1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
use super::bins::Bins; use super::errors::BinsBuildError; use super::strategies::BinsBuildingStrategy; use itertools::izip; use ndarray::{ArrayBase, Axis, Data, Ix1, Ix2}; use std::ops::Range; /// A `Grid` is a partition of a rectangular region of an *n*-dimensional /// space—e.g. [*a*<sub>0</sub>, *b*<sub>0</sub>) × ⋯ × [*a*<sub>*n*−1</sub>, /// *b*<sub>*n*−1</sub>)—into a collection of rectangular *n*-dimensional bins. /// /// The grid is **fully determined by its 1-dimensional projections** on the /// coordinate axes. For example, this is a partition that can be represented /// as a `Grid` struct: /// ```text /// +---+-------+-+ /// | | | | /// +---+-------+-+ /// | | | | /// | | | | /// | | | | /// | | | | /// +---+-------+-+ /// ``` /// while the next one can't: /// ```text /// +---+-------+-+ /// | | | | /// | +-------+-+ /// | | | /// | | | /// | | | /// | | | /// +---+-------+-+ /// ``` /// /// # Example: /// /// ``` /// use ndarray::{Array, array}; /// use ndarray_stats::{HistogramExt, /// histogram::{Histogram, Grid, GridBuilder, /// Edges, Bins, strategies::Auto}}; /// use noisy_float::types::{N64, n64}; /// /// // 1-dimensional observations, as a (n_observations, 1) 2-d matrix /// let observations = Array::from_shape_vec( /// (12, 1), /// vec![1, 4, 5, 2, 100, 20, 50, 65, 27, 40, 45, 23], /// ).unwrap(); /// /// // The optimal grid layout is inferred from the data, /// // specifying a strategy (Auto in this case) /// let grid = GridBuilder::<Auto<usize>>::from_array(&observations).unwrap().build(); /// let expected_grid = Grid::from(vec![Bins::new(Edges::from(vec![1, 20, 39, 58, 77, 96, 115]))]); /// assert_eq!(grid, expected_grid); /// /// let histogram = observations.histogram(grid); /// /// let histogram_matrix = histogram.counts(); /// // Bins are left inclusive, right exclusive! /// let expected = array![4, 3, 3, 1, 0, 1]; /// assert_eq!(histogram_matrix, expected.into_dyn()); /// ``` #[derive(Clone, Debug, Eq, PartialEq)] pub struct Grid<A: Ord> { projections: Vec<Bins<A>>, } impl<A: Ord> From<Vec<Bins<A>>> for Grid<A> { /// Get a `Grid` instance from a `Vec<Bins<A>>`. /// /// The `i`-th element in `Vec<Bins<A>>` represents the 1-dimensional /// projection of the bin grid on the `i`-th axis. /// /// Alternatively, a `Grid` can be built directly from data using a /// [`GridBuilder`]. /// /// [`GridBuilder`]: struct.GridBuilder.html fn from(projections: Vec<Bins<A>>) -> Self { Grid { projections } } } impl<A: Ord> Grid<A> { /// Returns `n`, the number of dimensions of the region partitioned by the grid. pub fn ndim(&self) -> usize { self.projections.len() } /// Returns the number of bins along each coordinate axis. pub fn shape(&self) -> Vec<usize> { self.projections.iter().map(|e| e.len()).collect() } /// Returns the grid projections on the coordinate axes as a slice of immutable references. pub fn projections(&self) -> &[Bins<A>] { &self.projections } /// Returns the index of the *n*-dimensional bin containing the point, if /// one exists. /// /// Returns `None` if the point is outside the grid. /// /// **Panics** if `point.len()` does not equal `self.ndim()`. pub fn index_of<S>(&self, point: &ArrayBase<S, Ix1>) -> Option<Vec<usize>> where S: Data<Elem = A>, { assert_eq!( point.len(), self.ndim(), "Dimension mismatch: the point has {:?} dimensions, the grid \ expected {:?} dimensions.", point.len(), self.ndim() ); point .iter() .zip(self.projections.iter()) .map(|(v, e)| e.index_of(v)) .collect() } } impl<A: Ord + Clone> Grid<A> { /// Given `i=(i_0, ..., i_{n-1})`, an `n`-dimensional index, it returns /// `I_{i_0}x...xI_{i_{n-1}}`, an `n`-dimensional bin, where `I_{i_j}` is /// the `i_j`-th interval on the `j`-th projection of the grid on the coordinate axes. /// /// **Panics** if at least one among `(i_0, ..., i_{n-1})` is out of bounds on the respective /// coordinate axis - i.e. if there exists `j` such that `i_j >= self.projections[j].len()`. pub fn index(&self, index: &[usize]) -> Vec<Range<A>> { assert_eq!( index.len(), self.ndim(), "Dimension mismatch: the index has {0:?} dimensions, the grid \ expected {1:?} dimensions.", index.len(), self.ndim() ); izip!(&self.projections, index) .map(|(bins, &i)| bins.index(i)) .collect() } } /// `GridBuilder`, given a [`strategy`] and some observations, returns a [`Grid`] /// instance for [`histogram`] computation. /// /// [`Grid`]: struct.Grid.html /// [`histogram`]: trait.HistogramExt.html /// [`strategy`]: strategies/index.html pub struct GridBuilder<B: BinsBuildingStrategy> { bin_builders: Vec<B>, } impl<A, B> GridBuilder<B> where A: Ord, B: BinsBuildingStrategy<Elem = A>, { /// Given some observations in a 2-dimensional array with shape `(n_observations, n_dimension)` /// it returns a `GridBuilder` instance that has learned the required parameter /// to build a [`Grid`] according to the specified [`strategy`]. /// /// It returns `Err` if it is not possible to build a [`Grid`] given /// the observed data according to the chosen [`strategy`]. /// /// [`Grid`]: struct.Grid.html /// [`strategy`]: strategies/index.html pub fn from_array<S>(array: &ArrayBase<S, Ix2>) -> Result<Self, BinsBuildError> where S: Data<Elem = A>, { let bin_builders = array .axis_iter(Axis(1)) .map(|data| B::from_array(&data)) .collect::<Result<Vec<B>, BinsBuildError>>()?; Ok(Self { bin_builders }) } /// Returns a [`Grid`] instance, built accordingly to the specified [`strategy`] /// using the parameters inferred from observations in [`from_array`]. /// /// [`Grid`]: struct.Grid.html /// [`strategy`]: strategies/index.html /// [`from_array`]: #method.from_array.html pub fn build(&self) -> Grid<A> { let projections: Vec<_> = self.bin_builders.iter().map(|b| b.build()).collect(); Grid::from(projections) } }