1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
// Copyright 2014-2016 bluss and ndarray developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use crate::dimension::slices_intersect;
use crate::error::{ErrorKind, ShapeError};
use crate::{ArrayViewMut, Dimension};
use std::fmt;
use std::marker::PhantomData;
use std::ops::{Deref, Range, RangeFrom, RangeFull, RangeInclusive, RangeTo, RangeToInclusive};

/// A slice (range with step size).
///
/// `end` is an exclusive index. Negative `begin` or `end` indexes are counted
/// from the back of the axis. If `end` is `None`, the slice extends to the end
/// of the axis.
///
/// See also the [`s![]`](macro.s.html) macro.
///
/// ## Examples
///
/// `Slice::new(0, None, 1)` is the full range of an axis. It can also be
/// created with `Slice::from(..)`. The Python equivalent is `[:]`.
///
/// `Slice::new(a, b, 2)` is every second element from `a` until `b`. It can
/// also be created with `Slice::from(a..b).step_by(2)`. The Python equivalent
/// is `[a:b:2]`.
///
/// `Slice::new(a, None, -1)` is every element, from `a` until the end, in
/// reverse order. It can also be created with `Slice::from(a..).step_by(-1)`.
/// The Python equivalent is `[a::-1]`.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
pub struct Slice {
    pub start: isize,
    pub end: Option<isize>,
    pub step: isize,
}

impl Slice {
    /// Create a new `Slice` with the given extents.
    ///
    /// See also the `From` impls, converting from ranges; for example
    /// `Slice::from(i..)` or `Slice::from(j..k)`.
    ///
    /// `step` must be nonzero.
    /// (This method checks with a debug assertion that `step` is not zero.)
    pub fn new(start: isize, end: Option<isize>, step: isize) -> Slice {
        debug_assert_ne!(step, 0, "Slice::new: step must be nonzero");
        Slice { start, end, step }
    }

    /// Create a new `Slice` with the given step size (multiplied with the
    /// previous step size).
    ///
    /// `step` must be nonzero.
    /// (This method checks with a debug assertion that `step` is not zero.)
    #[inline]
    pub fn step_by(self, step: isize) -> Self {
        debug_assert_ne!(step, 0, "Slice::step_by: step must be nonzero");
        Slice {
            step: self.step * step,
            ..self
        }
    }
}

/// A slice (range with step) or an index.
///
/// See also the [`s![]`](macro.s!.html) macro for a convenient way to create a
/// `&SliceInfo<[SliceOrIndex; n], D>`.
///
/// ## Examples
///
/// `SliceOrIndex::Index(a)` is the index `a`. It can also be created with
/// `SliceOrIndex::from(a)`. The Python equivalent is `[a]`. The macro
/// equivalent is `s![a]`.
///
/// `SliceOrIndex::Slice { start: 0, end: None, step: 1 }` is the full range of
/// an axis. It can also be created with `SliceOrIndex::from(..)`. The Python
/// equivalent is `[:]`. The macro equivalent is `s![..]`.
///
/// `SliceOrIndex::Slice { start: a, end: Some(b), step: 2 }` is every second
/// element from `a` until `b`. It can also be created with
/// `SliceOrIndex::from(a..b).step_by(2)`. The Python equivalent is `[a:b:2]`.
/// The macro equivalent is `s![a..b;2]`.
///
/// `SliceOrIndex::Slice { start: a, end: None, step: -1 }` is every element,
/// from `a` until the end, in reverse order. It can also be created with
/// `SliceOrIndex::from(a..).step_by(-1)`. The Python equivalent is `[a::-1]`.
/// The macro equivalent is `s![a..;-1]`.
#[derive(Debug, PartialEq, Eq, Hash)]
pub enum SliceOrIndex {
    /// A range with step size. `end` is an exclusive index. Negative `begin`
    /// or `end` indexes are counted from the back of the axis. If `end` is
    /// `None`, the slice extends to the end of the axis.
    Slice {
        start: isize,
        end: Option<isize>,
        step: isize,
    },
    /// A single index.
    Index(isize),
}

copy_and_clone! {SliceOrIndex}

impl SliceOrIndex {
    /// Returns `true` if `self` is a `Slice` value.
    pub fn is_slice(&self) -> bool {
        match self {
            SliceOrIndex::Slice { .. } => true,
            _ => false,
        }
    }

