1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
// Copyright 2014-2016 bluss and ndarray developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

use std::mem::{forget, size_of};
use std::slice;

use crate::imp_prelude::*;
use crate::{dimension, ArcArray1, ArcArray2};

/// Create an [**`Array`**](type.Array.html) with one, two or
/// three dimensions.
///
/// ```
/// use ndarray::array;
/// let a1 = array![1, 2, 3, 4];
///
/// let a2 = array![[1, 2],
///                 [3, 4]];
///
/// let a3 = array![[[1, 2], [3, 4]],
///                 [[5, 6], [7, 8]]];
///
/// assert_eq!(a1.shape(), &[4]);
/// assert_eq!(a2.shape(), &[2, 2]);
/// assert_eq!(a3.shape(), &[2, 2, 2]);
/// ```
///
/// This macro uses `vec![]`, and has the same ownership semantics;
/// elements are moved into the resulting `Array`.
///
/// Use `array![...].into_shared()` to create an `ArcArray`.
#[macro_export]
macro_rules! array {
    ($([$([$($x:expr),* $(,)*]),+ $(,)*]),+ $(,)*) => {{
        $crate::Array3::from(vec![$([$([$($x,)*],)*],)*])
    }};
    ($([$($x:expr),* $(,)*]),+ $(,)*) => {{
        $crate::Array2::from(vec![$([$($x,)*],)*])
    }};
    ($($x:expr),* $(,)*) => {{
        $crate::Array::from(vec![$($x,)*])
    }};
}

/// Create a zero-dimensional array with the element `x`.
pub fn arr0<A>(x: A) -> Array0<A> {
    unsafe { ArrayBase::from_shape_vec_unchecked((), vec![x]) }
}

/// Create a one-dimensional array with elements from `xs`.
pub fn arr1<A: Clone>(xs: &[A]) -> Array1<A> {
    ArrayBase::from(xs.to_vec())
}

/// Create a one-dimensional array with elements from `xs`.
pub fn rcarr1<A: Clone>(xs: &[A]) -> ArcArray1<A> {
    arr1(xs).into_shared()
}

/// Create a zero-dimensional array view borrowing `x`.
pub fn aview0<A>(x: &A) -> ArrayView0<'_, A> {
    unsafe { ArrayView::from_shape_ptr(Ix0(), x) }
}

/// Create a one-dimensional array view with elements borrowing `xs`.
///
/// ```
/// use ndarray::aview1;
///
/// let data = [1.0; 1024];
///
/// // Create a 2D array view from borrowed data
/// let a2d = aview1(&data).into_shape((32, 32)).unwrap();
///
/// assert_eq!(a2d.sum(), 1024.0);
/// ```
pub fn aview1<A>(xs: &[A]) -> ArrayView1<'_, A> {
    ArrayView::from(xs)
}

/// Create a two-dimensional array view with elements borrowing `xs`.
///
/// **Panics** if the product of non-zero axis lengths overflows `isize`. (This
/// can only occur when `V` is zero-sized.)
pub fn aview2<A, V: FixedInitializer<Elem = A>>(xs: &[V]) -> ArrayView2<'_, A> {
    let cols = V::len();
    let rows = xs.len();
    let dim = Ix2(rows, cols);
    if size_of::<V>() == 0 {
        dimension::size_of_shape_checked(&dim)
            .expect("Product of non-zero axis lengths must not overflow isize.");
    }
    // `rows` is guaranteed to fit in `isize` because we've checked the ZST
    // case and slices never contain > `isize::MAX` bytes. `cols` is guaranteed
    // to fit in `isize` because `FixedInitializer` is not implemented for any
    // array lengths > `isize::MAX`. `cols * rows` is guaranteed to fit in
    // `isize` because we've checked the ZST case and slices never contain >
    // `isize::MAX` bytes.
    unsafe {
        let data = slice::from_raw_parts(xs.as_ptr() as *const A, cols * rows);
        ArrayView::from_shape_ptr(dim, data.as_ptr())
    }
}

