1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
// Copyright 2014-2016 bluss and ndarray developers. // // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your // option. This file may not be copied, modified, or distributed // except according to those terms. use crate::dimension::slices_intersect; use crate::error::{ErrorKind, ShapeError}; use crate::{ArrayViewMut, Dimension}; use std::fmt; use std::marker::PhantomData; use std::ops::{Deref, Range, RangeFrom, RangeFull, RangeInclusive, RangeTo, RangeToInclusive}; /// A slice (range with step size). /// /// `end` is an exclusive index. Negative `begin` or `end` indexes are counted /// from the back of the axis. If `end` is `None`, the slice extends to the end /// of the axis. /// /// See also the [`s![]`](macro.s.html) macro. /// /// ## Examples /// /// `Slice::new(0, None, 1)` is the full range of an axis. It can also be /// created with `Slice::from(..)`. The Python equivalent is `[:]`. /// /// `Slice::new(a, b, 2)` is every second element from `a` until `b`. It can /// also be created with `Slice::from(a..b).step_by(2)`. The Python equivalent /// is `[a:b:2]`. /// /// `Slice::new(a, None, -1)` is every element, from `a` until the end, in /// reverse order. It can also be created with `Slice::from(a..).step_by(-1)`. /// The Python equivalent is `[a::-1]`. #[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)] pub struct Slice { pub start: isize, pub end: Option<isize>, pub step: isize, } impl Slice { /// Create a new `Slice` with the given extents. /// /// See also the `From` impls, converting from ranges; for example /// `Slice::from(i..)` or `Slice::from(j..k)`. /// /// `step` must be nonzero. /// (This method checks with a debug assertion that `step` is not zero.) pub fn new(start: isize, end: Option<isize>, step: isize) -> Slice { debug_assert_ne!(step, 0, "Slice::new: step must be nonzero"); Slice { start, end, step } } /// Create a new `Slice` with the given step size (multiplied with the /// previous step size). /// /// `step` must be nonzero. /// (This method checks with a debug assertion that `step` is not zero.) #[inline] pub fn step_by(self, step: isize) -> Self { debug_assert_ne!(step, 0, "Slice::step_by: step must be nonzero"); Slice { step: self.step * step, ..self } } } /// A slice (range with step) or an index. /// /// See also the [`s![]`](macro.s!.html) macro for a convenient way to create a /// `&SliceInfo<[SliceOrIndex; n], D>`. /// /// ## Examples /// /// `SliceOrIndex::Index(a)` is the index `a`. It can also be created with /// `SliceOrIndex::from(a)`. The Python equivalent is `[a]`. The macro /// equivalent is `s![a]`. /// /// `SliceOrIndex::Slice { start: 0, end: None, step: 1 }` is the full range of /// an axis. It can also be created with `SliceOrIndex::from(..)`. The Python /// equivalent is `[:]`. The macro equivalent is `s![..]`. /// /// `SliceOrIndex::Slice { start: a, end: Some(b), step: 2 }` is every second /// element from `a` until `b`. It can also be created with /// `SliceOrIndex::from(a..b).step_by(2)`. The Python equivalent is `[a:b:2]`. /// The macro equivalent is `s![a..b;2]`. /// /// `SliceOrIndex::Slice { start: a, end: None, step: -1 }` is every element, /// from `a` until the end, in reverse order. It can also be created with /// `SliceOrIndex::from(a..).step_by(-1)`. The Python equivalent is `[a::-1]`. /// The macro equivalent is `s![a..;-1]`. #[derive(Debug, PartialEq, Eq, Hash)] pub enum SliceOrIndex { /// A range with step size. `end` is an exclusive index. Negative `begin` /// or `end` indexes are counted from the back of the axis. If `end` is /// `None`, the slice extends to the end of the axis. Slice { start: isize, end: Option<isize>, step: isize, }, /// A single index. Index(isize), } copy_and_clone! {SliceOrIndex} impl SliceOrIndex { /// Returns `true` if `self` is a `Slice` value. pub fn is_slice(&self) -> bool { match self { SliceOrIndex::Slice { .. } => true, _ => false, } } /// Returns `true` if `self` is an `Index` value. pub fn is_index(&self) -> bool { match self { SliceOrIndex::Index(_) => true, _ => false, } } /// Returns a new `SliceOrIndex` with the given step size (multiplied with /// the previous step size). /// /// `step` must be nonzero. /// (This method checks with a debug assertion that `step` is not zero.) #[inline] pub fn step_by(self, step: isize) -> Self { debug_assert_ne!