1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
// Copyright 2014-2016 bluss and ndarray developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! Constructor methods for ndarray
//!
//!

#![allow(clippy::match_wild_err_arm)]

use num_traits::{Float, One, Zero};
use std::mem::MaybeUninit;

use crate::dimension;
use crate::error::{self, ShapeError};
use crate::extension::nonnull::nonnull_from_vec_data;
use crate::imp_prelude::*;
use crate::indexes;
use crate::indices;
use crate::iterators::{to_vec, to_vec_mapped};
use crate::StrideShape;
use crate::{geomspace, linspace, logspace};

/// # Constructor Methods for Owned Arrays
///
/// Note that the constructor methods apply to `Array` and `ArcArray`,
/// the two array types that have owned storage.
///
/// ## Constructor methods for one-dimensional arrays.
impl<S, A> ArrayBase<S, Ix1>
where
    S: DataOwned<Elem = A>,
{
    /// Create a one-dimensional array from a vector (no copying needed).
    ///
    /// **Panics** if the length is greater than `isize::MAX`.
    ///
    /// ```rust
    /// use ndarray::Array;
    ///
    /// let array = Array::from(vec![1., 2., 3., 4.]);
    /// ```
    #[deprecated(note = "use standard `from`", since = "0.13.0")]
    pub fn from_vec(v: Vec<A>) -> Self {
        Self::from(v)
    }

    /// Create a one-dimensional array with `n` evenly spaced elements from
    /// `start` to `end` (inclusive). `A` must be a floating point type.
    ///
    /// Note that if `start > end`, the first element will still be `start`,
    /// and the following elements will be decreasing. This is different from
    /// the behavior of `std::ops::RangeInclusive`, which interprets `start >
    /// end` to mean that the range is empty.
    ///
    /// **Panics** if `n` is greater than `isize::MAX` or if converting `n - 1`
    /// to type `A` fails.
    ///
    /// ```rust
    /// use ndarray::{Array, arr1};
    ///
    /// let array = Array::linspace(0., 1., 5);
    /// assert!(array == arr1(&[0.0, 0.25, 0.5, 0.75, 1.0]))
    /// ```
    pub fn linspace(start: A, end: A, n: usize) -> Self
    where
        A: Float,
    {
        Self::from(to_vec(linspace::linspace(start, end, n)))
    }

    /// Create a one-dimensional array with elements from `start` to `end`
    /// (exclusive), incrementing by `step`. `A` must be a floating point type.
    ///
    /// **Panics** if the length is greater than `isize::MAX`.
    ///
    /// ```rust
    /// use ndarray::{Array, arr1};
    ///
    /// let array = Array::range(0., 5., 1.);
    /// assert!(array == arr1(&[0., 1., 2., 3., 4.]))
    /// ```
    pub fn range(start: A, end: A, step: A) -> Self
    where
        A: Float,
    {
        Self::from(to_vec(linspace::range(start, end, step)))
    }

    /// Create a one-dimensional array with `n` logarithmically spaced
    /// elements, with the starting value being `base.powf(start)` and the
    /// final one being `base.powf(end)`. `A` must be a floating point type.
    ///
    /// If `base` is negative, all values will be negative.
    ///
    /// **Panics** if `n` is greater than `isize::MAX` or if converting `n - 1`
    /// to type `A` fails.
    ///
    /// ```rust
    /// use approx::assert_abs_diff_eq;
    /// use ndarray::{Array, arr1};
    ///
    /// # #[cfg(feature = "approx")] {
    /// let array = Array::logspace(10.0, 0.0, 3.0, 4);
    /// assert_abs_diff_eq!(array, arr1(&[1e0, 1e1, 1e2, 1e3]));
    ///
    /// let array = Array::logspace(-10.0, 3.0, 0.0, 4);
    /// assert_abs_diff_eq!(array, arr1(&[-1e3, -1e2, -1e1, -1e0]));
    /// # }
    /// ```
    pub fn logspace(base: A, start: A, end: A, n: usize) -> Self
    where
        A: Float,
    {
        Self::from(to_vec(logspace::logspace(base, start, end, n)))
    }

