1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344
// Copyright 2014-2016 bluss and ndarray developers. // // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your // option. This file may not be copied, modified, or distributed // except according to those terms. use std::ptr as std_ptr; use std::slice; use rawpointer::PointerExt; use crate::imp_prelude::*; use crate::arraytraits; use crate::dimension; use crate::dimension::IntoDimension; use crate::dimension::{ abs_index, axes_of, do_slice, merge_axes, size_of_shape_checked, stride_offset, Axes, }; use crate::error::{self, ErrorKind, ShapeError}; use crate::itertools::zip; use crate::zip::Zip; use crate::iter::{ AxisChunksIter, AxisChunksIterMut, AxisIter, AxisIterMut, ExactChunks, ExactChunksMut, IndexedIter, IndexedIterMut, Iter, IterMut, Lanes, LanesMut, Windows, }; use crate::slice::MultiSlice; use crate::stacking::stack; use crate::{NdIndex, Slice, SliceInfo, SliceOrIndex}; /// # Methods For All Array Types impl<A, S, D> ArrayBase<S, D> where S: RawData<Elem = A>, D: Dimension, { /// Return the total number of elements in the array. pub fn len(&self) -> usize { self.dim.size() } /// Return the length of `axis`. /// /// The axis should be in the range `Axis(` 0 .. *n* `)` where *n* is the /// number of dimensions (axes) of the array. /// /// ***Panics*** if the axis is out of bounds. pub fn len_of(&self, axis: Axis) -> usize { self.dim[axis.index()] } /// Return whether the array has any elements pub fn is_empty(&self) -> bool { self.len() == 0 } /// Return the number of dimensions (axes) in the array pub fn ndim(&self) -> usize { self.dim.ndim() } /// Return the shape of the array in its “pattern” form, /// an integer in the one-dimensional case, tuple in the n-dimensional cases /// and so on. pub fn dim(&self) -> D::Pattern { self.dim.clone().into_pattern() } /// Return the shape of the array as it stored in the array. /// /// This is primarily useful for passing to other `ArrayBase` /// functions, such as when creating another array of the same /// shape and dimensionality. /// /// ``` /// use ndarray::Array; /// /// let a = Array::from_elem((2, 3), 5.); /// /// // Create an array of zeros that's the same shape and dimensionality as `a`. /// let b = Array::<f64, _>::zeros(a.raw_dim()); /// ``` pub fn raw_dim(&self) -> D { self.dim.clone() } /// Return the shape of the array as a slice. /// /// Note that you probably don't want to use this to create an array of the /// same shape as another array because creating an array with e.g. /// [`Array::zeros()`](ArrayBase::zeros) using a shape of type `&[usize]` /// results in a dynamic-dimensional array. If you want to create an array /// that has the same shape and dimensionality as another array, use /// [`.raw_dim()`](ArrayBase::raw_dim) instead: /// /// ```rust /// use ndarray::{Array, Array2}; /// /// let a = Array2::<i32>::zeros((3, 4)); /// let shape = a.shape(); /// assert_eq!(shape, &[3, 4]); /// /// // Since `a.shape()` returned `&[usize]`, we get an `ArrayD` instance: /// let b = Array::zeros(shape); /// assert_eq!(a.clone().into_dyn(), b); /// /// // To get the same dimension type, use `.raw_dim()` instead: /// let c = Array::zeros(a.raw_dim()); /// assert_eq!(a, c); /// ``` pub fn shape(&self) -> &[usize] { self.dim.slice() } /// Return the strides of the array as a slice. pub fn strides(&self) -> &[isize] { let s = self.strides.slice(); // reinterpret unsigned integer as signed unsafe { slice::from_raw_parts(s.as_ptr() as *const _, s.len()) } } /// Return the stride of `axis`. /// /// The axis should be in the range `Axis(` 0 .. *n* `)` where *n* is the /// number of dimensions (axes) of the array. /// /// ***Panics*** if the axis is out of bounds. pub fn stride_of(&self, axis: Axis) -> isize { // strides are reinterpreted as isize self.strides[axis.index()] as isize } /// Return a read-only view of the array pub fn view(&self) -> ArrayView<'_, A, D> where S: Data, { debug_assert!(self.pointer_is_inbounds()); unsafe { ArrayView::new(self.ptr, self.dim.clone(), self.strides.clone()) } } /// Return a read-write view of the array pub fn view_mut(&mut self) -> ArrayViewMut<'_, A, D> where S: DataMut, { self.ensure_unique(); unsafe { ArrayViewMut::new(self.ptr, self.dim.clone(), self.strides.clone()) } } /// Return an uniquely owned copy of the array. /// /// If the input array is contiguous and its strides are positive, then the /// output array will have the same memory layout. Otherwise, the layout of /// the output array is unspecified. If you need a particular layout, you /// can allocate a new array with the desired memory layout and /// [`.assign()`](#method.assign) the data. Alternatively, you can collect /// an iterator, like this for a result in standard layout: /// /// ``` /// # use ndarray::prelude::*; /// # let arr = Array::from_shape_vec((2, 2).f(), vec![1, 2, 3, 4]).unwrap(); /// # let owned = { /// Array::from_shape_vec(arr.raw_dim(), arr.iter().cloned().collect()).unwrap() /// # }; /// # assert!(owned.is_standard_layout()); /// # assert_eq!(arr, owned); /// ``` /// /// or this for a result in column-major (Fortran) layout: /// /// ``` /// # use ndarray::prelude::*; /// # let arr = Array::from_shape_vec((2, 2), vec![1, 2, 3, 4]).unwrap(); /// # let owned = { /// Array::from_shape_vec(arr.raw_dim().f(), arr.t().iter().cloned().collect()).unwrap() /// # }; /// # assert!(owned.t().is_standard_layout()); /// # assert_eq!(arr, owned); /// ``` pub fn to_owned(&self) -> Array<A, D> where A: Clone, S: Data, { if let Some(slc) = self.as_slice_memory_order() { unsafe { Array::from_shape_vec_unchecked( self.dim.clone().strides(self.strides.clone()), slc.to_vec(), ) } } else { self.map(|x| x.clone()) } } /// Return a shared ownership (copy on write) array. pub fn to_shared(&self) -> ArcArray<A, D> where A: Clone, S: Data, { // FIXME: Avoid copying if it’s already an ArcArray. self.to_owned().into_shared() } /// Turn the array into a uniquely owned array, cloning the array elements /// if necessary. pub fn into_owned(self) -> Array<A, D> where A: Clone, S: Data, { S::into_owned(self) } /// Turn the array into a shared ownership (copy on write) array, /// without any copying. pub fn into_shared(self) -> ArcArray<A, D> where S: DataOwned, { let data = self.data.into_shared(); ArrayBase { data, ptr: self.ptr, dim: self.dim, strides: self.strides, } } /// Returns a reference to the first element of the array, or `None` if it /// is empty. pub fn first(&self) -> Option<&A> where S: Data, { if self.is_empty() { None } else { Some(unsafe { &*self.as_ptr() }) } } /// Returns a mutable reference to the first element of the array, or /// `None` if it is empty. pub fn first_mut(&mut self) -> Option<&mut A> where S: DataMut, { if self.is_empty() { None } else { Some(unsafe { &mut *self.as_mut_ptr() }) } } /// Return an iterator of references to the elements of the array. /// /// Elements are visited in the *logical order* of the array, which /// is where the rightmost index is varying the fastest. /// /// Iterator element type is `&A`. pub fn iter(&self) -> Iter<'_, A, D> where S: Data, { debug_assert!