use crate::types::*;
use crate::{vec128_storage, vec256_storage, vec512_storage};
use core::marker::PhantomData;
use core::ops::*;
#[derive(Copy, Clone, Default)]
#[allow(non_camel_case_types)]
pub struct x2<W, G>(pub [W; 2], PhantomData<G>);
impl<W, G> x2<W, G> {
#[inline(always)]
pub fn new(xs: [W; 2]) -> Self {
x2(xs, PhantomData)
}
}
macro_rules! fwd_binop_x2 {
($trait:ident, $fn:ident) => {
impl<W: $trait + Copy, G> $trait for x2<W, G> {
type Output = x2<W::Output, G>;
#[inline(always)]
fn $fn(self, rhs: Self) -> Self::Output {
x2::new([self.0[0].$fn(rhs.0[0]), self.0[1].$fn(rhs.0[1])])
}
}
};
}
macro_rules! fwd_binop_assign_x2 {
($trait:ident, $fn_assign:ident) => {
impl<W: $trait + Copy, G> $trait for x2<W, G> {
#[inline(always)]
fn $fn_assign(&mut self, rhs: Self) {
(self.0[0]).$fn_assign(rhs.0[0]);
(self.0[1]).$fn_assign(rhs.0[1]);
}
}
};
}
macro_rules! fwd_unop_x2 {
($fn:ident) => {
#[inline(always)]
fn $fn(self) -> Self {
x2::new([self.0[0].$fn(), self.0[1].$fn()])
}
};
}
impl<W, G> RotateEachWord32 for x2<W, G>
where
W: Copy + RotateEachWord32,
{
fwd_unop_x2!(rotate_each_word_right7);
fwd_unop_x2!(rotate_each_word_right8);
fwd_unop_x2!(rotate_each_word_right11);
fwd_unop_x2!(rotate_each_word_right12);
fwd_unop_x2!(rotate_each_word_right16);
fwd_unop_x2!(rotate_each_word_right20);
fwd_unop_x2!(rotate_each_word_right24);
fwd_unop_x2!(rotate_each_word_right25);
}
impl<W, G> RotateEachWord64 for x2<W, G>
where
W: Copy + RotateEachWord64,
{
fwd_unop_x2!(rotate_each_word_right32);
}
impl<W, G> RotateEachWord128 for x2<W, G> where W: RotateEachWord128 {}
impl<W, G> BitOps0 for x2<W, G>
where
W: BitOps0,
G: Copy,
{
}
impl<W, G> BitOps32 for x2<W, G>
where
W: BitOps32 + BitOps0,
G: Copy,
{
}
impl<W, G> BitOps64 for x2<W, G>
where
W: BitOps64 + BitOps0,
G: Copy,
{
}
impl<W, G> BitOps128 for x2<W, G>
where
W: BitOps128 + BitOps0,
G: Copy,
{
}
fwd_binop_x2!(BitAnd, bitand);
fwd_binop_x2!(BitOr, bitor);
fwd_binop_x2!(BitXor, bitxor);
fwd_binop_x2!(AndNot, andnot);
fwd_binop_assign_x2!(BitAndAssign, bitand_assign);
fwd_binop_assign_x2!(BitOrAssign, bitor_assign);
fwd_binop_assign_x2!(BitXorAssign, bitxor_assign);
impl<W, G> ArithOps for x2<W, G>
where
W: ArithOps,
G: Copy,
{
}
fwd_binop_x2!(Add, add);
fwd_binop_assign_x2!(AddAssign, add_assign);
impl<W: Not + Copy, G> Not for x2<W, G> {
type Output = x2<W::Output, G>;
#[inline(always)]
fn not(self) -> Self::Output {
x2::new([self.0[0].not(), self.0[1].not()])
}
}
impl<W, G> UnsafeFrom<[W; 2]> for x2<W, G> {
#[inline(always)]
unsafe fn unsafe_from(xs: [W; 2]) -> Self {
x2::new(xs)
}
}
impl<W: Copy, G> Vec2<W> for x2<W, G> {
#[inline(always)]
fn extract(self, i: u32) -> W {
self.0[i as usize]
}
#[inline(always)]
fn insert(mut self, w: W, i: u32) -> Self {
self.0[i as usize] = w;
self
}
}
impl<W: Copy + Store<vec128_storage>, G> Store<vec256_storage> for x2<W, G> {
#[inline(always)]
unsafe fn unpack(p: vec256_storage) -> Self {
let p = p.split128();
x2::new([W::unpack(p[0]), W::unpack(p[1])])
}
}
impl<W, G> From<x2<W, G>> for vec256_storage
where
W: Copy,
vec128_storage: From<W>,
{
#[inline(always)]
fn from(x: x2<W, G>) -> Self {
vec256_storage::new128([x.0[0].into(), x.0[1].into()])
}
}
impl<W, G> Swap64 for x2<W, G>
where
W: Swap64 + Copy,
{
fwd_unop_x2!(swap1);
fwd_unop_x2!(swap2);
fwd_unop_x2!(swap4);
fwd_unop_x2!(swap8);
fwd_unop_x2!(swap16);
fwd_unop_x2!(swap32);
fwd_unop_x2!(swap64);
}
impl<W: Copy, G> MultiLane<[W; 2]> for x2<W, G> {