    /// Create a one-dimensional array with `n` geometrically spaced elements
    /// from `start` to `end` (inclusive). `A` must be a floating point type.
    ///
    /// Returns `None` if `start` and `end` have different signs or if either
    /// one is zero. Conceptually, this means that in order to obtain a `Some`
    /// result, `end / start` must be positive.
    ///
    /// **Panics** if `n` is greater than `isize::MAX` or if converting `n - 1`
    /// to type `A` fails.
    ///
    /// ```rust
    /// use approx::assert_abs_diff_eq;
    /// use ndarray::{Array, arr1};
    ///
    /// # fn example() -> Option<()> {
    /// # #[cfg(feature = "approx")] {
    /// let array = Array::geomspace(1e0, 1e3, 4)?;
    /// assert_abs_diff_eq!(array, arr1(&[1e0, 1e1, 1e2, 1e3]), epsilon = 1e-12);
    ///
    /// let array = Array::geomspace(-1e3, -1e0, 4)?;
    /// assert_abs_diff_eq!(array, arr1(&[-1e3, -1e2, -1e1, -1e0]), epsilon = 1e-12);
    /// # }
    /// # Some(())
    /// # }
    /// #
    /// # example().unwrap();
    /// ```
    pub fn geomspace(start: A, end: A, n: usize) -> Option<Self>
    where
        A: Float,
    {
        Some(Self::from(to_vec(geomspace::geomspace(start, end, n)?)))
    }
}

/// ## Constructor methods for two-dimensional arrays.
impl<S, A> ArrayBase<S, Ix2>
where
    S: DataOwned<Elem = A>,
{
    /// Create an identity matrix of size `n` (square 2D array).
    ///
    /// **Panics** if `n * n` would overflow `isize`.
    pub fn eye(n: Ix) -> Self
    where
        S: DataMut,
        A: Clone + Zero + One,
    {
        let mut eye = Self::zeros((n, n));
        for a_ii in eye.diag_mut() {
            *a_ii = A::one();
        }
        eye
    }

    /// Create a 2D matrix from its diagonal
    ///
    /// **Panics** if `diag.len() * diag.len()` would overflow `isize`.
    ///
    /// ```rust
    /// use ndarray::{Array2, arr1, arr2};
    ///
    /// let diag = arr1(&[1, 2]);
    /// let array = Array2::from_diag(&diag);
    /// assert_eq!(array, arr2(&[[1, 0], [0, 2]]));
    /// ```
    pub fn from_diag<S2>(diag: &ArrayBase<S2, Ix1>) -> Self
    where
        A: Clone + Zero,
        S: DataMut,
        S2: Data<Elem = A>,
    {
        let n = diag.len();
        let mut arr = Self::zeros((n, n));
        arr.diag_mut().assign(&diag);
        arr
    }
}

#[cfg(not(debug_assertions))]
#[allow(clippy::match_wild_err_arm)]
macro_rules! size_of_shape_checked_unwrap {
    ($dim:expr) => {
        match dimension::size_of_shape_checked($dim) {
            Ok(sz) => sz,
            Err(_) => {
                panic!("ndarray: Shape too large, product of non-zero axis lengths overflows isize")
            }
        }
    };
}

#[cfg(debug_assertions)]
macro_rules! size_of_shape_checked_unwrap {
    ($dim:expr) => {
        match dimension::size_of_shape_checked($dim) {
            Ok(sz) => sz,
            Err(_) => panic!(
                "ndarray: Shape too large, product of non-zero axis lengths \
                 overflows isize in shape {:?}",
                $dim
            ),
        }
    };
}