    /// Returns `true` if `self` is an `Index` value.
    pub fn is_index(&self) -> bool {
        match self {
            SliceOrIndex::Index(_) => true,
            _ => false,
        }
    }

    /// Returns a new `SliceOrIndex` with the given step size (multiplied with
    /// the previous step size).
    ///
    /// `step` must be nonzero.
    /// (This method checks with a debug assertion that `step` is not zero.)
    #[inline]
    pub fn step_by(self, step: isize) -> Self {
        debug_assert_ne!(step, 0, "SliceOrIndex::step_by: step must be nonzero");
        match self {
            SliceOrIndex::Slice {
                start,
                end,
                step: orig_step,
            } => SliceOrIndex::Slice {
                start,
                end,
                step: orig_step * step,
            },
            SliceOrIndex::Index(s) => SliceOrIndex::Index(s),
        }
    }
}

impl fmt::Display for SliceOrIndex {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match *self {
            SliceOrIndex::Index(index) => write!(f, "{}", index)?,
            SliceOrIndex::Slice { start, end, step } => {
                if start != 0 {
                    write!(f, "{}", start)?;
                }
                write!(f, "..")?;
                if let Some(i) = end {
                    write!(f, "{}", i)?;
                }
                if step != 1 {
                    write!(f, ";{}", step)?;
                }
            }
        }
        Ok(())
    }
}

macro_rules! impl_slice_variant_from_range {
    ($self:ty, $constructor:path, $index:ty) => {
        impl From<Range<$index>> for $self {
            #[inline]
            fn from(r: Range<$index>) -> $self {
                $constructor {
                    start: r.start as isize,
                    end: Some(r.end as isize),
                    step: 1,
                }
            }
        }

        impl From<RangeInclusive<$index>> for $self {
            #[inline]
            fn from(r: RangeInclusive<$index>) -> $self {
                let end = *r.end() as isize;
                $constructor {
                    start: *r.start() as isize,
                    end: if end == -1 { None } else { Some(end + 1) },
                    step: 1,
                }
            }
        }

        impl From<RangeFrom<$index>> for $self {
            #[inline]
            fn from(r: RangeFrom<$index>) -> $self {
                $constructor {
                    start: r.start as isize,
                    end: None,
                    step: 1,
                }
            }
        }

        impl From<RangeTo<$index>> for $self {
            #[inline]
            fn from(r: RangeTo<$index>) -> $self {
                $constructor {
                    start: 0,
                    end: Some(r.end as isize),
                    step: 1,
                }
            }
        }

        impl From<RangeToInclusive<$index>> for $self {
            #[inline]
            fn from(r: RangeToInclusive<$index>) -> $self {
                let end = r.end as isize;
                $constructor {
                    start: 0,
                    end: if end == -1 { None } else { Some(end + 1) },
                    step: 1,
                }
            }
        }
    };
}
impl_slice_variant_from_range!(Slice, Slice, isize);
impl_slice_variant_from_range!(Slice, Slice, usize);
impl_slice_variant_from_range!(Slice, Slice, i32);
impl_slice_variant_from_range!(SliceOrIndex, SliceOrIndex::Slice, isize);
impl_slice_variant_from_range!(SliceOrIndex, SliceOrIndex::Slice, usize);
impl_slice_variant_from_range!(SliceOrIndex, SliceOrIndex::Slice, i32);

impl From<RangeFull> for Slice {
    #[inline]
    fn from(_: RangeFull) -> Slice {
        Slice {
            start: 0,
            end: None,
            step: 1,
        }
    }
}

impl From<RangeFull> for SliceOrIndex {
    #[inline]
    fn from(_: RangeFull) -> SliceOrIndex {
        SliceOrIndex::Slice {
            start: 0,
            end: None,
            step: 1,
        }
    }
}

impl From<Slice> for SliceOrIndex {
    #[inline]
    fn from(s: Slice) -> SliceOrIndex {
        SliceOrIndex::Slice {
            start: s.start,
            end: s.end,
            step: s.step,
        }
    }
}

macro_rules! impl_sliceorindex_from_index {
    ($index:ty) => {
        impl From<$index> for SliceOrIndex {
            #[inline]
            fn from(r: $index) -> SliceOrIndex {
                SliceOrIndex::Index(r as isize)
            }
        }
    };
}
impl_sliceorindex_from_index!(isize);
impl_sliceorindex_from_index!(usize);
impl_sliceorindex_from_index!(i32);

