    }

    #[test]
    fn slices_intersect_false() {
        assert!(!slices_intersect(&Dim([4, 5]), s![..;2, ..], s![1..;2, ..]));
        assert!(!slices_intersect(&Dim([4, 5]), s![..;2, ..], s![1..;3, ..]));
        assert!(!slices_intersect(&Dim([4, 5]), s![.., ..;9], s![.., 3..;6]));
    }
}