(self.pointer_is_inbounds()); self.view().into_iter_() } /// Return an iterator of mutable references to the elements of the array. /// /// Elements are visited in the *logical order* of the array, which /// is where the rightmost index is varying the fastest. /// /// Iterator element type is `&mut A`. pub fn iter_mut(&mut self) -> IterMut<'_, A, D> where S: DataMut, { self.view_mut().into_iter_() } /// Return an iterator of indexes and references to the elements of the array. /// /// Elements are visited in the *logical order* of the array, which /// is where the rightmost index is varying the fastest. /// /// Iterator element type is `(D::Pattern, &A)`. /// /// See also [`Zip::indexed`](struct.Zip.html) pub fn indexed_iter(&self) -> IndexedIter<'_, A, D> where S: Data, { IndexedIter::new(self.view().into_elements_base()) } /// Return an iterator of indexes and mutable references to the elements of the array. /// /// Elements are visited in the *logical order* of the array, which /// is where the rightmost index is varying the fastest. /// /// Iterator element type is `(D::Pattern, &mut A)`. pub fn indexed_iter_mut(&mut self) -> IndexedIterMut<'_, A, D> where S: DataMut, { IndexedIterMut::new(self.view_mut().into_elements_base()) } /// Return a sliced view of the array. /// /// See [*Slicing*](#slicing) for full documentation. /// See also [`SliceInfo`] and [`D::SliceArg`]. /// /// [`SliceInfo`]: struct.SliceInfo.html /// [`D::SliceArg`]: trait.Dimension.html#associatedtype.SliceArg /// /// **Panics** if an index is out of bounds or step size is zero.<br> /// (**Panics** if `D` is `IxDyn` and `info` does not match the number of array axes.) pub fn slice<Do>(&self, info: &SliceInfo<D::SliceArg, Do>) -> ArrayView<'_, A, Do> where Do: Dimension, S: Data, { self.view().slice_move(info) } /// Return a sliced read-write view of the array. /// /// See [*Slicing*](#slicing) for full documentation. /// See also [`SliceInfo`] and [`D::SliceArg`]. /// /// [`SliceInfo`]: struct.SliceInfo.html /// [`D::SliceArg`]: trait.Dimension.html#associatedtype.SliceArg /// /// **Panics** if an index is out of bounds or step size is zero.<br> /// (**Panics** if `D` is `IxDyn` and `info` does not match the number of array axes.) pub fn slice_mut<Do>(&mut self, info: &SliceInfo<D::SliceArg, Do>) -> ArrayViewMut<'_, A, Do> where Do: Dimension, S: DataMut, { self.view_mut().slice_move(info) } /// Return multiple disjoint, sliced, mutable views of the array. /// /// See [*Slicing*](#slicing) for full documentation. /// See also [`SliceInfo`] and [`D::SliceArg`]. /// /// [`SliceInfo`]: struct.SliceInfo.html /// [`D::SliceArg`]: trait.Dimension.html#associatedtype.SliceArg /// /// **Panics** if any of the following occur: /// /// * if any of the views would intersect (i.e. if any element would appear in multiple slices) /// * if an index is out of bounds or step size is zero /// * if `D` is `IxDyn` and `info` does not match the number of array axes /// /// # Example /// /// ``` /// use ndarray::{arr2, s}; /// /// let mut a = arr2(&[[1, 2, 3], [4, 5, 6]]); /// let (mut edges, mut middle) = a.multi_slice_mut((s![.., ..;2], s![.., 1])); /// edges.fill(1); /// middle.fill(0); /// assert_eq!(a, arr2(&[[1, 0, 1], [1, 0, 1]])); /// ``` pub fn multi_slice_mut<'a, M>(&'a mut self, info: M) -> M::Output where M: MultiSlice<'a, A, D>, S: DataMut, { info.multi_slice_move(self.view_mut()) } /// Slice the array, possibly changing the number of dimensions. /// /// See [*Slicing*](#slicing) for full documentation. /// See also [`SliceInfo`] and [`D::SliceArg`]. /// /// [`SliceInfo`]: struct.SliceInfo.html /// [`D::SliceArg`]: trait.Dimension.html#associatedtype.SliceArg /// /// **Panics** if an index is out of bounds or step size is zero.<br> /// (**Panics** if `D` is `IxDyn` and `info` does not match the number of array axes.) pub fn slice_move<Do>(mut self, info: &SliceInfo<D::SliceArg, Do>) -> ArrayBase<S, Do> where Do: Dimension, { // Slice and collapse in-place without changing the number of dimensions. self.slice_collapse(&*info); let indices: &[SliceOrIndex] = (**info).as_ref(); // Copy the dim and strides that remain after removing the subview axes. let out_ndim = info.out_ndim(); let mut new_dim = Do::zeros(out_ndim); let mut new_strides = Do::zeros(out_ndim); izip!(self.dim.slice(), self.strides.slice(), indices) .filter_map(|(d, s, slice_or_index)| match slice_or_index { SliceOrIndex::Slice { .. } => Some((d, s)), SliceOrIndex::Index(_) => None, }) .zip(izip!(new_dim.slice_mut(), new_strides.slice_mut())) .for_each(|((d, s), (new_d, new_s))| { *new_d = *d; *new_s = *s; }); ArrayBase { ptr: self.ptr, data: self.data, dim: new_dim, strides: new_strides, } } /// Slice the array in place without changing the number of dimensions. /// /// Note that [`&SliceInfo`](struct.SliceInfo.html) (produced by the /// [`s![]`](macro.s!.html) macro) will usually coerce into `&D::SliceArg` /// automatically, but in some cases (e.g. if `D` is `IxDyn`), you may need /// to call `.as_ref()`. /// /// See [*Slicing*](#slicing) for full documentation. /// See also [`D::SliceArg`]. /// /// [`D::SliceArg`]: trait.Dimension.html#associatedtype.SliceArg /// /// **Panics** if an index is out of bounds or step size is zero.<br> /// (**Panics** if `D` is `IxDyn` and `indices` does not match the number of array axes.) pub fn slice_collapse(&mut self, indices: &D::SliceArg) { let indices: &[SliceOrIndex] = indices.as_ref(); assert_eq!(indices.len(), self.ndim()); indices .iter() .enumerate() .for_each(|(axis, &slice_or_index)| match slice_or_index { SliceOrIndex::Slice { start, end, step } => { self.slice_axis_inplace(Axis(axis), Slice { start, end, step }) } SliceOrIndex::Index(index) => { let i_usize = abs_index(self.len_of(Axis(axis)), index); self.collapse_axis(Axis(axis), i_usize) } }); } /// Slice the array in place without changing the number of dimensions. /// /// **Panics** if an index is out of bounds or step size is zero.<br> /// (**Panics** if `D` is `IxDyn` and `indices` does not match the number of array axes.) #[deprecated(note = "renamed to `slice_collapse`", since = "0.12.1")] pub fn slice_inplace(&mut self, indices: &D::SliceArg) { self.slice_collapse(indices) } /// Return a view of the array, sliced along the specified axis. /// /// **Panics** if an index is out of bounds or step size is zero.<br> /// **Panics** if `axis` is out of bounds. pub fn slice_axis(&self, axis: Axis, indices: Slice) -> ArrayView<'_, A, D> where S: Data, { let mut view = self.view(); view.slice_axis_inplace(axis, indices); view } /// Return a mutable view of the array, sliced along the specified axis. /// /// **Panics** if an index is out of bounds or step size is zero.<br> /// **Panics** if `axis` is out of bounds. pub fn slice_axis_mut(&mut self, axis: Axis, indices: Slice) -> ArrayViewMut<'_, A, D> where S: DataMut, { let mut view_mut = self.view_mut(); view_mut.slice_axis_inplace(axis, indices); view_mut } /// Slice the array in place along the specified axis. /// /// **Panics** if an index is out of bounds or step size is zero.<br> /// **Panics** if `axis` is out of bounds. pub fn slice_axis_inplace(&mut self, axis: Axis, indices: Slice) { let offset = do_slice( &mut self.dim.slice_mut()[axis.index()], &mut self.strides.slice_mut()[axis.index()], indices, ); unsafe { self.ptr = self.ptr.offset(offset); } debug_assert!(self.pointer_is_inbounds()); } /// Return a reference to the element at `index`, or return `None` /// if the index is out of bounds. /// /// Arrays also support indexing syntax: `array[index]`. /// /// ``` /// use ndarray::arr2; /// /// let a = arr2(&[[1., 2.], /// [3., 4.]]); /// /// assert!