(step, 0, "SliceOrIndex::step_by: step must be nonzero"); match self { SliceOrIndex::Slice { start, end, step: orig_step, } => SliceOrIndex::Slice { start, end, step: orig_step * step, }, SliceOrIndex::Index(s) => SliceOrIndex::Index(s), } } } impl fmt::Display for SliceOrIndex { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { match *self { SliceOrIndex::Index(index) => write!(f, "{}", index)?, SliceOrIndex::Slice { start, end, step } => { if start != 0 { write!(f, "{}", start)?; } write!(f, "..")?; if let Some(i) = end { write!(f, "{}", i)?; } if step != 1 { write!(f, ";{}", step)?; } } } Ok(()) } } macro_rules! impl_slice_variant_from_range { ($self:ty, $constructor:path, $index:ty) => { impl From<Range<$index>> for $self { #[inline] fn from(r: Range<$index>) -> $self { $constructor { start: r.start as isize, end: Some(r.end as isize), step: 1, } } } impl From<RangeInclusive<$index>> for $self { #[inline] fn from(r: RangeInclusive<$index>) -> $self { let end = *r.end() as isize; $constructor { start: *r.start() as isize, end: if end == -1 { None } else { Some(end + 1) }, step: 1, } } } impl From<RangeFrom<$index>> for $self { #[inline] fn from(r: RangeFrom<$index>) -> $self { $constructor { start: r.start as isize, end: None, step: 1, } } } impl From<RangeTo<$index>> for $self { #[inline] fn from(r: RangeTo<$index>) -> $self { $constructor { start: 0, end: Some(r.end as isize), step: 1, } } } impl From<RangeToInclusive<$index>> for $self { #[inline] fn from(r: RangeToInclusive<$index>) -> $self { let end = r.end as isize; $constructor { start: 0, end: if end == -1 { None } else { Some(end + 1) }, step: 1, } } } }; } impl_slice_variant_from_range!(Slice, Slice, isize); impl_slice_variant_from_range!(Slice, Slice, usize); impl_slice_variant_from_range!(Slice, Slice, i32); impl_slice_variant_from_range!(SliceOrIndex, SliceOrIndex::Slice, isize); impl_slice_variant_from_range!(SliceOrIndex, SliceOrIndex::Slice, usize); impl_slice_variant_from_range!(SliceOrIndex, SliceOrIndex::Slice, i32); impl From<RangeFull> for Slice { #[inline] fn from(_: RangeFull) -> Slice { Slice { start: 0, end: None, step: 1, } } } impl From<RangeFull> for SliceOrIndex { #[inline] fn from(_: RangeFull) -> SliceOrIndex { SliceOrIndex::Slice { start: 0, end: None, step: 1, } } } impl From<Slice> for SliceOrIndex { #[inline] fn from(s: Slice) -> SliceOrIndex { SliceOrIndex::Slice { start: s.start, end: s.end, step: s.step, } } } macro_rules! impl_sliceorindex_from_index { ($index:ty) => { impl From<$index> for SliceOrIndex { #[inline] fn from(r: $index) -> SliceOrIndex { SliceOrIndex::Index(r as isize) } } }; } impl_sliceorindex_from_index!(isize); impl_sliceorindex_from_index!(usize); impl_sliceorindex_from_index!(i32); /// Represents all of the necessary information to perform a slice. /// /// The type `T` is typically `[SliceOrIndex; n]`, `[SliceOrIndex]`, or /// `Vec<SliceOrIndex>`. The type `D` is the output dimension after calling /// [`.slice()`]. /// /// [`.slice()`]: struct.ArrayBase.html#method.slice #[derive(Debug)] #[repr(C)] pub struct SliceInfo<T: ?Sized, D: Dimension> { out_dim: PhantomData<D>, indices: T, } impl<T: ?Sized, D> Deref for SliceInfo<T, D> where D: Dimension, { type Target = T; fn deref(&self) -> &Self::Target { &self.indices } } impl<T, D> SliceInfo<T, D> where D: Dimension, { /// Returns a new `SliceInfo` instance. /// /// If you call this method, you are guaranteeing that `out_dim` is /// consistent with `indices`. #[doc(hidden)] pub unsafe fn new_unchecked(indices: T, out_dim: PhantomData<D>) -> SliceInfo<T, D> { SliceInfo { out_dim, indices } } } impl<T, D> SliceInfo<T, D> where T: AsRef<[SliceOrIndex]>, D: Dimension, { /// Returns a new `SliceInfo` instance. /// /// Errors if `D` is not consistent with `indices`. pub fn new(indices: T) -> Result<SliceInfo<T, D>, ShapeError> { if let Some(ndim) = D::NDIM { if ndim != indices.as_ref().iter().filter(|s| s.is_slice()).count() { return Err(ShapeError::from_kind(ErrorKind::IncompatibleShape)); } } Ok(SliceInfo { out_dim: PhantomData, indices, }) } } impl<T: ?Sized, D> SliceInfo<T, D> where T: AsRef<[SliceOrIndex]>, D: Dimension, { /// Returns the number of dimensions after calling /// [`.slice()`](struct.ArrayBase.html#method.slice) (including taking /// subviews). /// /// If `D` is a fixed-size dimension type, then this is equivalent to /// `D::NDIM.unwrap()`. Otherwise, the value is calculated by iterating /// over the ranges/indices. pub fn out_ndim(&self) -> usize { D::NDIM.unwrap_or_else(|| { self.indices .as_ref() .iter() .filter(|s| s.is_slice()) .count() }) } } impl<T, D> AsRef<[SliceOrIndex]> for SliceInfo<T, D> where T: AsRef<[SliceOrIndex]>, D: Dimension, { fn as_ref(&self) -> &[SliceOrIndex] { self.indices.as_ref() } } impl<T, D> AsRef<SliceInfo<[SliceOrIndex], D>> for SliceInfo<T, D> where T: AsRef<[SliceOrIndex]>, D: Dimension, { fn as_ref(&self) -> &SliceInfo<[SliceOrIndex], D> { unsafe { // This is okay because the only non-zero-sized member of // `SliceInfo` is `indices`, so `&SliceInfo<[SliceOrIndex], D>` // should have the same bitwise representation as // `&[SliceOrIndex]`. &*(self.indices.as_ref() as *const [SliceOrIndex] as *const SliceInfo<[SliceOrIndex], D>) } } } impl<T, D> Copy for SliceInfo<T, D> where T: Copy, D: Dimension, { } impl<T, D> Clone for SliceInfo<T, D> where T: Clone, D: Dimension, { fn clone(&self) -> Self { SliceInfo { out_dim: PhantomData, indices: self.indices.clone(), } } } #[doc(hidden)] pub trait SliceNextDim<D1, D2> { fn next_dim(&self, _: PhantomData<D1>) -> PhantomData<D2>; } macro_rules! impl_slicenextdim_equal { ($self:ty) => { impl<D1: Dimension> SliceNextDim<D1, D1> for $self { fn next_dim(&self, _: PhantomData<D1>) -> PhantomData<D1> { PhantomData } } }; } impl_slicenextdim_equal!(isize); impl_slicenextdim_equal!(usize); impl_slicenextdim_equal!(i32); macro_rules! impl_slicenextdim_larger { (($($generics:tt)*), $self:ty) => { impl<D1: Dimension, $($generics)*> SliceNextDim<D1, D1::Larger> for $self { fn next_dim(&self, _: PhantomData<D1>) -> PhantomData<D1::Larger> { PhantomData } } } } impl_slicenextdim_larger!((T), Range<T>); impl_slicenextdim_larger!((T), RangeInclusive<T>); impl_slicenextdim_larger!((T), RangeFrom<T>); impl_slicenextdim_larger!((T), RangeTo<T>); impl_slicenextdim_larger!((T), RangeToInclusive<T>); impl_slicenextdim_larger!((), RangeFull); impl_slicenextdim_larger!((), Slice); /// Slice argument constructor. /// /// `s![]` takes a list of ranges/slices/indices, separated by comma, with /// optional step sizes that are separated from the range by a semicolon. It is /// converted into a [`&SliceInfo`] instance. /// /// [`&SliceInfo`]: struct.SliceInfo.html /// /// Each range/slice/index uses signed indices, where a negative value is /// counted from the end of the axis. Step sizes are also signed and may be /// negative, but must not be zero. /// /// The syntax is `s![` *[ axis-slice-or-index [, axis-slice-or-index [ , ... ] /// ] ]* `]`, where *axis-slice-or-index* is any of the following: /// /// * *index*: an index to use for taking a subview with respect to that axis. /// (The index is selected. The axis is removed except with /// [`.slice_collapse()`].) /// * *range*: a range with step size 