/// Create a one-dimensional read-write array view with elements borrowing `xs`.
///
/// ```
/// use ndarray::{aview_mut1, s};
/// // Create an array view over some data, then slice it and modify it.
/// let mut data = [0; 1024];
/// {
///     let mut a = aview_mut1(&mut data).into_shape((32, 32)).unwrap();
///     a.slice_mut(s![.., ..;3]).fill(5);
/// }
/// assert_eq!(&data[..10], [5, 0, 0, 5, 0, 0, 5, 0, 0, 5]);
/// ```
pub fn aview_mut1<A>(xs: &mut [A]) -> ArrayViewMut1<'_, A> {
    ArrayViewMut::from(xs)
}

/// Create a two-dimensional read-write array view with elements borrowing `xs`.
///
/// **Panics** if the product of non-zero axis lengths overflows `isize`. (This
/// can only occur when `V` is zero-sized.)
///
/// # Example
///
/// ```
/// use ndarray::aview_mut2;
///
/// // The inner (nested) array must be of length 1 to 16, but the outer
/// // can be of any length.
/// let mut data = [[0.; 2]; 128];
/// {
///     // Make a 128 x 2 mut array view then turn it into 2 x 128
///     let mut a = aview_mut2(&mut data).reversed_axes();
///     // Make the first row ones and second row minus ones.
///     a.row_mut(0).fill(1.);
///     a.row_mut(1).fill(-1.);
/// }
/// // look at the start of the result
/// assert_eq!(&data[..3], [[1., -1.], [1., -1.], [1., -1.]]);
/// ```
pub fn aview_mut2<A, V: FixedInitializer<Elem = A>>(xs: &mut [V]) -> ArrayViewMut2<'_, A> {
    let cols = V::len();
    let rows = xs.len();
    let dim = Ix2(rows, cols);
    if size_of::<V>() == 0 {
        dimension::size_of_shape_checked(&dim)
            .expect("Product of non-zero axis lengths must not overflow isize.");
    }
    // `rows` is guaranteed to fit in `isize` because we've checked the ZST
    // case and slices never contain > `isize::MAX` bytes. `cols` is guaranteed
    // to fit in `isize` because `FixedInitializer` is not implemented for any
    // array lengths > `isize::MAX`. `cols * rows` is guaranteed to fit in
    // `isize` because we've checked the ZST case and slices never contain >
    // `isize::MAX` bytes.
    unsafe {
        let data = slice::from_raw_parts_mut(xs.as_mut_ptr() as *mut A, cols * rows);
        ArrayViewMut::from_shape_ptr(dim, data.as_mut_ptr())
    }
}

/// Fixed-size array used for array initialization
pub unsafe trait FixedInitializer {
    type Elem;
    fn as_init_slice(&self) -> &[Self::Elem];
    fn len() -> usize;
}

macro_rules! impl_arr_init {
    (__impl $n: expr) => (
        unsafe impl<T> FixedInitializer for [T;  $n] {
            type Elem = T;
            fn as_init_slice(&self) -> &[T] { self }
            fn len() -> usize { $n }
        }
    );
    () => ();
    ($n: expr, $($m:expr,)*) => (
        impl_arr_init!(__impl $n);
        impl_arr_init!($($m,)*);
    )

}

// For implementors: If you ever implement `FixedInitializer` for array lengths
// > `isize::MAX` (e.g. once Rust adds const generics), you must update
// `aview2` and `aview_mut2` to perform the necessary checks. In particular,
// the assumption that `cols` can never exceed `isize::MAX` would be incorrect.
// (Consider e.g. `let xs: &[[i32; ::std::usize::MAX]] = &[]`.)
impl_arr_init!(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,);