( /// a.get((0, 1)) == Some(&2.) && /// a.get((0, 2)) == None && /// a[(0, 1)] == 2. && /// a[[0, 1]] == 2. /// ); /// ``` pub fn get<I>(&self, index: I) -> Option<&A> where I: NdIndex<D>, S: Data, { unsafe { self.get_ptr(index).map(|ptr| &*ptr) } } pub(crate) fn get_ptr<I>(&self, index: I) -> Option<*const A> where I: NdIndex<D>, { let ptr = self.ptr; index .index_checked(&self.dim, &self.strides) .map(move |offset| unsafe { ptr.as_ptr().offset(offset) as *const _ }) } /// Return a mutable reference to the element at `index`, or return `None` /// if the index is out of bounds. pub fn get_mut<I>(&mut self, index: I) -> Option<&mut A> where S: DataMut, I: NdIndex<D>, { unsafe { self.get_ptr_mut(index).map(|ptr| &mut *ptr) } } pub(crate) fn get_ptr_mut<I>(&mut self, index: I) -> Option<*mut A> where S: RawDataMut, I: NdIndex<D>, { // const and mut are separate to enforce &mutness as well as the // extra code in as_mut_ptr let ptr = self.as_mut_ptr(); index .index_checked(&self.dim, &self.strides) .map(move |offset| unsafe { ptr.offset(offset) }) } /// Perform *unchecked* array indexing. /// /// Return a reference to the element at `index`. /// /// **Note:** only unchecked for non-debug builds of ndarray. /// /// # Safety /// /// The caller must ensure that the index is in-bounds. #[inline] pub unsafe fn uget<I>(&self, index: I) -> &A where S: Data, I: NdIndex<D>, { arraytraits::debug_bounds_check(self, &index); let off = index.index_unchecked(&self.strides); &*self.ptr.as_ptr().offset(off) } /// Perform *unchecked* array indexing. /// /// Return a mutable reference to the element at `index`. /// /// **Note:** Only unchecked for non-debug builds of ndarray. /// /// # Safety /// /// The caller must ensure that: /// /// 1. the index is in-bounds and /// /// 2. the data is uniquely held by the array. (This property is guaranteed /// for `Array` and `ArrayViewMut`, but not for `ArcArray` or `CowArray`.) #[inline] pub unsafe fn uget_mut<I>(&mut self, index: I) -> &mut A where S: DataMut, I: NdIndex<D>, { debug_assert!(self.data.is_unique()); arraytraits::debug_bounds_check(self, &index); let off = index.index_unchecked(&self.strides); &mut *self.ptr.as_ptr().offset(off) } /// Swap elements at indices `index1` and `index2`. /// /// Indices may be equal. /// /// ***Panics*** if an index is out of bounds. pub fn swap<I>(&mut self, index1: I, index2: I) where S: DataMut, I: NdIndex<D>, { let ptr1: *mut _ = &mut self[index1]; let ptr2: *mut _ = &mut self[index2]; unsafe { std_ptr::swap(ptr1, ptr2); } } /// Swap elements *unchecked* at indices `index1` and `index2`. /// /// Indices may be equal. /// /// **Note:** only unchecked for non-debug builds of ndarray. /// /// # Safety /// /// The caller must ensure that: /// /// 1. both `index1 and `index2` are in-bounds and /// /// 2. the data is uniquely held by the array. (This property is guaranteed /// for `Array` and `ArrayViewMut`, but not for `ArcArray` or `CowArray`.) pub unsafe fn uswap<I>(&mut self, index1: I, index2: I) where S: DataMut, I: NdIndex<D>, { debug_assert!(self.data.is_unique()); arraytraits::debug_bounds_check(self, &index1); arraytraits::debug_bounds_check(self, &index2); let off1 = index1.index_unchecked(&self.strides); let off2 = index2.index_unchecked(&self.strides); std_ptr::swap( self.ptr.as_ptr().offset(off1), self.ptr.as_ptr().offset(off2), ); } // `get` for zero-dimensional arrays // panics if dimension is not zero. otherwise an element is always present. fn get_0d(&self) -> &A where S: Data, { assert!(self.ndim() == 0); unsafe { &*self.as_ptr() } } /// Returns a view restricted to `index` along the axis, with the axis /// removed. /// /// See [*Subviews*](#subviews) for full documentation. /// /// **Panics** if `axis` or `index` is out of bounds. /// /// ``` /// use ndarray::{arr2, ArrayView, Axis}; /// /// let a = arr2(&[[1., 2. ], // ... axis 0, row 0 /// [3., 4. ], // --- axis 0, row 1 /// [5., 6. ]]); // ... axis 0, row 2 /// // . \ /// // . axis 1, column 1 /// // axis 1, column 0 /// assert!( /// a.index_axis(Axis(0), 1) == ArrayView::from(&[3., 4.]) && /// a.index_axis(Axis(1), 1) == ArrayView::from(&[2., 4., 6.]) /// ); /// ``` pub fn index_axis(&self, axis: Axis, index: usize) -> ArrayView<'_, A, D::Smaller> where S: Data, D: RemoveAxis, { self.view().index_axis_move(axis, index) } /// Returns a mutable view restricted to `index` along the axis, with the /// axis removed. /// /// **Panics** if `axis` or `index` is out of bounds. /// /// ``` /// use ndarray::{arr2, aview2, Axis}; /// /// let mut a = arr2(&[[1., 2. ], /// [3., 4. ]]); /// // . \ /// // . axis 1, column 1 /// // axis 1, column 0 /// /// { /// let mut column1 = a.index_axis_mut(Axis(1), 1); /// column1 += 10.; /// } /// /// assert!( /// a == aview2(&[[1., 12.], /// [3., 14.]]) /// ); /// ``` pub fn index_axis_mut(&mut self, axis: Axis, index: usize) -> ArrayViewMut<'_, A, D::Smaller> where S: DataMut, D: RemoveAxis, { self.view_mut().index_axis_move(axis, index) } /// Collapses the array to `index` along the axis and removes the axis. /// /// See [`.index_axis()`](#method.index_axis) and [*Subviews*](#subviews) for full documentation. /// /// **Panics** if `axis` or `index` is out of bounds. pub fn index_axis_move(mut self, axis: Axis, index: usize) -> ArrayBase<S, D::Smaller> where D: RemoveAxis, { self.collapse_axis(axis, index); let dim = self.dim.remove_axis(axis); let strides = self.strides.remove_axis(axis); ArrayBase { ptr: self.ptr, data: self.data, dim, strides, } } /// Selects `index` along the axis, collapsing the axis into length one. /// /// **Panics** if `axis` or `index` is out of bounds. pub fn collapse_axis(&mut self, axis: Axis, index: usize) { let offset = dimension::do_collapse_axis(&mut self.dim, &self.strides, axis.index(), index); self.ptr = unsafe { self.ptr.offset(offset) }; debug_assert!(self.pointer_is_inbounds()); } /// Along `axis`, select the subview `index` and return a /// view with that axis removed. /// /// **Panics** if `axis` or `index` is out of bounds. #[deprecated(note = "renamed to `index_axis`", since = "0.12.1")] pub fn subview(&self, axis: Axis, index: Ix) -> ArrayView<'_, A, D::Smaller> where S: Data, D: RemoveAxis, { self.index_axis(axis, index) } /// Along `axis`, select the subview `index` and return a read-write view /// with the axis removed. /// /// **Panics** if `axis` or `index` is out of bounds. #[deprecated(note = "renamed to `index_axis_mut`", since = "0.12.1")] pub fn subview_mut(&mut self, axis: Axis, index: Ix) -> ArrayViewMut<'_, A, D::Smaller> where S: DataMut, D: RemoveAxis, { self.index_axis_mut(axis, index) } /// Collapse dimension `axis` into length one, /// and select the subview of `index` along that axis. /// /// **Panics** if `index` is past the length of the axis. #[deprecated(note = "renamed to `collapse_axis`", since = "0.12.1")] pub fn subview_inplace(&mut self, axis: Axis, index: Ix) { self.collapse_axis(axis, index) } /// Along `axis`, select the subview `index` and return `self` /// with that axis removed. #[deprecated(note = "renamed to `index_axis_move`", since = "0.12.1")] pub fn into_subview(self, axis: Axis, index: Ix) -> ArrayBase<S, D::Smaller> where D: RemoveAxis, { self.index_axis_move(axis, index) } /// Along `axis`, select arbitrary subviews corresponding to `indices` /// and and copy them into a new array. /// /// **Panics** if `axis` or an element of `indices` is out of bounds. /// /// ``` /// use ndarray::{arr2, Axis}; /// /// let x = arr2(&[[0., 1.], /// [2., 3.], /// [4., 5.], /// [6., 7.], /// [8., 9.]]); /// /// let r = x.select(Axis(0), &[0, 4, 3]); /// assert!( /// r == arr2(&[[0., 1.], /// [8., 9.], /// [6., 7.]]) ///); /// ``` pub fn select(&self, axis: Axis, indices: &[Ix]) -> Array<A, D> where A: Copy, S: Data, D: RemoveAxis, { let mut subs = vec![self.view(); indices.len()]; for (&i, sub) in zip(indices, &mut subs[..]) { sub.collapse_axis(axis, i); } if subs.is_empty() { let mut dim = self.raw_dim(); dim.set_axis(axis, 0); unsafe { Array::from_shape_vec_unchecked(dim, vec![]) } } else { stack(axis, &subs).unwrap() } } /// Return a producer and iterable that traverses over the *generalized* /// rows of the array. For a 2D array these are the regular rows. /// /// This is equivalent to `.lanes(Axis(n - 1))` where *n* is `self.ndim()`. /// /// For an array of dimensions *a* × *b* × *c* × ... × *l* × *m* /// it has *a* × *b* × *c* × ... × *l* rows each of length *m*. /// /// For example, in a 2 × 2 × 3 array, each row is 3 elements long /// and there are 2 × 2 = 4 rows in total. /// /// Iterator element is `ArrayView1<A>` (1D array view). /// /// ``` /// use ndarray::{arr3, Axis, arr1}; /// /// let a = arr3(&[[[ 0, 1, 2], // -- row 0, 0 /// [ 3, 4, 5]], // -- row 0, 1 /// [[ 6, 7, 8], // -- row 1, 0 /// [ 9, 10, 11]]]); // -- row 1, 1 /// /// // `genrows` will yield the four generalized rows of the array. /// for row in a.genrows() { /// /* loop