1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
use num_traits::Float;
pub struct Linspace<F> {
start: F,
step: F,
index: usize,
len: usize,
}
impl<F> Iterator for Linspace<F>
where
F: Float,
{
type Item = F;
#[inline]
fn next(&mut self) -> Option<F> {
if self.index >= self.len {
None
} else {
let i = self.index;
self.index += 1;
Some(self.start + self.step * F::from(i).unwrap())
}
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
let n = self.len - self.index;
(n, Some(n))
}
}
impl<F> DoubleEndedIterator for Linspace<F>
where
F: Float,
{
#[inline]
fn next_back(&mut self) -> Option<F> {
if self.index >= self.len {
None
} else {
self.len -= 1;
let i = self.len;
Some(self.start + self.step * F::from(i).unwrap())
}
}
}
impl<F> ExactSizeIterator for Linspace<F> where Linspace<F>: Iterator {}
#[inline]
pub fn linspace<F>(a: F, b: F, n: usize) -> Linspace<F>
where
F: Float,
{
let step = if n > 1 {
let num_steps = F::from(n - 1).expect("Converting number of steps to `A` must not fail.");
(b - a) / num_steps
} else {
F::zero()
};
Linspace {
start: a,
step,
index: 0,
len: n,
}
}
#[inline]
pub fn range<F>(a: F, b: F, step: F) -> Linspace<F>
where
F: Float,
{
let len = b - a;
let steps = F::ceil(len / step);
Linspace {
start: a,
step,
len: steps.to_usize().expect(
"Converting the length to `usize` must not fail. The most likely \
cause of this failure is if the sign of `end - start` is \
different from the sign of `step`.",
),
index: 0,
}
}