1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
// Copyright 2014-2019 bluss and ndarray developers // and Michał Krasnoborski (krdln) // // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! A few iterator-related utilities and tools use std::iter; /// Iterate `iterable` with a running index. /// /// `IntoIterator` enabled version of `.enumerate()`. /// /// ``` /// use itertools::enumerate; /// /// for (i, elt) in enumerate(&[1, 2, 3]) { /// /* loop body */ /// } /// ``` pub(crate) fn enumerate<I>(iterable: I) -> iter::Enumerate<I::IntoIter> where I: IntoIterator, { iterable.into_iter().enumerate() } /// Iterate `i` and `j` in lock step. /// /// `IntoIterator` enabled version of `i.zip(j)`. /// /// ``` /// use itertools::zip; /// /// let data = [1, 2, 3, 4, 5]; /// for (a, b) in zip(&data, &data[1..]) { /// /* loop body */ /// } /// ``` pub(crate) fn zip<I, J>(i: I, j: J) -> iter::Zip<I::IntoIter, J::IntoIter> where I: IntoIterator, J: IntoIterator, { i.into_iter().zip(j) } /// Create an iterator running multiple iterators in lockstep. /// /// The `izip!` iterator yields elements until any subiterator /// returns `None`. /// /// This is a version of the standard ``.zip()`` that's supporting more than /// two iterators. The iterator element type is a tuple with one element /// from each of the input iterators. Just like ``.zip()``, the iteration stops /// when the shortest of the inputs reaches its end. /// /// **Note:** The result of this macro is in the general case an iterator /// composed of repeated `.zip()` and a `.map()`; it has an anonymous type. /// The special cases of one and two arguments produce the equivalent of /// `$a.into_iter()` and `$a.into_iter().zip($b)` respectively. /// /// Prefer this macro `izip!()` over [`multizip`] for the performance benefits /// of using the standard library `.zip()`. /// /// [`multizip`]: fn.multizip.html /// /// ``` /// #[macro_use] extern crate itertools; /// # fn main() { /// /// // iterate over three sequences side-by-side /// let mut results = [0, 0, 0, 0]; /// let inputs = [3, 7, 9, 6]; /// /// for (r, index, input) in izip!(&mut results, 0..10, &inputs) { /// *r = index * 10 + input; /// } /// /// assert_eq!(results, [0 + 3, 10 + 7, 29, 36]); /// # } /// ``` /// /// **Note:** To enable the macros in this crate, use the `#[macro_use]` /// attribute when importing the crate: /// /// ``` /// #[macro_use] extern crate itertools; /// # fn main() { } /// ``` macro_rules! izip { // @closure creates a tuple-flattening closure for .map() call. usage: // @closure partial_pattern => partial_tuple , rest , of , iterators // eg. izip!( @closure ((a, b), c) => (a, b, c) , dd , ee ) ( @closure $p:pat => $tup:expr ) => { |$p| $tup }; // The "b" identifier is a different identifier on each recursion level thanks to hygiene. ( @closure $p:pat => ( $($tup:tt)* ) , $_iter:expr $( , $tail:expr )* ) => { izip!(@closure ($p, b) => ( $($tup)*, b ) $( , $tail )*) }; // unary ($first:expr $(,)*) => { IntoIterator::into_iter($first) }; // binary ($first:expr, $second:expr $(,)*) => { izip!($first) .zip($second) }; // n-ary where n > 2 ( $first:expr $( , $rest:expr )* $(,)* ) => { izip!($first) $( .zip($rest) )* .map( izip!(@closure a => (a) $( , $rest )*) ) }; }