1 to use for slicing that axis. /// * *range* `;` *step*: a range with step size *step* to use for slicing that axis. /// * *slice*: a [`Slice`] instance to use for slicing that axis. /// * *slice* `;` *step*: a range constructed from the start and end of a [`Slice`] /// instance, with new step size *step*, to use for slicing that axis. /// /// [`Slice`]: struct.Slice.html /// /// The number of *axis-slice-or-index* must match the number of axes in the /// array. *index*, *range*, *slice*, and *step* can be expressions. *index* /// must be of type `isize`, `usize`, or `i32`. *range* must be of type /// `Range<I>`, `RangeTo<I>`, `RangeFrom<I>`, or `RangeFull` where `I` is /// `isize`, `usize`, or `i32`. *step* must be a type that can be converted to /// `isize` with the `as` keyword. /// /// For example `s![0..4;2, 6, 1..5]` is a slice of the first axis for 0..4 /// with step size 2, a subview of the second axis at index 6, and a slice of /// the third axis for 1..5 with default step size 1. The input array must have /// 3 dimensions. The resulting slice would have shape `[2, 4]` for /// [`.slice()`], [`.slice_mut()`], and [`.slice_move()`], and shape /// `[2, 1, 4]` for [`.slice_collapse()`]. /// /// [`.slice()`]: struct.ArrayBase.html#method.slice /// [`.slice_mut()`]: struct.ArrayBase.html#method.slice_mut /// [`.slice_move()`]: struct.ArrayBase.html#method.slice_move /// [`.slice_collapse()`]: struct.ArrayBase.html#method.slice_collapse /// /// See also [*Slicing*](struct.ArrayBase.html#slicing). /// /// # Example /// /// ``` /// extern crate ndarray; /// /// use ndarray::{s, Array2, ArrayView2}; /// /// fn laplacian(v: &ArrayView2<f32>) -> Array2<f32> { /// -4. * &v.slice(s![1..-1, 1..-1]) /// + v.slice(s![ ..-2, 1..-1]) /// + v.slice(s![1..-1, ..-2]) /// + v.slice(s![1..-1, 2.. ]) /// + v.slice(s![2.. , 1..-1]) /// } /// # fn main() { } /// ``` /// /// # Negative *step* /// /// The behavior of negative *step* arguments is most easily understood with /// slicing as a two-step process: /// /// 1. First, perform a slice with *range*. /// /// 2. If *step* is positive, start with the front of the slice; if *step* is /// negative, start with the back of the slice. Then, add *step* until /// reaching the other end of the slice (inclusive). /// /// An equivalent way to think about step 2 is, "If *step* is negative, reverse /// the slice. Start at the front of the (possibly reversed) slice, and add /// *step.abs()* until reaching the back of the slice (inclusive)." /// /// For example, /// /// ``` /// # extern crate ndarray; /// # /// # use ndarray::prelude::*; /// # /// # fn main() { /// let arr = array![0, 1, 2, 3]; /// assert_eq!(arr.slice(s![1..3;-1]), array![2, 1]); /// assert_eq!(arr.slice(s![1..;-2]), array![3, 1]); /// assert_eq!(arr.slice(s![0..4;-2]), array![3, 1]); /// assert_eq!(arr.slice(s![0..;-2]), array![3, 1]); /// assert_eq!(arr.slice(s![..;-2]), array![3, 1]); /// # } /// ``` #[macro_export] macro_rules! s( // convert a..b;c into @convert(a..b, c), final item (@parse $dim:expr, [$($stack:tt)*] $r:expr;$s:expr) => { match $r { r => { let out_dim = $crate::SliceNextDim::next_dim(&r, $dim); #[allow(unsafe_code)] unsafe { $crate::SliceInfo::new_unchecked( [$($stack)* $crate::s!(@convert r, $s)], out_dim, ) } } } }; // convert a..b into @convert(a..b), final item (@parse $dim:expr, [$($stack:tt)*] $r:expr) => { match $r { r => { let out_dim = $crate::SliceNextDim::next_dim(&r, $dim); #[allow(unsafe_code)] unsafe { $crate::SliceInfo::new_unchecked( [$($stack)* $crate::s!(@convert r)], out_dim, ) } } } }; // convert a..b;c into @convert(a..b, c), final item, trailing comma (@parse $dim:expr, [$($stack:tt)*] $r:expr;$s:expr ,) => { $crate::s![@parse $dim, [$($stack)*] $r;$s] }; // convert a..b into @convert(a..b), final item, trailing comma (@parse $dim:expr, [$($stack:tt)*] $r:expr ,) => { $crate::s![@parse $dim, [$($stack)*] $r] }; // convert a..b;c into @convert(a..b, c) (@parse $dim:expr, [$($stack:tt)*] $r:expr;$s:expr, $($t:tt)*) => { match $r { r => { $crate::s![@parse $crate::SliceNextDim::next_dim(&r, $dim), [$($stack)* $crate::s!