/// Represents all of the necessary information to perform a slice.
///
/// The type `T` is typically `[SliceOrIndex; n]`, `[SliceOrIndex]`, or
/// `Vec<SliceOrIndex>`. The type `D` is the output dimension after calling
/// [`.slice()`].
///
/// [`.slice()`]: struct.ArrayBase.html#method.slice
#[derive(Debug)]
#[repr(C)]
pub struct SliceInfo<T: ?Sized, D: Dimension> {
    out_dim: PhantomData<D>,
    indices: T,
}

impl<T: ?Sized, D> Deref for SliceInfo<T, D>
where
    D: Dimension,
{
    type Target = T;
    fn deref(&self) -> &Self::Target {
        &self.indices
    }
}

impl<T, D> SliceInfo<T, D>
where
    D: Dimension,
{
    /// Returns a new `SliceInfo` instance.
    ///
    /// If you call this method, you are guaranteeing that `out_dim` is
    /// consistent with `indices`.
    #[doc(hidden)]
    pub unsafe fn new_unchecked(indices: T, out_dim: PhantomData<D>) -> SliceInfo<T, D> {
        SliceInfo { out_dim, indices }
    }
}

impl<T, D> SliceInfo<T, D>
where
    T: AsRef<[SliceOrIndex]>,
    D: Dimension,
{
    /// Returns a new `SliceInfo` instance.
    ///
    /// Errors if `D` is not consistent with `indices`.
    pub fn new(indices: T) -> Result<SliceInfo<T, D>, ShapeError> {
        if let Some(ndim) = D::NDIM {
            if ndim != indices.as_ref().iter().filter(|s| s.is_slice()).count() {
                return Err(ShapeError::from_kind(ErrorKind::IncompatibleShape));
            }
        }
        Ok(SliceInfo {
            out_dim: PhantomData,
            indices,
        })
    }
}

impl<T: ?Sized, D> SliceInfo<T, D>
where
    T: AsRef<[SliceOrIndex]>,
    D: Dimension,
{
    /// Returns the number of dimensions after calling
    /// [`.slice()`](struct.ArrayBase.html#method.slice) (including taking
    /// subviews).
    ///
    /// If `D` is a fixed-size dimension type, then this is equivalent to
    /// `D::NDIM.unwrap()`. Otherwise, the value is calculated by iterating
    /// over the ranges/indices.
    pub fn out_ndim(&self) -> usize {
        D::NDIM.unwrap_or_else(|| {
            self.indices
                .as_ref()
                .iter()
                .filter(|s| s.is_slice())
                .count()
        })
    }
}

impl<T, D> AsRef<[SliceOrIndex]> for SliceInfo<T, D>
where
    T: AsRef<[SliceOrIndex]>,
    D: Dimension,
{
    fn as_ref(&self) -> &[SliceOrIndex] {
        self.indices.as_ref()
    }
}

impl<T, D> AsRef<SliceInfo<[SliceOrIndex], D>> for SliceInfo<T, D>
where
    T: AsRef<[SliceOrIndex]>,
    D: Dimension,
{
    fn as_ref(&self) -> &SliceInfo<[SliceOrIndex], D> {
        unsafe {
            // This is okay because the only non-zero-sized member of
            // `SliceInfo` is `indices`, so `&SliceInfo<[SliceOrIndex], D>`
            // should have the same bitwise representation as
            // `&[SliceOrIndex]`.
            &*(self.indices.as_ref() as *const [SliceOrIndex]
                as *const SliceInfo<[SliceOrIndex], D>)
        }
    }
}

impl<T, D> Copy for SliceInfo<T, D>
where
    T: Copy,
    D: Dimension,
{
}

impl<T, D> Clone for SliceInfo<T, D>
where
    T: Clone,
    D: Dimension,
{
    fn clone(&self) -> Self {
        SliceInfo {
            out_dim: PhantomData,
            indices: self.indices.clone(),
        }
    }
}