body */ /// } /// ``` pub fn genrows(&self) -> Lanes<'_, A, D::Smaller> where S: Data, { let mut n = self.ndim(); if n == 0 { n += 1; } Lanes::new(self.view(), Axis(n - 1)) } /// Return a producer and iterable that traverses over the *generalized* /// rows of the array and yields mutable array views. /// /// Iterator element is `ArrayView1<A>` (1D read-write array view). pub fn genrows_mut(&mut self) -> LanesMut<'_, A, D::Smaller> where S: DataMut, { let mut n = self.ndim(); if n == 0 { n += 1; } LanesMut::new(self.view_mut(), Axis(n - 1)) } /// Return a producer and iterable that traverses over the *generalized* /// columns of the array. For a 2D array these are the regular columns. /// /// This is equivalent to `.lanes(Axis(0))`. /// /// For an array of dimensions *a* × *b* × *c* × ... × *l* × *m* /// it has *b* × *c* × ... × *l* × *m* columns each of length *a*. /// /// For example, in a 2 × 2 × 3 array, each column is 2 elements long /// and there are 2 × 3 = 6 columns in total. /// /// Iterator element is `ArrayView1<A>` (1D array view). /// /// ``` /// use ndarray::{arr3, Axis, arr1}; /// /// // The generalized columns of a 3D array: /// // are directed along the 0th axis: 0 and 6, 1 and 7 and so on... /// let a = arr3(&[[[ 0, 1, 2], [ 3, 4, 5]], /// [[ 6, 7, 8], [ 9, 10, 11]]]); /// /// // Here `gencolumns` will yield the six generalized columns of the array. /// for row in a.gencolumns() { /// /* loop body */ /// } /// ``` pub fn gencolumns(&self) -> Lanes<'_, A, D::Smaller> where S: Data, { Lanes::new(self.view(), Axis(0)) } /// Return a producer and iterable that traverses over the *generalized* /// columns of the array and yields mutable array views. /// /// Iterator element is `ArrayView1<A>` (1D read-write array view). pub fn gencolumns_mut(&mut self) -> LanesMut<'_, A, D::Smaller> where S: DataMut, { LanesMut::new(self.view_mut(), Axis(0)) } /// Return a producer and iterable that traverses over all 1D lanes /// pointing in the direction of `axis`. /// /// When the pointing in the direction of the first axis, they are *columns*, /// in the direction of the last axis *rows*; in general they are all /// *lanes* and are one dimensional. /// /// Iterator element is `ArrayView1<A>` (1D array view). /// /// ``` /// use ndarray::{arr3, aview1, Axis}; /// /// let a = arr3(&[[[ 0, 1, 2], /// [ 3, 4, 5]], /// [[ 6, 7, 8], /// [ 9, 10, 11]]]); /// /// let inner0 = a.lanes(Axis(0)); /// let inner1 = a.lanes(Axis(1)); /// let inner2 = a.lanes(Axis(2)); /// /// // The first lane for axis 0 is [0, 6] /// assert_eq!(inner0.into_iter().next().unwrap(), aview1(&[0, 6])); /// // The first lane for axis 1 is [0, 3] /// assert_eq!(inner1.into_iter().next().unwrap(), aview1(&[0, 3])); /// // The first lane for axis 2 is [0, 1, 2] /// assert_eq!(inner2.into_iter().next().unwrap(), aview1(&[0, 1, 2])); /// ``` pub fn lanes(&self, axis: Axis) -> Lanes<'_, A, D::Smaller> where S: Data, { Lanes::new(self.view(), axis) } /// Return a producer and iterable that traverses over all 1D lanes /// pointing in the direction of `axis`. /// /// Iterator element is `ArrayViewMut1<A>` (1D read-write array view). pub fn lanes_mut(&mut self, axis: Axis) -> LanesMut<'_, A, D::Smaller> where S: DataMut, { LanesMut::new(self.view_mut(), axis) } /// Return an iterator that traverses over the outermost dimension /// and yields each subview. /// /// This is equivalent to `.axis_iter(Axis(0))`. /// /// Iterator element is `ArrayView<A, D::Smaller>` (read-only array view). #[allow(deprecated)] pub fn outer_iter(&self) -> AxisIter<'_, A, D::Smaller> where S: Data, D: RemoveAxis, { self.view().into_outer_iter() } /// Return an iterator that traverses over the outermost dimension /// and yields each subview. /// /// This is equivalent to `.axis_iter_mut(Axis(0))`. /// /// Iterator element is `ArrayViewMut<A, D::Smaller>` (read-write array view). #[allow(deprecated)] pub fn outer_iter_mut(&mut self) -> AxisIterMut<'_, A, D::Smaller> where S: DataMut, D: RemoveAxis, { self.view_mut().into_outer_iter() } /// Return an iterator that traverses over `axis` /// and yields each subview along it. /// /// For example, in a 3 × 4 × 5 array, with `axis` equal to `Axis(2)`, /// the iterator element /// is a 3 × 4 subview (and there are 5 in total), as shown /// in the picture below. /// /// Iterator element is `ArrayView<A, D::Smaller>` (read-only array view). /// /// See [*Subviews*](#subviews) for full documentation. /// /// **Panics** if `axis` is out of bounds. /// /// <img src="https://rust-ndarray.github.io/ndarray/images/axis_iter_3_4_5.svg" height="250px"> pub fn axis_iter(&self, axis: Axis) -> AxisIter<'_, A, D::Smaller> where S: Data, D: RemoveAxis, { AxisIter::new(self.view(), axis) } /// Return an iterator that traverses over `axis` /// and yields each mutable subview along it. /// /// Iterator element is `ArrayViewMut<A, D::Smaller>` /// (read-write array view). /// /// **Panics** if `axis` is out of bounds. pub fn axis_iter_mut(&mut self, axis: Axis) -> AxisIterMut<'_, A, D::Smaller> where S: DataMut, D: RemoveAxis, { AxisIterMut::new(self.view_mut(), axis) } /// Return an iterator that traverses over `axis` by chunks of `size`, /// yielding non-overlapping views along that axis. /// /// Iterator element is `ArrayView<A, D>` /// /// The last view may have less elements if `size` does not divide /// the axis' dimension. /// /// **Panics** if `axis` is out of bounds or if `size` is zero. /// /// ``` /// use ndarray::Array; /// use ndarray::{arr3, Axis}; /// use std::iter::FromIterator; /// /// let a = Array::from_iter(0..28).into_shape((2, 7, 2)).unwrap(); /// let mut iter = a.axis_chunks_iter(Axis(1), 2); /// /// // first iteration yields a 2 × 2 × 2 view /// assert_eq!(iter.next().unwrap(), /// arr3(&[[[ 0, 1], [ 2, 3]], /// [[14, 15], [16, 17]]])); /// /// // however the last element is a 2 × 1 × 2 view since 7 % 2 == 1 /// assert_eq!(iter.next_back().unwrap(), arr3(&[[[12, 13]], /// [[26, 27]]])); /// ``` pub fn axis_chunks_iter(&self, axis: Axis, size: usize) -> AxisChunksIter<'_, A, D> where S: Data, { AxisChunksIter::new(self.view(), axis, size) } /// Return an iterator that traverses over `axis` by chunks of `size`, /// yielding non-overlapping read-write views along that axis. /// /// Iterator element is `ArrayViewMut<A, D>` /// /// **Panics** if `axis` is out of bounds or if `size` is zero. pub fn axis_chunks_iter_mut(&mut self, axis: Axis, size: usize) -> AxisChunksIterMut<'_, A, D> where S: DataMut, { AxisChunksIterMut::new(self.view_mut(), axis, size) } /// Return an exact chunks producer (and iterable). /// /// It produces the whole chunks of a given n-dimensional chunk size, /// skipping the remainder along each dimension that doesn't fit evenly. /// /// The produced element is a `ArrayView<A, D>` with exactly the dimension /// `chunk_size`. /// /// **Panics** if any dimension of `chunk_size` is zero<br> /// (**Panics** if `D` is `IxDyn` and `chunk_size` does not match the /// number of array axes.) pub fn exact_chunks<E>(&self, chunk_size: E) -> ExactChunks<'_, A, D> where E: IntoDimension<Dim = D>, S: Data, { ExactChunks::new(self.view(), chunk_size) } /// Return an exact chunks producer (and iterable). /// /// It produces the whole chunks of a given n-dimensional chunk size, /// skipping the remainder along each dimension that doesn't fit evenly. /// /// The produced element is a `ArrayViewMut<A, D>` with exactly /// the dimension `chunk_size`. /// /// **Panics** if any dimension of `chunk_size` is zero<br> /// (**Panics** if `D` is `IxDyn` and `chunk_size` does not match the /// number of array axes.) /// /// ```rust /// use ndarray::Array; /// use ndarray::arr2; /// let mut a = Array::zeros((6, 7)); /// /// // Fill each 2 × 2 chunk with the index of where it appeared in iteration /// for (i, mut chunk) in a.exact_chunks_mut((2, 2)).into_iter().enumerate() { /// chunk.fill(i); /// } /// /// // The resulting array is: /// assert_eq!