(@convert r, $s),] $($t)* ] } } }; // convert a..b into @convert(a..b) (@parse $dim:expr, [$($stack:tt)*] $r:expr, $($t:tt)*) => { match $r { r => { $crate::s![@parse $crate::SliceNextDim::next_dim(&r, $dim), [$($stack)* $crate::s!(@convert r),] $($t)* ] } } }; // empty call, i.e. `s![]` (@parse ::std::marker::PhantomData::<$crate::Ix0>, []) => { { #[allow(unsafe_code)] unsafe { $crate::SliceInfo::new_unchecked([], ::std::marker::PhantomData::<$crate::Ix0>) } } }; // Catch-all clause for syntax errors (@parse $($t:tt)*) => { compile_error!("Invalid syntax in s![] call.") }; // convert range/index into SliceOrIndex (@convert $r:expr) => { <$crate::SliceOrIndex as ::std::convert::From<_>>::from($r) }; // convert range/index and step into SliceOrIndex (@convert $r:expr, $s:expr) => { <$crate::SliceOrIndex as ::std::convert::From<_>>::from($r).step_by($s as isize) }; ($($t:tt)*) => { // The extra `*&` is a workaround for this compiler bug: // https://github.com/rust-lang/rust/issues/23014 &*&$crate::s![@parse ::std::marker::PhantomData::<$crate::Ix0>, [] $($t)*] }; ); /// Slicing information describing multiple mutable, disjoint slices. /// /// It's unfortunate that we need `'a` and `A` to be parameters of the trait, /// but they're necessary until Rust supports generic associated types. pub trait MultiSlice<'a, A, D> where A: 'a, D: Dimension, { /// The type of the slices created by `.multi_slice_move()`. type Output; /// Split the view into multiple disjoint slices. /// /// **Panics** if performing any individual slice panics or if the slices /// are not disjoint (i.e. if they intersect). fn multi_slice_move(&self, view: ArrayViewMut<'a, A, D>) -> Self::Output; } impl<'a, A, D> MultiSlice<'a, A, D> for () where A: 'a, D: Dimension, { type Output = (); fn multi_slice_move(&self, _view: ArrayViewMut<'a, A, D>) -> Self::Output {} } impl<'a, A, D, Do0> MultiSlice<'a, A, D> for (&SliceInfo<D::SliceArg, Do0>,) where A: 'a, D: Dimension, Do0: Dimension, { type Output = (ArrayViewMut<'a, A, Do0>,); fn multi_slice_move(&self, view: ArrayViewMut<'a, A, D>) -> Self::Output { (view.slice_move(self.0),) } } macro_rules! impl_multislice_tuple { ([$($but_last:ident)*] $last:ident) => { impl_multislice_tuple!(@def_impl ($($but_last,)* $last,), [$($but_last)*] $last); }; (@def_impl ($($all:ident,)*), [$($but_last:ident)*] $last:ident) => { impl<'a, A, D, $($all,)*> MultiSlice<'a, A, D> for ($(&SliceInfo<D::SliceArg, $all>,)*) where A: 'a, D: Dimension, $($all: Dimension,)* { type Output = ($(ArrayViewMut<'a, A, $all>,)*); fn multi_slice_move(&self, view: ArrayViewMut<'a, A, D>) -> Self::Output { #[allow(non_snake_case)] let ($($all,)*) = self; let shape = view.raw_dim(); assert!(!impl_multislice_tuple!(@intersects_self &shape, ($($all,)*))); let raw_view = view.into_raw_view_mut(); unsafe { ( $(raw_view.clone().slice_move($but_last).deref_into_view_mut(),)* raw_view.slice_move($last).deref_into_view_mut(), ) } } } }; (@intersects_self $shape:expr, ($head:expr,)) => { false }; (@intersects_self $shape:expr, ($head:expr, $($tail:expr,)*)) => { $(slices_intersect($shape, $head, $tail)) ||* || impl_multislice_tuple!(@intersects_self $shape, ($($tail,)*)) }; } impl_multislice_tuple!([Do0] Do1); impl_multislice_tuple!([Do0 Do1] Do2); impl_multislice_tuple!([Do0 Do1 Do2] Do3); impl_multislice_tuple!([Do0 Do1 Do2 Do3] Do4); impl_multislice_tuple!([Do0 Do1 Do2 Do3 Do4] Do5); impl<'a, A, D, T> MultiSlice<'a, A, D> for &T where A: 'a, D: Dimension, T: MultiSlice<'a, A, D>, { type Output = T::Output; fn multi_slice_move(&self, view: ArrayViewMut<'a, A, D>) -> Self::Output { T::multi_slice_move(self, view) } }