#[doc(hidden)]
pub trait SliceNextDim<D1, D2> {
    fn next_dim(&self, _: PhantomData<D1>) -> PhantomData<D2>;
}

macro_rules! impl_slicenextdim_equal {
    ($self:ty) => {
        impl<D1: Dimension> SliceNextDim<D1, D1> for $self {
            fn next_dim(&self, _: PhantomData<D1>) -> PhantomData<D1> {
                PhantomData
            }
        }
    };
}
impl_slicenextdim_equal!(isize);
impl_slicenextdim_equal!(usize);
impl_slicenextdim_equal!(i32);

macro_rules! impl_slicenextdim_larger {
    (($($generics:tt)*), $self:ty) => {
        impl<D1: Dimension, $($generics)*> SliceNextDim<D1, D1::Larger> for $self {
            fn next_dim(&self, _: PhantomData<D1>) -> PhantomData<D1::Larger> {
                PhantomData
            }
        }
    }
}
impl_slicenextdim_larger!((T), Range<T>);
impl_slicenextdim_larger!((T), RangeInclusive<T>);
impl_slicenextdim_larger!((T), RangeFrom<T>);
impl_slicenextdim_larger!((T), RangeTo<T>);
impl_slicenextdim_larger!((T), RangeToInclusive<T>);
impl_slicenextdim_larger!((), RangeFull);
impl_slicenextdim_larger!((), Slice);