( /// a, /// arr2(&[[0, 0, 1, 1, 2, 2, 0], /// [0, 0, 1, 1, 2, 2, 0], /// [3, 3, 4, 4, 5, 5, 0], /// [3, 3, 4, 4, 5, 5, 0], /// [6, 6, 7, 7, 8, 8, 0], /// [6, 6, 7, 7, 8, 8, 0]])); /// ``` pub fn exact_chunks_mut<E>(&mut self, chunk_size: E) -> ExactChunksMut<'_, A, D> where E: IntoDimension<Dim = D>, S: DataMut, { ExactChunksMut::new(self.view_mut(), chunk_size) } /// Return a window producer and iterable. /// /// The windows are all distinct overlapping views of size `window_size` /// that fit into the array's shape. /// /// Will yield over no elements if window size is larger /// than the actual array size of any dimension. /// /// The produced element is an `ArrayView<A, D>` with exactly the dimension /// `window_size`. /// /// **Panics** if any dimension of `window_size` is zero.<br> /// (**Panics** if `D` is `IxDyn` and `window_size` does not match the /// number of array axes.) /// /// This is an illustration of the 2×2 windows in a 3×4 array: /// /// ```text /// ──▶ Axis(1) /// /// │ ┏━━━━━┳━━━━━┱─────┬─────┐ ┌─────┲━━━━━┳━━━━━┱─────┐ ┌─────┬─────┲━━━━━┳━━━━━┓ /// ▼ ┃ a₀₀ ┃ a₀₁ ┃ │ │ │ ┃ a₀₁ ┃ a₀₂ ┃ │ │ │ ┃ a₀₂ ┃ a₀₃ ┃ /// Axis(0) ┣━━━━━╋━━━━━╉─────┼─────┤ ├─────╊━━━━━╋━━━━━╉─────┤ ├─────┼─────╊━━━━━╋━━━━━┫ /// ┃ a₁₀ ┃ a₁₁ ┃ │ │ │ ┃ a₁₁ ┃ a₁₂ ┃ │ │ │ ┃ a₁₂ ┃ a₁₃ ┃ /// ┡━━━━━╇━━━━━╃─────┼─────┤ ├─────╄━━━━━╇━━━━━╃─────┤ ├─────┼─────╄━━━━━╇━━━━━┩ /// │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ /// └─────┴─────┴─────┴─────┘ └─────┴─────┴─────┴─────┘ └─────┴─────┴─────┴─────┘ /// /// ┌─────┬─────┬─────┬─────┐ ┌─────┬─────┬─────┬─────┐ ┌─────┬─────┬─────┬─────┐ /// │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ /// ┢━━━━━╈━━━━━╅─────┼─────┤ ├─────╆━━━━━╈━━━━━╅─────┤ ├─────┼─────╆━━━━━╈━━━━━┪ /// ┃ a₁₀ ┃ a₁₁ ┃ │ │ │ ┃ a₁₁ ┃ a₁₂ ┃ │ │ │ ┃ a₁₂ ┃ a₁₃ ┃ /// ┣━━━━━╋━━━━━╉─────┼─────┤ ├─────╊━━━━━╋━━━━━╉─────┤ ├─────┼─────╊━━━━━╋━━━━━┫ /// ┃ a₂₀ ┃ a₂₁ ┃ │ │ │ ┃ a₂₁ ┃ a₂₂ ┃ │ │ │ ┃ a₂₂ ┃ a₂₃ ┃ /// ┗━━━━━┻━━━━━┹─────┴─────┘ └─────┺━━━━━┻━━━━━┹─────┘ └─────┴─────┺━━━━━┻━━━━━┛ /// ``` pub fn windows<E>(&self, window_size: E) -> Windows<'_, A, D> where E: IntoDimension<Dim = D>, S: Data, { Windows::new(self.view(), window_size) } // Return (length, stride) for diagonal fn diag_params(&self) -> (Ix, Ixs) { /* empty shape has len 1 */ let len = self.dim.slice().iter().cloned().min().unwrap_or(1); let stride = self.strides().iter().sum(); (len, stride) } /// Return an view of the diagonal elements of the array. /// /// The diagonal is simply the sequence indexed by *(0, 0, .., 0)*, /// *(1, 1, ..., 1)* etc as long as all axes have elements. pub fn diag(&self) -> ArrayView1<'_, A> where S: Data, { self.view().into_diag() } /// Return a read-write view over the diagonal elements of the array. pub fn diag_mut(&mut self) -> ArrayViewMut1<'_, A> where S: DataMut, { self.view_mut().into_diag() } /// Return the diagonal as a one-dimensional array. pub fn into_diag(self) -> ArrayBase<S, Ix1> { let (len, stride) = self.diag_params(); ArrayBase { data: self.data, ptr: self.ptr, dim: Ix1(len), strides: Ix1(stride as Ix), } } /// Try to make the array unshared. /// /// This is equivalent to `.ensure_unique()` if `S: DataMut`. /// /// This method is mostly only useful with unsafe code. fn try_ensure_unique(&mut self) where S: RawDataMut, { debug_assert!(self.pointer_is_inbounds()); S::try_ensure_unique(self); debug_assert!(self.pointer_is_inbounds()); } /// Make the array unshared. /// /// This method is mostly only useful with unsafe code. fn ensure_unique(&mut self) where S: DataMut, { debug_assert!(self.pointer_is_inbounds()); S::ensure_unique(self); debug_assert!(self.pointer_is_inbounds()); } /// Return `true` if the array data is laid out in contiguous “C order” in /// memory (where the last index is the most rapidly varying). /// /// Return `false` otherwise, i.e the array is possibly not /// contiguous in memory, it has custom strides, etc. pub fn is_standard_layout(&self) -> bool { fn is_standard_layout<D: Dimension>(dim: &D, strides: &D) -> bool { if let Some(1) = D::NDIM { return strides[0] == 1 || dim[0] <= 1; } if dim.slice().iter().any(|&d| d == 0) { return true; } let defaults = dim.default_strides(); // check all dimensions -- a dimension of length 1 can have unequal strides for (&dim, &s, &ds) in izip!(dim.slice(), strides.slice(), defaults.slice()) { if dim != 1 && s != ds { return false; } } true } is_standard_layout(&self.dim, &self.strides) } fn is_contiguous(&self) -> bool { D::is_contiguous(&self.dim, &self.strides) } /// Return a standard-layout array containing the data, cloning if /// necessary. /// /// If `self` is in standard layout, a COW view of the data is returned /// without cloning. Otherwise, the data is cloned, and the returned array /// owns the cloned data. /// /// ``` /// use ndarray::Array2; /// /// let standard = Array2::<f64>::zeros((3, 4)); /// assert!(standard.is_standard_layout()); /// let cow_view = standard.as_standard_layout(); /// assert!(cow_view.is_view()); /// assert!(cow_view.is_standard_layout()); /// /// let fortran = standard.reversed_axes(); /// assert!(!fortran.is_standard_layout()); /// let cow_owned = fortran.as_standard_layout(); /// assert!(cow_owned.is_owned()); /// assert!(cow_owned.is_standard_layout()); /// ``` pub fn as_standard_layout(&self) -> CowArray<'_, A, D> where S: Data<Elem = A>, A: Clone, { if self.is_standard_layout() { CowArray::from(self.view()) } else { let v: Vec<A> = self.iter().cloned().collect(); let dim = self.dim.clone(); assert_eq!(v.len(), dim.size()); let owned_array: Array<A, D> = unsafe { // Safe because the shape and element type are from the existing array // and the strides are the default strides. Array::from_shape_vec_unchecked(dim, v) }; CowArray::from(owned_array) } } /// Return a pointer to the first element in the array. /// /// Raw access to array elements needs to follow the strided indexing /// scheme: an element at multi-index *I* in an array with strides *S* is /// located at offset /// /// *Σ<sub>0 ≤ k < d</sub> I<sub>k</sub> × S<sub>k</sub>* /// /// where *d* is `self.ndim()`. #[inline(always)] pub fn as_ptr(&self) -> *const A { self.ptr.as_ptr() as *const A } /// Return a mutable pointer to the first element in the array. #[inline(always)] pub fn as_mut_ptr(&mut self) -> *mut A where S: RawDataMut, { self.try_ensure_unique(); // for RcArray self.ptr.as_ptr() } /// Return a raw view of the array. #[inline] pub fn raw_view(&self) -> RawArrayView<A, D> { unsafe { RawArrayView::new(self.ptr, self.dim.clone(), self.strides.clone()) } } /// Return a raw mutable view of the array. #[inline] pub fn raw_view_mut(&mut self) -> RawArrayViewMut<A, D> where S: RawDataMut, { self.try_ensure_unique(); // for RcArray unsafe { RawArrayViewMut::new(self.ptr, self.dim.clone(), self.strides.clone()) } } /// Return the array’s data as a slice, if it is contiguous and in standard order. /// Return `None` otherwise. /// /// If this function returns `Some(_)`, then the element order in the slice /// corresponds to the logical order of the array’s elements. pub fn as_slice(&self) -> Option<&[A]> where S: Data, { if self.is_standard_layout() { unsafe { Some(slice::from_raw_parts(self.ptr.as_ptr(), self.len())) } } else { None } } /// Return the array’s data as a slice, if it is contiguous and in standard order. /// Return `None` otherwise. pub fn as_slice_mut(&mut self) -> Option<&mut [A]> where S: DataMut, { if self.is_standard_layout() { self.ensure_unique(); unsafe { Some(slice::from_raw_parts_mut(self.ptr.as_ptr(), self.len())) } } else { None } } /// Return the array’s data as a slice if it is contiguous, /// return `None` otherwise. /// /// If this function returns `Some(_)`, then the elements in the slice /// have whatever order the elements have in memory. /// /// Implementation notes: Does not yet support negatively strided arrays. pub fn as_slice_memory_order(&self) -> Option<&[A]> where S: Data, { if self.is_contiguous() { unsafe { Some(slice::from_raw_parts(self.ptr.as_ptr(), self.len())) } } else { None } } /// Return the array’s data as a slice if it is contiguous, /// return `None` otherwise. pub fn as_slice_memory_order_mut(&mut self) -> Option<&mut [A]> where S: DataMut, { if self.is_contiguous() { self.ensure_unique(); unsafe { Some(slice::from_raw_parts_mut(self.ptr.as_ptr(), self.len())) } } else { None } } /// Transform the array into `shape`; any shape with the same number of /// elements is accepted, but the source array or view must be in standard /// or column-major (Fortran) layout. /// /// **Errors** if the shapes don't have the same number of elements.