/// ## Constructor methods for n-dimensional arrays.
///
/// The `shape` argument can be an integer or a tuple of integers to specify
/// a static size. For example `10` makes a length 10 one-dimensional array
/// (dimension type `Ix1`) and `(5, 6)` a 5 × 6 array (dimension type `Ix2`).
///
/// With the trait `ShapeBuilder` in scope, there is the method `.f()` to select
/// column major (“f” order) memory layout instead of the default row major.
/// For example `Array::zeros((5, 6).f())` makes a column major 5 × 6 array.
///
/// Use [`IxDyn`](type.IxDyn.html) for the shape to create an array with dynamic
/// number of axes.
///
/// Finally, the few constructors that take a completely general
/// `Into<StrideShape>` argument *optionally* support custom strides, for
/// example a shape given like `(10, 2, 2).strides((1, 10, 20))` is valid.
impl<S, A, D> ArrayBase<S, D>
where
    S: DataOwned<Elem = A>,
    D: Dimension,
{
    /// Create an array with copies of `elem`, shape `shape`.
    ///
    /// **Panics** if the product of non-zero axis lengths overflows `isize`.
    ///
    /// ```
    /// use ndarray::{Array, arr3, ShapeBuilder};
    ///
    /// let a = Array::from_elem((2, 2, 2), 1.);
    ///
    /// assert!(
    ///     a == arr3(&[[[1., 1.],
    ///                  [1., 1.]],
    ///                 [[1., 1.],
    ///                  [1., 1.]]])
    /// );
    /// assert!(a.strides() == &[4, 2, 1]);
    ///
    /// let b = Array::from_elem((2, 2, 2).f(), 1.);
    /// assert!(b.strides() == &[1, 2, 4]);
    /// ```
    pub fn from_elem<Sh>(shape: Sh, elem: A) -> Self
    where
        A: Clone,
        Sh: ShapeBuilder<Dim = D>,
    {
        let shape = shape.into_shape();
        let size = size_of_shape_checked_unwrap!(&shape.dim);
        let v = vec![elem; size];
        unsafe { Self::from_shape_vec_unchecked(shape, v) }
    }

    /// Create an array with zeros, shape `shape`.
    ///
    /// **Panics** if the product of non-zero axis lengths overflows `isize`.
    pub fn zeros<Sh>(shape: Sh) -> Self
    where
        A: Clone + Zero,
        Sh: ShapeBuilder<Dim = D>,
    {
        Self::from_elem(shape, A::zero())
    }

    /// Create an array with ones, shape `shape`.
    ///
    /// **Panics** if the product of non-zero axis lengths overflows `isize`.
    pub fn ones<Sh>(shape: Sh) -> Self
    where
        A: Clone + One,
        Sh: ShapeBuilder<Dim = D>,
    {
        Self::from_elem(shape, A::one())
    }

    /// Create an array with default values, shape `shape`
    ///
    /// **Panics** if the product of non-zero axis lengths overflows `isize`.
    pub fn default<Sh>(shape: Sh) -> Self
    where
        A: Default,
        Sh: ShapeBuilder<Dim = D>,
    {
        Self::from_shape_simple_fn(shape, A::default)
    }

    /// Create an array with values created by the function `f`.
    ///
    /// `f` is called with no argument, and it should return the element to
    /// create. If the precise index of the element to create is needed,
    /// use [`from_shape_fn`](ArrayBase::from_shape_fn) instead.
    ///
    /// This constructor can be useful if the element order is not important,
    /// for example if they are identical or random.
    ///
    /// **Panics** if the product of non-zero axis lengths overflows `isize`.
    pub fn from_shape_simple_fn<Sh, F>(shape: Sh, mut f: F) -> Self
    where
        Sh: ShapeBuilder<Dim = D>,
        F: FnMut() -> A,
    {
        let shape = shape.into_shape();
        let len = size_of_shape_checked_unwrap!(&shape.dim);
        let v = to_vec_mapped(0..len, move |_| f());
        unsafe { Self::from_shape_vec_unchecked(shape, v) }
    }

    /// Create an array with values created by the function `f`.
    ///
    /// `f` is called with the index of the element to create; the elements are
    /// visited in arbitrary order.
    ///
    /// **Panics** if the product of non-zero axis lengths overflows `isize`.
    ///
    /// ```
    /// use ndarray::{Array, arr2};
    ///
    /// // Create a table of i × j (with i and j from 1 to 3)
    /// let ij_table = Array::from_shape_fn((3, 3), |(i, j)| (1 + i) * (1 + j));
    ///
    /// assert_eq!(
    ///     ij_table,
    ///     arr2(&[[1, 2, 3],
    ///            [2, 4, 6],
    ///            [3, 6, 9]])
    /// );
    /// ```
    pub fn from_shape_fn<Sh, F>(shape: Sh, f: F) -> Self
    where
        Sh: ShapeBuilder<Dim = D>,
        F: FnMut(D::Pattern) -> A,
    {
        let shape = shape.into_shape();
        let _ = size_of_shape_checked_unwrap!(&shape.dim);
        if shape.is_c {
            let v = to_vec_mapped(indices(shape.dim.clone()).into_iter(), f);
            unsafe { Self::from_shape_vec_unchecked(shape, v) }
        } else {
            let dim = shape.dim.clone();
            let v = to_vec_mapped(indexes::indices_iter_f(dim), f);
            unsafe { Self::from_shape_vec_unchecked(shape, v) }
        }
    }