/// Slice argument constructor.
///
/// `s![]` takes a list of ranges/slices/indices, separated by comma, with
/// optional step sizes that are separated from the range by a semicolon. It is
/// converted into a [`&SliceInfo`] instance.
///
/// [`&SliceInfo`]: struct.SliceInfo.html
///
/// Each range/slice/index uses signed indices, where a negative value is
/// counted from the end of the axis. Step sizes are also signed and may be
/// negative, but must not be zero.
///
/// The syntax is `s![` *[ axis-slice-or-index [, axis-slice-or-index [ , ... ]
/// ] ]* `]`, where *axis-slice-or-index* is any of the following:
///
/// * *index*: an index to use for taking a subview with respect to that axis.
///   (The index is selected. The axis is removed except with
///   [`.slice_collapse()`].)
/// * *range*: a range with step size 1 to use for slicing that axis.
/// * *range* `;` *step*: a range with step size *step* to use for slicing that axis.
/// * *slice*: a [`Slice`] instance to use for slicing that axis.
/// * *slice* `;` *step*: a range constructed from the start and end of a [`Slice`]
///   instance, with new step size *step*, to use for slicing that axis.
///
/// [`Slice`]: struct.Slice.html
///
/// The number of *axis-slice-or-index* must match the number of axes in the
/// array. *index*, *range*, *slice*, and *step* can be expressions. *index*
/// must be of type `isize`, `usize`, or `i32`. *range* must be of type
/// `Range<I>`, `RangeTo<I>`, `RangeFrom<I>`, or `RangeFull` where `I` is
/// `isize`, `usize`, or `i32`. *step* must be a type that can be converted to
/// `isize` with the `as` keyword.
///
/// For example `s![0..4;2, 6, 1..5]` is a slice of the first axis for 0..4
/// with step size 2, a subview of the second axis at index 6, and a slice of
/// the third axis for 1..5 with default step size 1. The input array must have
/// 3 dimensions. The resulting slice would have shape `[2, 4]` for
/// [`.slice()`], [`.slice_mut()`], and [`.slice_move()`], and shape
/// `[2, 1, 4]` for [`.slice_collapse()`].
///
/// [`.slice()`]: struct.ArrayBase.html#method.slice
/// [`.slice_mut()`]: struct.ArrayBase.html#method.slice_mut
/// [`.slice_move()`]: struct.ArrayBase.html#method.slice_move
/// [`.slice_collapse()`]: struct.ArrayBase.html#method.slice_collapse
///
/// See also [*Slicing*](struct.ArrayBase.html#slicing).
///
/// # Example
///
/// ```
/// extern crate ndarray;
///
/// use ndarray::{s, Array2, ArrayView2};
///
/// fn laplacian(v: &ArrayView2<f32>) -> Array2<f32> {
///     -4. * &v.slice(s![1..-1, 1..-1])
///     + v.slice(s![ ..-2, 1..-1])
///     + v.slice(s![1..-1,  ..-2])
///     + v.slice(s![1..-1, 2..  ])
///     + v.slice(s![2..  , 1..-1])
/// }
/// # fn main() { }
/// ```
///
/// # Negative *step*
///
/// The behavior of negative *step* arguments is most easily understood with
/// slicing as a two-step process:
///
/// 1. First, perform a slice with *range*.
///
/// 2. If *step* is positive, start with the front of the slice; if *step* is
///    negative, start with the back of the slice. Then, add *step* until
///    reaching the other end of the slice (inclusive).
///
/// An equivalent way to think about step 2 is, "If *step* is negative, reverse
/// the slice. Start at the front of the (possibly reversed) slice, and add
/// *step.abs()* until reaching the back of the slice (inclusive)."
///
/// For example,
///
/// ```
/// # extern crate ndarray;
/// #
/// # use ndarray::prelude::*;
/// #
/// # fn main() {
/// let arr = array![0, 1, 2, 3];
/// assert_eq!(arr.slice(s![1..3;-1]), array![2, 1]);
/// assert_eq!(arr.slice(s![1..;-2]), array![3, 1]);
/// assert_eq!(arr.slice(s![0..4;-2]), array![3, 1]);
/// assert_eq!(arr.slice(s![0..;-2]), array![3, 1]);
/// assert_eq!(arr.slice(s![..;-2]), array![3, 1]);
/// # }
/// ```
#[macro_export]
macro_rules! s(
    // convert a..b;c into @convert(a..b, c), final item
    (@parse $dim:expr, [$($stack:tt)*] $r:expr;$s:expr) => {
        match $r {
            r => {
                let out_dim = $crate::SliceNextDim::next_dim(&r, $dim);
                #[allow(unsafe_code)]
                unsafe {
                    $crate::SliceInfo::new_unchecked(
                        [$($stack)* $crate::s!(@convert r, $s)],
                        out_dim,
                    )
                }
            }
        }
    };
    // convert a..b into @convert(a..b), final item
    (@parse $dim:expr, [$($stack:tt)*] $r:expr) => {
        match $r {
            r => {
                let out_dim = $crate::SliceNextDim::next_dim(&r, $dim);
                #[allow(unsafe_code)]
                unsafe {
                    $crate::SliceInfo::new_unchecked(
                        [$($stack)* $crate::s!(@convert r)],
                        out_dim,
                    )
                }
            }
        }
    };
    // convert a..b;c into @convert(a..b, c), final item, trailing comma
    (@parse $dim:expr, [$($stack:tt)*] $r:expr;$s:expr ,) => {
        $crate::s![@parse $dim, [$($stack)*] $r;$s]
    };
    // convert a..b into @convert(a..b), final item, trailing comma
    (@parse $dim:expr, [$($stack:tt)*] $r:expr ,) => {
        $crate::s![@parse $dim, [$($stack)*] $r]
    };
    // convert a..b;c into @convert(a..b, c)
    (@parse $dim:expr, [$($stack:tt)*] $r:expr;$s:expr, $($t:tt)*) => {
        match $r {
            r => {
                $crate::s![@parse
                   $crate::SliceNextDim::next_dim(&r, $dim),
                   [$($stack)* $crate::s!(@convert r, $s),]
                   $($t)*
                ]
            }
        }
    };
    // convert a..b into @convert(a..b)
    (@parse $dim:expr, [$($stack:tt)*] $r:expr, $($t:tt)*) => {
        match $r {
            r => {
                $crate::s![@parse
                   $crate::SliceNextDim::next_dim(&r, $dim),
                   [$($stack)* $crate::s!(@convert r),]
                   $($t)*
                ]
            }
        }
    };
    // empty call, i.e. `s![]`
    (@parse ::std::marker::PhantomData::<$crate::Ix0>, []) => {
        {
            #[allow(unsafe_code)]
            unsafe {
                $crate::SliceInfo::new_unchecked([], ::std::marker::PhantomData::<$crate::Ix0>)
            }
        }
    };
    // Catch-all clause for syntax errors
    (@parse $($t:tt)*) => { compile_error!("Invalid syntax in s![] call.") };
    // convert range/index into SliceOrIndex
    (@convert $r:expr) => {
        <$crate::SliceOrIndex as ::std::convert::From<_>>::from($r)
    };
    // convert range/index and step into SliceOrIndex
    (@convert $r:expr, $s:expr) => {
        <$crate::SliceOrIndex as ::std::convert::From<_>>::from($r).step_by($s as isize)
    };
    ($($t:tt)*) => {
        // The extra `*&` is a workaround for this compiler bug:
        // https://github.com/rust-lang/rust/issues/23014
        &*&$crate::s![@parse ::std::marker::PhantomData::<$crate::Ix0>, [] $($t)*]
    };
);