<br> /// **Errors** if the input array is not c- or f-contiguous. /// /// ``` /// use ndarray::{aview1, aview2}; /// /// assert!( /// aview1(&[1., 2., 3., 4.]).into_shape((2, 2)).unwrap() /// == aview2(&[[1., 2.], /// [3., 4.]]) /// ); /// ``` pub fn into_shape<E>(self, shape: E) -> Result<ArrayBase<S, E::Dim>, ShapeError> where E: IntoDimension, { let shape = shape.into_dimension(); if size_of_shape_checked(&shape) != Ok(self.dim.size()) { return Err(error::incompatible_shapes(&self.dim, &shape)); } // Check if contiguous, if not => copy all, else just adapt strides if self.is_standard_layout() { Ok(ArrayBase { data: self.data, ptr: self.ptr, strides: shape.default_strides(), dim: shape, }) } else if self.ndim() > 1 && self.raw_view().reversed_axes().is_standard_layout() { Ok(ArrayBase { data: self.data, ptr: self.ptr, strides: shape.fortran_strides(), dim: shape, }) } else { Err(error::from_kind(error::ErrorKind::IncompatibleLayout)) } } /// *Note: Reshape is for `ArcArray` only. Use `.into_shape()` for /// other arrays and array views.* /// /// Transform the array into `shape`; any shape with the same number of /// elements is accepted. /// /// May clone all elements if needed to arrange elements in standard /// layout (and break sharing). /// /// **Panics** if shapes are incompatible. /// /// ``` /// use ndarray::{rcarr1, rcarr2}; /// /// assert!( /// rcarr1(&[1., 2., 3., 4.]).reshape((2, 2)) /// == rcarr2(&[[1., 2.], /// [3., 4.]]) /// ); /// ``` pub fn reshape<E>(&self, shape: E) -> ArrayBase<S, E::Dim> where S: DataShared + DataOwned, A: Clone, E: IntoDimension, { let shape = shape.into_dimension(); if size_of_shape_checked(&shape) != Ok(self.dim.size()) { panic!( "ndarray: incompatible shapes in reshape, attempted from: {:?}, to: {:?}", self.dim.slice(), shape.slice() ) } // Check if contiguous, if not => copy all, else just adapt strides if self.is_standard_layout() { let cl = self.clone(); ArrayBase { data: cl.data, ptr: cl.ptr, strides: shape.default_strides(), dim: shape, } } else { let v = self.iter().cloned().collect::<Vec<A>>(); unsafe { ArrayBase::from_shape_vec_unchecked(shape, v) } } } /// Convert any array or array view to a dynamic dimensional array or /// array view (respectively). /// /// ``` /// use ndarray::{arr2, ArrayD}; /// /// let array: ArrayD<i32> = arr2(&[[1, 2], /// [3, 4]]).into_dyn(); /// ``` pub fn into_dyn(self) -> ArrayBase<S, IxDyn> { ArrayBase { data: self.data, ptr: self.ptr, dim: self.dim.into_dyn(), strides: self.strides.into_dyn(), } } /// Convert an array or array view to another with the same type, but /// different dimensionality type. Errors if the dimensions don't agree. /// /// ``` /// use ndarray::{ArrayD, Ix2, IxDyn}; /// /// // Create a dynamic dimensionality array and convert it to an Array2 /// // (Ix2 dimension type). /// /// let array = ArrayD::<f64>::zeros(IxDyn(&[10, 10])); /// /// assert!(array.into_dimensionality::<Ix2>().is_ok()); /// ``` pub fn into_dimensionality<D2>(self) -> Result<ArrayBase<S, D2>, ShapeError> where D2: Dimension, { if let Some(dim) = D2::from_dimension(&self.dim) { if let Some(strides) = D2::from_dimension(&self.strides) { return Ok(ArrayBase { data: self.data, ptr: self.ptr, dim, strides, }); } } Err(ShapeError::from_kind(ErrorKind::IncompatibleShape)) } /// Act like a larger size and/or shape array by *broadcasting* /// into a larger shape, if possible. /// /// Return `None` if shapes can not be broadcast together. /// /// ***Background*** /// /// * Two axes are compatible if they are equal, or one of them is 1. /// * In this instance, only the axes of the smaller side (self) can be 1. /// /// Compare axes beginning with the *last* axis of each shape. /// /// For example (1, 2, 4) can be broadcast into (7, 6, 2, 4) /// because its axes are either equal or 1 (or missing); /// while (2, 2) can *not* be broadcast into (2, 4). /// /// The implementation creates a view with strides set to zero for the /// axes that are to be repeated. /// /// The broadcasting documentation for Numpy has more information. /// /// ``` /// use ndarray::{aview1, aview2}; /// /// assert!( /// aview1(&[1., 0.]).broadcast((10, 2)).unwrap() /// == aview2(&[[1., 0.]; 10]) /// ); /// ``` pub fn broadcast<E>(&self, dim: E) -> Option<ArrayView<'_, A, E::Dim>> where E: IntoDimension, S: Data, { /// Return new stride when trying to grow `from` into shape `to` /// /// Broadcasting works by returning a "fake stride" where elements /// to repeat are in axes with 0 stride, so that several indexes point /// to the same element. /// /// **Note:** Cannot be used for mutable iterators, since repeating /// elements would create aliasing pointers. fn upcast<D: Dimension, E: Dimension>(to: &D, from: &E, stride: &E) -> Option<D> { // Make sure the product of non-zero axis lengths does not exceed // `isize::MAX`. This is the only safety check we need to perform // because all the other constraints of `ArrayBase` are guaranteed // to be met since we're starting from a valid `ArrayBase`. let _ = size_of_shape_checked(to).ok()?; let mut new_stride = to.clone(); // begin at the back (the least significant dimension) // size of the axis has to either agree or `from` has to be 1 if to.ndim() < from.ndim() { return None; } { let mut new_stride_iter = new_stride.slice_mut().iter_mut().rev(); for ((er, es), dr) in from .slice() .iter() .rev() .zip(stride.slice().iter().rev()) .zip(new_stride_iter.by_ref()) { /* update strides */ if *dr == *er { /* keep stride */ *dr = *es; } else if *er == 1 { /* dead dimension, zero stride */ *dr = 0 } else { return None; } } /* set remaining strides to zero */ for dr in new_stride_iter { *dr = 0; } } Some(new_stride) } let dim = dim.into_dimension(); // Note: zero strides are safe precisely because we return an read-only view let broadcast_strides = match upcast(&dim, &self.dim, &self.strides) { Some(st) => st, None => return None, }; unsafe { Some(ArrayView::new(self.ptr, dim, broadcast_strides)) } } /// Swap axes `ax` and `bx`. /// /// This does not move any data, it just adjusts the array’s dimensions /// and strides. /// /// **Panics** if the axes are out of bounds. /// /// ``` /// use ndarray::arr2; /// /// let mut a = arr2(&[[1., 2., 3.]]); /// a.swap_axes(0, 1); /// assert!( /// a == arr2(&[[1.], [2.], [3.]]) /// ); /// ``` pub fn swap_axes(&mut self, ax: usize, bx: usize) { self.dim.slice_mut().swap(ax, bx); self.strides.slice_mut().swap(ax, bx); } /// Permute the axes. /// /// This does not move any data, it just adjusts the array’s dimensions /// and strides. /// /// *i* in the *j*-th place in the axes sequence means `self`'s *i*-th axis /// becomes `self.permuted_axes()`'s *j*-th axis /// /// **Panics** if any of the axes are out of bounds, if an axis is missing, /// or if an axis is repeated more than once. /// /// # Examples /// /// ``` /// use ndarray::{arr2, Array3}; /// /// let a = arr2(&[[0, 1], [2, 3]]); /// assert_eq!(a.view().permuted_axes([1, 0]), a.t()); /// /// let b = Array3::<u8>::zeros((1, 2, 3)); /// assert_eq!