    /// Create an array with the given shape from a vector. (No cloning of
    /// elements needed.)
    ///
    /// ----
    ///
    /// For a contiguous c- or f-order shape, the following applies:
    ///
    /// **Errors** if `shape` does not correspond to the number of elements in
    /// `v` or if the shape/strides would result in overflowing `isize`.
    ///
    /// ----
    ///
    /// For custom strides, the following applies:
    ///
    /// **Errors** if strides and dimensions can point out of bounds of `v`, if
    /// strides allow multiple indices to point to the same element, or if the
    /// shape/strides would result in overflowing `isize`.
    ///
    /// ```
    /// use ndarray::Array;
    /// use ndarray::ShapeBuilder; // Needed for .strides() method
    /// use ndarray::arr2;
    ///
    /// let a = Array::from_shape_vec((2, 2), vec![1., 2., 3., 4.]);
    /// assert!(a.is_ok());
    ///
    /// let b = Array::from_shape_vec((2, 2).strides((1, 2)),
    ///                               vec![1., 2., 3., 4.]).unwrap();
    /// assert!(
    ///     b == arr2(&[[1., 3.],
    ///                 [2., 4.]])
    /// );
    /// ```
    pub fn from_shape_vec<Sh>(shape: Sh, v: Vec<A>) -> Result<Self, ShapeError>
    where
        Sh: Into<StrideShape<D>>,
    {
        // eliminate the type parameter Sh as soon as possible
        Self::from_shape_vec_impl(shape.into(), v)
    }

    fn from_shape_vec_impl(shape: StrideShape<D>, v: Vec<A>) -> Result<Self, ShapeError> {
        let dim = shape.dim;
        let strides = shape.strides;
        if shape.custom {
            dimension::can_index_slice(&v, &dim, &strides)?;
        } else {
            dimension::can_index_slice_not_custom::<A, _>(&v, &dim)?;
            if dim.size() != v.len() {
                return Err(error::incompatible_shapes(&Ix1(v.len()), &dim));
            }
        }
        unsafe { Ok(Self::from_vec_dim_stride_unchecked(dim, strides, v)) }
    }

    /// Creates an array from a vector and interpret it according to the
    /// provided shape and strides. (No cloning of elements needed.)
    ///
    /// # Safety
    ///
    /// The caller must ensure that the following conditions are met:
    ///
    /// 1. The ndim of `dim` and `strides` must be the same.
    ///
    /// 2. The product of non-zero axis lengths must not exceed `isize::MAX`.
    ///
    /// 3. For axes with length > 1, the stride must be nonnegative.
    ///
    /// 4. If the array will be empty (any axes are zero-length), the
    ///    difference between the least address and greatest address accessible
    ///    by moving along all axes must be ≤ `v.len()`.
    ///
    ///    If the array will not be empty, the difference between the least
    ///    address and greatest address accessible by moving along all axes
    ///    must be < `v.len()`.
    ///
    /// 5. The strides must not allow any element to be referenced by two different
    ///    indices.
    pub unsafe fn from_shape_vec_unchecked<Sh>(shape: Sh, v: Vec<A>) -> Self
    where
        Sh: Into<StrideShape<D>>,
    {
        let shape = shape.into();
        Self::from_vec_dim_stride_unchecked(shape.dim, shape.strides, v)
    }

    unsafe fn from_vec_dim_stride_unchecked(dim: D, strides: D, mut v: Vec<A>) -> Self {
        // debug check for issues that indicates wrong use of this constructor
        debug_assert!(dimension::can_index_slice(&v, &dim, &strides).is_ok());
        ArrayBase {
            ptr: nonnull_from_vec_data(&mut v),
            data: DataOwned::new(v),
            strides,
            dim,
        }
    }