/// Slicing information describing multiple mutable, disjoint slices.
///
/// It's unfortunate that we need `'a` and `A` to be parameters of the trait,
/// but they're necessary until Rust supports generic associated types.
pub trait MultiSlice<'a, A, D>
where
    A: 'a,
    D: Dimension,
{
    /// The type of the slices created by `.multi_slice_move()`.
    type Output;

    /// Split the view into multiple disjoint slices.
    ///
    /// **Panics** if performing any individual slice panics or if the slices
    /// are not disjoint (i.e. if they intersect).
    fn multi_slice_move(&self, view: ArrayViewMut<'a, A, D>) -> Self::Output;
}

impl<'a, A, D> MultiSlice<'a, A, D> for ()
where
    A: 'a,
    D: Dimension,
{
    type Output = ();

    fn multi_slice_move(&self, _view: ArrayViewMut<'a, A, D>) -> Self::Output {}
}

impl<'a, A, D, Do0> MultiSlice<'a, A, D> for (&SliceInfo<D::SliceArg, Do0>,)
where
    A: 'a,
    D: Dimension,
    Do0: Dimension,
{
    type Output = (ArrayViewMut<'a, A, Do0>,);

    fn multi_slice_move(&self, view: ArrayViewMut<'a, A, D>) -> Self::Output {
        (view.slice_move(self.0),)
    }
}

macro_rules! impl_multislice_tuple {
    ([$($but_last:ident)*] $last:ident) => {
        impl_multislice_tuple!(@def_impl ($($but_last,)* $last,), [$($but_last)*] $last);
    };
    (@def_impl ($($all:ident,)*), [$($but_last:ident)*] $last:ident) => {
        impl<'a, A, D, $($all,)*> MultiSlice<'a, A, D> for ($(&SliceInfo<D::SliceArg, $all>,)*)
        where
            A: 'a,
            D: Dimension,
            $($all: Dimension,)*
        {
            type Output = ($(ArrayViewMut<'a, A, $all>,)*);

            fn multi_slice_move(&self, view: ArrayViewMut<'a, A, D>) -> Self::Output {
                #[allow(non_snake_case)]
                let ($($all,)*) = self;

                let shape = view.raw_dim();
                assert!(!impl_multislice_tuple!(@intersects_self &shape, ($($all,)*)));

                let raw_view = view.into_raw_view_mut();
                unsafe {
                    (
                        $(raw_view.clone().slice_move($but_last).deref_into_view_mut(),)*
                        raw_view.slice_move($last).deref_into_view_mut(),
                    )
                }
            }
        }
    };
    (@intersects_self $shape:expr, ($head:expr,)) => {
        false
    };
    (@intersects_self $shape:expr, ($head:expr, $($tail:expr,)*)) => {
        $(slices_intersect($shape, $head, $tail)) ||*
            || impl_multislice_tuple!(@intersects_self $shape, ($($tail,)*))
    };
}

impl_multislice_tuple!([Do0] Do1);
impl_multislice_tuple!([Do0 Do1] Do2);
impl_multislice_tuple!([Do0 Do1 Do2] Do3);
impl_multislice_tuple!([Do0 Do1 Do2 Do3] Do4);
impl_multislice_tuple!([Do0 Do1 Do2 Do3 Do4] Do5);

impl<'a, A, D, T> MultiSlice<'a, A, D> for &T
where
    A: 'a,
    D: Dimension,
    T: MultiSlice<'a, A, D>,
{
    type Output = T::Output;

    fn multi_slice_move(&self, view: ArrayViewMut<'a, A, D>) -> Self::Output {
        T::multi_slice_move(self, view)
    }
}