(b.permuted_axes([1, 0, 2]).shape(), &[2, 1, 3]); /// ``` pub fn permuted_axes<T>(self, axes: T) -> ArrayBase<S, D> where T: IntoDimension<Dim = D>, { let axes = axes.into_dimension(); // Ensure that each axis is used exactly once. let mut usage_counts = D::zeros(self.ndim()); for axis in axes.slice() { usage_counts[*axis] += 1; } for count in usage_counts.slice() { assert_eq!(*count, 1, "each axis must be listed exactly once"); } // Determine the new shape and strides. let mut new_dim = usage_counts; // reuse to avoid an allocation let mut new_strides = D::zeros(self.ndim()); { let dim = self.dim.slice(); let strides = self.strides.slice(); for (new_axis, &axis) in axes.slice().iter().enumerate() { new_dim[new_axis] = dim[axis]; new_strides[new_axis] = strides[axis]; } } ArrayBase { dim: new_dim, strides: new_strides, ..self } } /// Transpose the array by reversing axes. /// /// Transposition reverses the order of the axes (dimensions and strides) /// while retaining the same data. pub fn reversed_axes(mut self) -> ArrayBase<S, D> { self.dim.slice_mut().reverse(); self.strides.slice_mut().reverse(); self } /// Return a transposed view of the array. /// /// This is a shorthand for `self.view().reversed_axes()`. /// /// See also the more general methods `.reversed_axes()` and `.swap_axes()`. pub fn t(&self) -> ArrayView<'_, A, D> where S: Data, { self.view().reversed_axes() } /// Return an iterator over the length and stride of each axis. pub fn axes(&self) -> Axes<'_, D> { axes_of(&self.dim, &self.strides) } /* /// Return the axis with the least stride (by absolute value) pub fn min_stride_axis(&self) -> Axis { self.dim.min_stride_axis(&self.strides) } */ /// Return the axis with the greatest stride (by absolute value), /// preferring axes with len > 1. pub fn max_stride_axis(&self) -> Axis { self.dim.max_stride_axis(&self.strides) } /// Reverse the stride of `axis`. /// /// ***Panics*** if the axis is out of bounds. pub fn invert_axis(&mut self, axis: Axis) { unsafe { let s = self.strides.axis(axis) as Ixs; let m = self.dim.axis(axis); if m != 0 { self.ptr = self.ptr.offset(stride_offset(m - 1, s as Ix)); } self.strides.set_axis(axis, (-s) as Ix); } } /// If possible, merge in the axis `take` to `into`. /// /// Returns `true` iff the axes are now merged. /// /// This method merges the axes if movement along the two original axes /// (moving fastest along the `into` axis) can be equivalently represented /// as movement along one (merged) axis. Merging the axes preserves this /// order in the merged axis. If `take` and `into` are the same axis, then /// the axis is "merged" if its length is ≤ 1. /// /// If the return value is `true`, then the following hold: /// /// * The new length of the `into` axis is the product of the original /// lengths of the two axes. /// /// * The new length of the `take` axis is 0 if the product of the original /// lengths of the two axes is 0, and 1 otherwise. /// /// If the return value is `false`, then merging is not possible, and the /// original shape and strides have been preserved. /// /// Note that the ordering constraint means that if it's possible to merge /// `take` into `into`, it's usually not possible to merge `into` into /// `take`, and vice versa. /// /// ``` /// use ndarray::Array3; /// use ndarray::Axis; /// /// let mut a = Array3::<f64>::zeros((2, 3, 4)); /// assert!(a.merge_axes(Axis(1), Axis(2))); /// assert_eq!(a.shape(), &[2, 1, 12]); /// ``` /// /// ***Panics*** if an axis is out of bounds. pub fn merge_axes(&mut self, take: Axis, into: Axis) -> bool { merge_axes(&mut self.dim, &mut self.strides, take, into) } /// Insert new array axis at `axis` and return the result. /// /// ``` /// use ndarray::{Array3, Axis, arr1, arr2}; /// /// // Convert a 1-D array into a row vector (2-D). /// let a = arr1(&[1, 2, 3]); /// let row = a.insert_axis(Axis(0)); /// assert_eq!(row, arr2(&[[1, 2, 3]])); /// /// // Convert a 1-D array into a column vector (2-D). /// let b = arr1(&[1, 2, 3]); /// let col = b.insert_axis(Axis(1)); /// assert_eq!(col, arr2(&[[1], [2], [3]])); /// /// // The new axis always has length 1. /// let b = Array3::<f64>::zeros((3, 4, 5)); /// assert_eq!(b.insert_axis(Axis(2)).shape(), &[3, 4, 1, 5]); /// ``` /// /// ***Panics*** if the axis is out of bounds. pub fn insert_axis(self, axis: Axis) -> ArrayBase<S, D::Larger> { assert!(axis.index() <= self.ndim()); let ArrayBase { ptr, data, dim, strides, } = self; ArrayBase { ptr, data, dim: dim.insert_axis(axis), strides: strides.insert_axis(axis), } } /// Remove array axis `axis` and return the result. /// /// **Panics** if the axis is out of bounds or its length is zero. #[deprecated(note = "use `.index_axis_move(Axis(_), 0)` instead", since = "0.12.1")] pub fn remove_axis(self, axis: Axis) -> ArrayBase<S, D::Smaller> where D: RemoveAxis, { self.index_axis_move(axis, 0) } fn pointer_is_inbounds(&self) -> bool { match self.data._data_slice() { None => { // special case for non-owned views true } Some(slc) => { let ptr = slc.as_ptr() as *mut A; let end = unsafe { ptr.add(slc.len()) }; self.ptr.as_ptr() >= ptr && self.ptr.as_ptr() <= end } } } /// Perform an elementwise assigment to `self` from `rhs`. /// /// If their shapes disagree, `rhs` is broadcast to the shape of `self`. /// /// **Panics** if broadcasting isn’t possible. pub fn assign<E: Dimension, S2>(&mut self, rhs: &ArrayBase<S2, E>) where S: DataMut, A: Clone, S2: Data<Elem = A>, { self.zip_mut_with(rhs, |x, y| *x = y.clone()); } /// Perform an elementwise assigment to `self` from element `x`. pub fn fill(&mut self, x: A) where S: DataMut, A: Clone, { self.unordered_foreach_mut(move |elt| *elt = x.clone()); } fn zip_mut_with_same_shape<B, S2, E, F>(&mut self, rhs: &ArrayBase<S2, E>, mut f: F) where S: DataMut, S2: Data<Elem = B>, E: Dimension, F: FnMut(&mut A, &B), { debug_assert_eq!(self.shape(), rhs.shape()); if self.dim.strides_equivalent(&self.strides, &rhs.strides) { if let Some(self_s) = self.as_slice_memory_order_mut() { if let Some(rhs_s) = rhs.as_slice_memory_order() { for (s, r) in self_s.iter_mut().zip(rhs_s) { f(s, &r); } return; } } } // Otherwise, fall back to the outer iter self.zip_mut_with_by_rows(rhs, f); } // zip two arrays where they have different layout or strides #[inline(always)] fn zip_mut_with_by_rows<B, S2, E, F>(&mut self, rhs: &ArrayBase<S2, E>, mut f: F) where S: DataMut, S2: Data<Elem = B>, E: Dimension, F: FnMut(&mut A, &B), { debug_assert_eq!(self.shape(), rhs.shape()); debug_assert_ne!(self.ndim(), 0); // break the arrays up into their inner rows let n = self.ndim(); let dim = self.raw_dim(); Zip::from(LanesMut::new(self.view_mut(), Axis(n - 1))) .and(Lanes::new(rhs.broadcast_assume(dim), Axis(n - 1))) .apply(move |s_row, r_row| Zip::from(s_row).and(r_row).apply(|a, b| f(a, b))); } fn zip_mut_with_elem<B, F>(&mut self, rhs_elem: &B, mut f: F) where S: DataMut, F: FnMut(&mut A, &B), { self.unordered_foreach_mut(move |elt| f(elt, rhs_elem)); } /// Traverse two arrays in unspecified order, in lock step, /// calling the closure `f` on each element pair. /// /// If their shapes disagree, `rhs` is broadcast to the shape of `self`. /// /// **Panics** if broadcasting isn’t possible. #[inline] pub fn zip_mut_with<B, S2, E, F>(&mut self, rhs: &ArrayBase<S2, E>, f: F) where S: DataMut, S2: Data<Elem = B>, E: Dimension, F: FnMut(&mut A, &B), { if rhs.dim.ndim() == 0 { // Skip broadcast from 0-dim array self.zip_mut_with_elem(rhs.get_0d(), f); } else if self.dim.ndim() == rhs.dim.ndim() && self.shape() == rhs.shape() { self.zip_mut_with_same_shape(rhs, f); } else { let rhs_broadcast = rhs.broadcast_unwrap(self.raw_dim()); self.zip_mut_with_by_rows(&rhs_broadcast, f); } } /// Traverse the array elements and apply a fold, /// returning the resulting value. /// /// Elements are visited in arbitrary order. pub fn fold<'a, F, B>(&'a self, init: B, f: F) -> B where F: FnMut(B, &'a A) -> B, A: 'a, S: Data, { if let Some(slc) = self.as_slice_memory_order() { slc.iter().fold(init, f) } else { let mut v = self.view(); // put the narrowest axis at the last position match v.ndim() { 0 | 1 => {} 2 => { if self.len_of(Axis(1)) <= 1 || self.len_of(Axis(0)) > 1 && self.stride_of(Axis(0)).abs() < self.stride_of(Axis(1)).abs() { v.swap_axes(0, 1); } } n => { let last = n - 1; let narrow_axis = v .axes() .filter(|ax| ax.len() > 1) .min_by_key(|ax| ax.stride().abs()) .map_or(last, |ax| ax.axis().index()); v.swap_axes(last, narrow_axis); } } v.into_elements_base().fold(init, f) } } /// Call `f` by reference on each element and create a new array /// with the new values. /// /// Elements are visited in arbitrary order. /// /// Return an array with the same shape as `self`. /// /// ``` /// use ndarray::arr2; /// /// let a = arr2(&[[ 0., 1.], /// [-1., 2.]]); /// assert!