    /// Create an array with uninitalized elements, shape `shape`.
    ///
    /// Prefer to use [`maybe_uninit()`](ArrayBase::maybe_uninit) if possible, because it is
    /// easier to use correctly.
    ///
    /// **Panics** if the number of elements in `shape` would overflow isize.
    ///
    /// ### Safety
    ///
    /// Accessing uninitalized values is undefined behaviour. You must overwrite *all* the elements
    /// in the array after it is created; for example using
    /// [`raw_view_mut`](ArrayBase::raw_view_mut) or other low-level element access.
    ///
    /// The contents of the array is indeterminate before initialization and it
    /// is an error to perform operations that use the previous values. For
    /// example it would not be legal to use `a += 1.;` on such an array.
    ///
    /// This constructor is limited to elements where `A: Copy` (no destructors)
    /// to avoid users shooting themselves too hard in the foot.
    /// 
    /// (Also note that the constructors `from_shape_vec` and
    /// `from_shape_vec_unchecked` allow the user yet more control, in the sense
    /// that Arrays can be created from arbitrary vectors.)
    pub unsafe fn uninitialized<Sh>(shape: Sh) -> Self
    where
        A: Copy,
        Sh: ShapeBuilder<Dim = D>,
    {
        let shape = shape.into_shape();
        let size = size_of_shape_checked_unwrap!(&shape.dim);
        let mut v = Vec::with_capacity(size);
        v.set_len(size);
        Self::from_shape_vec_unchecked(shape, v)
    }
}

impl<S, A, D> ArrayBase<S, D>
where
    S: DataOwned<Elem = MaybeUninit<A>>,
    D: Dimension,
{
    /// Create an array with uninitalized elements, shape `shape`.
    ///
    /// The uninitialized elements of type `A` are represented by the type `MaybeUninit<A>`,
    /// an easier way to handle uninit values correctly.
    ///
    /// Only *when* the array is completely initialized with valid elements, can it be
    /// converted to an array of `A` elements using [`.assume_init()`].
    ///
    /// **Panics** if the number of elements in `shape` would overflow isize.
    ///
    /// ### Safety
    ///
    /// The whole of the array must be initialized before it is converted
    /// using [`.assume_init()`] or otherwise traversed.
    ///
    /// ### Examples
    ///
    /// It is possible to assign individual values through `*elt = MaybeUninit::new(value)`
    /// and so on.
    ///
    /// [`.assume_init()`]: ArrayBase::assume_init
    ///
    /// ```
    /// use ndarray::{s, Array2};
    /// use ndarray::Zip;
    /// use ndarray::Axis;
    ///
    /// // Example Task: Let's create a column shifted copy of the input
    ///
    /// fn shift_by_two(a: &Array2<f32>) -> Array2<f32> {
    ///     // create an uninitialized array
    ///     let mut b = Array2::maybe_uninit(a.dim());
    ///
    ///     // two first columns in b are two last in a
    ///     // rest of columns in b are the initial columns in a
    ///
    ///     assign_to(a.slice(s![.., -2..]), b.slice_mut(s![.., ..2]));
    ///     assign_to(a.slice(s![.., 2..]), b.slice_mut(s![.., ..-2]));
    ///
    ///     // Now we can promise that `b` is safe to use with all operations
    ///     unsafe {
    ///         b.assume_init()
    ///     }
    /// }
    ///
    /// use ndarray::{IntoNdProducer, AssignElem};
    ///
    /// // This function clones elements from the first input to the second;
    /// // the two producers must have the same shape
    /// fn assign_to<'a, P1, P2, A>(from: P1, to: P2)
    ///     where P1: IntoNdProducer<Item = &'a A>,
    ///           P2: IntoNdProducer<Dim = P1::Dim>,
    ///           P2::Item: AssignElem<A>,
    ///           A: Clone + 'a
    /// {
    ///     Zip::from(from)
    ///         .apply_assign_into(to, A::clone);
    /// }
    ///
    /// # shift_by_two(&Array2::zeros((8, 8)));
    /// ```
    pub fn maybe_uninit<Sh>(shape: Sh) -> Self
    where
        Sh: ShapeBuilder<Dim = D>,
    {
        unsafe {
            let shape = shape.into_shape();
            let size = size_of_shape_checked_unwrap!(&shape.dim);
            let mut v = Vec::with_capacity(size);
            v.set_len(size);
            Self::from_shape_vec_unchecked(shape, v)
        }
    }
}