/// Create a two-dimensional array with elements from `xs`.
///
/// ```
/// use ndarray::arr2;
///
/// let a = arr2(&[[1, 2, 3],
///                [4, 5, 6]]);
/// assert!(
///     a.shape() == [2, 3]
/// );
/// ```
pub fn arr2<A: Clone, V: FixedInitializer<Elem = A>>(xs: &[V]) -> Array2<A>
where
    V: Clone,
{
    Array2::from(xs.to_vec())
}

impl<A, V> From<Vec<V>> for Array2<A>
where
    V: FixedInitializer<Elem = A>,
{
    /// Converts the `Vec` of arrays to an owned 2-D array.
    ///
    /// **Panics** if the product of non-zero axis lengths overflows `isize`.
    fn from(mut xs: Vec<V>) -> Self {
        let dim = Ix2(xs.len(), V::len());
        let ptr = xs.as_mut_ptr();
        let cap = xs.capacity();
        let expand_len = dimension::size_of_shape_checked(&dim)
            .expect("Product of non-zero axis lengths must not overflow isize.");
        forget(xs);
        unsafe {
            let v = if size_of::<A>() == 0 {
                Vec::from_raw_parts(ptr as *mut A, expand_len, expand_len)
            } else if V::len() == 0 {
                Vec::new()
            } else {
                // Guaranteed not to overflow in this case since A is non-ZST
                // and Vec never allocates more than isize bytes.
                let expand_cap = cap * V::len();
                Vec::from_raw_parts(ptr as *mut A, expand_len, expand_cap)
            };
            ArrayBase::from_shape_vec_unchecked(dim, v)
        }
    }
}

impl<A, V, U> From<Vec<V>> for Array3<A>
where
    V: FixedInitializer<Elem = U>,
    U: FixedInitializer<Elem = A>,
{
    /// Converts the `Vec` of arrays to an owned 3-D array.
    ///
    /// **Panics** if the product of non-zero axis lengths overflows `isize`.
    fn from(mut xs: Vec<V>) -> Self {
        let dim = Ix3(xs.len(), V::len(), U::len());
        let ptr = xs.as_mut_ptr();
        let cap = xs.capacity();
        let expand_len = dimension::size_of_shape_checked(&dim)
            .expect("Product of non-zero axis lengths must not overflow isize.");
        forget(xs);
        unsafe {
            let v = if size_of::<A>() == 0 {
                Vec::from_raw_parts(ptr as *mut A, expand_len, expand_len)
            } else if V::len() == 0 || U::len() == 0 {
                Vec::new()
            } else {
                // Guaranteed not to overflow in this case since A is non-ZST
                // and Vec never allocates more than isize bytes.
                let expand_cap = cap * V::len() * U::len();
                Vec::from_raw_parts(ptr as *mut A, expand_len, expand_cap)
            };
            ArrayBase::from_shape_vec_unchecked(dim, v)
        }
    }
}

/// Create a two-dimensional array with elements from `xs`.
///
pub fn rcarr2<A: Clone, V: Clone + FixedInitializer<Elem = A>>(xs: &[V]) -> ArcArray2<A> {
    arr2(xs).into_shared()
}

/// Create a three-dimensional array with elements from `xs`.
///
/// **Panics** if the slices are not all of the same length.
///
/// ```
/// use ndarray::arr3;
///
/// let a = arr3(&[[[1, 2],
///                 [3, 4]],
///                [[5, 6],
///                 [7, 8]],
///                [[9, 0],
///                 [1, 2]]]);
/// assert!(
///     a.shape() == [3, 2, 2]
/// );
/// ```
pub fn arr3<A: Clone, V: FixedInitializer<Elem = U>, U: FixedInitializer<Elem = A>>(
    xs: &[V],
) -> Array3<A>
where
    V: Clone,
    U: Clone,
{
    Array3::from(xs.to_vec())
}

/// Create a three-dimensional array with elements from `xs`.
pub fn rcarr3<A: Clone, V: FixedInitializer<Elem = U>, U: FixedInitializer<Elem = A>>(
    xs: &[V],
) -> ArcArray<A, Ix3>
where
    V: Clone,
    U: Clone,
{
    arr3(xs).into_shared()
}