( /// a.map(|x| *x >= 1.0) /// == arr2(&[[false, true], /// [false, true]]) /// ); /// ``` pub fn map<'a, B, F>(&'a self, f: F) -> Array<B, D> where F: FnMut(&'a A) -> B, A: 'a, S: Data, { if let Some(slc) = self.as_slice_memory_order() { let v = crate::iterators::to_vec_mapped(slc.iter(), f); unsafe { ArrayBase::from_shape_vec_unchecked( self.dim.clone().strides(self.strides.clone()), v, ) } } else { let v = crate::iterators::to_vec_mapped(self.iter(), f); unsafe { ArrayBase::from_shape_vec_unchecked(self.dim.clone(), v) } } } /// Call `f` on a mutable reference of each element and create a new array /// with the new values. /// /// Elements are visited in arbitrary order. /// /// Return an array with the same shape as `self`. pub fn map_mut<'a, B, F>(&'a mut self, f: F) -> Array<B, D> where F: FnMut(&'a mut A) -> B, A: 'a, S: DataMut, { let dim = self.dim.clone(); if self.is_contiguous() { let strides = self.strides.clone(); let slc = self.as_slice_memory_order_mut().unwrap(); let v = crate::iterators::to_vec_mapped(slc.iter_mut(), f); unsafe { ArrayBase::from_shape_vec_unchecked(dim.strides(strides), v) } } else { let v = crate::iterators::to_vec_mapped(self.iter_mut(), f); unsafe { ArrayBase::from_shape_vec_unchecked(dim, v) } } } /// Call `f` by **v**alue on each element and create a new array /// with the new values. /// /// Elements are visited in arbitrary order. /// /// Return an array with the same shape as `self`. /// /// ``` /// use ndarray::arr2; /// /// let a = arr2(&[[ 0., 1.], /// [-1., 2.]]); /// assert!( /// a.mapv(f32::abs) == arr2(&[[0., 1.], /// [1., 2.]]) /// ); /// ``` pub fn mapv<B, F>(&self, mut f: F) -> Array<B, D> where F: FnMut(A) -> B, A: Clone, S: Data, { self.map(move |x| f(x.clone())) } /// Call `f` by **v**alue on each element, update the array with the new values /// and return it. /// /// Elements are visited in arbitrary order. pub fn mapv_into<F>(mut self, f: F) -> Self where S: DataMut, F: FnMut(A) -> A, A: Clone, { self.mapv_inplace(f); self } /// Modify the array in place by calling `f` by mutable reference on each element. /// /// Elements are visited in arbitrary order. pub fn map_inplace<F>(&mut self, f: F) where S: DataMut, F: FnMut(&mut A), { self.unordered_foreach_mut(f); } /// Modify the array in place by calling `f` by **v**alue on each element. /// The array is updated with the new values. /// /// Elements are visited in arbitrary order. /// /// ``` /// use approx::assert_abs_diff_eq; /// use ndarray::arr2; /// /// # #[cfg(feature = "approx")] { /// let mut a = arr2(&[[ 0., 1.], /// [-1., 2.]]); /// a.mapv_inplace(f32::exp); /// assert_abs_diff_eq!( /// a, /// arr2(&[[1.00000, 2.71828], /// [0.36788, 7.38906]]), /// epsilon = 1e-5, /// ); /// # } /// ``` pub fn mapv_inplace<F>(&mut self, mut f: F) where S: DataMut, F: FnMut(A) -> A, A: Clone, { self.unordered_foreach_mut(move |x| *x = f(x.clone())); } /// Visit each element in the array by calling `f` by reference /// on each element. /// /// Elements are visited in arbitrary order. pub fn visit<'a, F>(&'a self, mut f: F) where F: FnMut(&'a A), A: 'a, S: Data, { self.fold((), move |(), elt| f(elt)) } /// Fold along an axis. /// /// Combine the elements of each subview with the previous using the `fold` /// function and initial value `init`. /// /// Return the result as an `Array`. /// /// **Panics** if `axis` is out of bounds. pub fn fold_axis<B, F>(&self, axis: Axis, init: B, mut fold: F) -> Array<B, D::Smaller> where D: RemoveAxis, F: FnMut(&B, &A) -> B, B: Clone, S: Data, { let mut res = Array::from_elem(self.raw_dim().remove_axis(axis), init); for subview in self.axis_iter(axis) { res.zip_mut_with(&subview, |x, y| *x = fold(x, y)); } res } /// Reduce the values along an axis into just one value, producing a new /// array with one less dimension. /// /// Elements are visited in arbitrary order. /// /// Return the result as an `Array`. /// /// **Panics** if `axis` is out of bounds. pub fn map_axis<'a, B, F>(&'a self, axis: Axis, mut mapping: F) -> Array<B, D::Smaller> where D: RemoveAxis, F: FnMut(ArrayView1<'a, A>) -> B, A: 'a, S: Data, { let view_len = self.len_of(axis); let view_stride = self.strides.axis(axis); if view_len == 0 { let new_dim = self.dim.remove_axis(axis); Array::from_shape_simple_fn(new_dim, move || mapping(ArrayView::from(&[]))) } else { // use the 0th subview as a map to each 1d array view extended from // the 0th element. self.index_axis(axis, 0).map(|first_elt| unsafe { mapping(ArrayView::new_(first_elt, Ix1(view_len), Ix1(view_stride))) }) } } /// Reduce the values along an axis into just one value, producing a new /// array with one less dimension. /// 1-dimensional lanes are passed as mutable references to the reducer, /// allowing for side-effects. /// /// Elements are visited in arbitrary order. /// /// Return the result as an `Array`. /// /// **Panics** if `axis` is out of bounds. pub fn map_axis_mut<'a, B, F>(&'a mut self, axis: Axis, mut mapping: F) -> Array<B, D::Smaller> where D: RemoveAxis, F: FnMut(ArrayViewMut1<'a, A>) -> B, A: 'a, S: DataMut, { let view_len = self.len_of(axis); let view_stride = self.strides.axis(axis); if view_len == 0 { let new_dim = self.dim.remove_axis(axis); Array::from_shape_simple_fn(new_dim, move || mapping(ArrayViewMut::from(&mut []))) } else { // use the 0th subview as a map to each 1d array view extended from // the 0th element. self.index_axis_mut(axis, 0).map_mut(|first_elt| unsafe { mapping(ArrayViewMut::new_( first_elt, Ix1(view_len), Ix1(view_stride), )) }) } } /// Iterates over pairs of consecutive elements along the axis. /// /// The first argument to the closure is an element, and the second /// argument is the next element along the axis. Iteration is guaranteed to /// proceed in order along the specified axis, but in all other respects /// the iteration order is unspecified. /// /// # Example /// /// For example, this can be used to compute the cumulative sum along an /// axis: /// /// ``` /// use ndarray::{array, Axis}; /// /// let mut arr = array![ /// [[1, 2], [3, 4], [5, 6]], /// [[7, 8], [9, 10], [11, 12]], /// ]; /// arr.accumulate_axis_inplace(Axis(1), |&prev, curr| *curr += prev); /// assert_eq!( /// arr, /// array![ /// [[1, 2], [4, 6], [9, 12]], /// [[7, 8], [16, 18], [27, 30]], /// ], /// ); /// ``` pub fn accumulate_axis_inplace<F>(&mut self, axis: Axis, mut f: F) where F: FnMut(&A, &mut A), S: DataMut, { if self.len_of(axis) <= 1 { return; } let mut curr = self.raw_view_mut(); // mut borrow of the array here let mut prev = curr.raw_view(); // derive further raw views from the same borrow prev.slice_axis_inplace(axis, Slice::from(..-1)); curr.slice_axis_inplace(axis, Slice::from(1..)); // This implementation relies on `Zip` iterating along `axis` in order. Zip::from(prev).and(curr).apply(|prev, curr| unsafe { // These pointer dereferences and borrows are safe because: // // 1. They're pointers to elements in the array. // // 2. `S: DataMut` guarantees that elements are safe to borrow // mutably and that they don't alias. // // 3. The lifetimes of the borrows last only for the duration // of the call to `f`, so aliasing across calls to `f` // cannot occur. f(&*prev, &mut *curr) }); } }