#[inline(always)]
fn to_lanes(self) -> [W; 2] {
self.0
}
#[inline(always)]
fn from_lanes(lanes: [W; 2]) -> Self {
x2::new(lanes)
}
}
impl<W: BSwap + Copy, G> BSwap for x2<W, G> {
#[inline(always)]
fn bswap(self) -> Self {
x2::new([self.0[0].bswap(), self.0[1].bswap()])
}
}
impl<W: StoreBytes + BSwap + Copy, G> StoreBytes for x2<W, G> {
#[inline(always)]
unsafe fn unsafe_read_le(input: &[u8]) -> Self {
let input = input.split_at(16);
x2::new([W::unsafe_read_le(input.0), W::unsafe_read_le(input.1)])
}
#[inline(always)]
unsafe fn unsafe_read_be(input: &[u8]) -> Self {
x2::unsafe_read_le(input).bswap()
}
#[inline(always)]
fn write_le(self, out: &mut [u8]) {
let out = out.split_at_mut(16);
self.0[0].write_le(out.0);
self.0[1].write_le(out.1);
}
#[inline(always)]
fn write_be(self, out: &mut [u8]) {
let out = out.split_at_mut(16);
self.0[0].write_be(out.0);
self.0[1].write_be(out.1);
}
}
#[derive(Copy, Clone, Default)]
#[allow(non_camel_case_types)]
pub struct x4<W>(pub [W; 4]);
impl<W> x4<W> {
#[inline(always)]
pub fn new(xs: [W; 4]) -> Self {
x4(xs)
}
}
macro_rules! fwd_binop_x4 {
($trait:ident, $fn:ident) => {
impl<W: $trait + Copy> $trait for x4<W> {
type Output = x4<W::Output>;
#[inline(always)]
fn $fn(self, rhs: Self) -> Self::Output {
x4([
self.0[0].$fn(rhs.0[0]),
self.0[1].$fn(rhs.0[1]),
self.0[2].$fn(rhs.0[2]),
self.0[3].$fn(rhs.0[3]),
])
}
}
};
}
macro_rules! fwd_binop_assign_x4 {
($trait:ident, $fn_assign:ident) => {
impl<W: $trait + Copy> $trait for x4<W> {
#[inline(always)]
fn $fn_assign(&mut self, rhs: Self) {
self.0[0].$fn_assign(rhs.0[0]);
self.0[1].$fn_assign(rhs.0[1]);
self.0[2].$fn_assign(rhs.0[2]);
self.0[3].$fn_assign(rhs.0[3]);
}
}
};
}
macro_rules! fwd_unop_x4 {
($fn:ident) => {
#[inline(always)]
fn $fn(self) -> Self {
x4([
self.0[0].$fn(),
self.0[1].$fn(),
self.0[2].$fn(),
self.0[3].$fn(),
])
}
};
}
impl<W> RotateEachWord32 for x4<W>
where
W: Copy + RotateEachWord32,
{
fwd_unop_x4!(rotate_each_word_right7);
fwd_unop_x4!(rotate_each_word_right8);
fwd_unop_x4!(rotate_each_word_right11);
fwd_unop_x4!(rotate_each_word_right12);
fwd_unop_x4!(rotate_each_word_right16);
fwd_unop_x4!(rotate_each_word_right20);
fwd_unop_x4!(rotate_each_word_right24);
fwd_unop_x4!(rotate_each_word_right25);
}
impl<W> RotateEachWord64 for x4<W>
where
W: Copy + RotateEachWord64,
{
fwd_unop_x4!(rotate_each_word_right32);
}
impl<W> RotateEachWord128 for x4<W> where W: RotateEachWord128 {}
impl<W> BitOps0 for x4<W> where W: BitOps0 {}
impl<W> BitOps32 for x4<W> where W: BitOps32 + BitOps0 {}
impl<W> BitOps64 for x4<W> where W: BitOps64 + BitOps0 {}
impl<W> BitOps128 for x4<W> where W: BitOps128 + BitOps0 {}
fwd_binop_x4!(BitAnd, bitand);
fwd_binop_x4!(BitOr, bitor);
fwd_binop_x4!(BitXor, bitxor);
fwd_binop_x4!(AndNot, andnot);
fwd_binop_assign_x4!(BitAndAssign, bitand_assign);
fwd_binop_assign_x4!(BitOrAssign, bitor_assign);
fwd_binop_assign_x4!(BitXorAssign, bitxor_assign);
impl<W> ArithOps for x4<W> where W: ArithOps {}
fwd_binop_x4!(Add, add);
fwd_binop_assign_x4!(AddAssign, add_assign);
impl<W: Not + Copy> Not for x4<W> {
type Output = x4<W::Output>;
#[inline(always)]
fn not(self) -> Self::Output {
x4([
self.0[0].not(),
self.0[1].not(),
self.0[2].not(),
self.0[3].not(),
])
}
}
impl<W> UnsafeFrom<[W; 4]> for x4<W> {
#[inline(always)]
unsafe fn unsafe_from(xs: [W; 4]) -> Self {
x4(xs)
}
}
impl<W: Copy> Vec4<W> for x4<W> {
#[inline(always)]
fn extract(self, i: u32) -> W {
self.0[i as usize]
}
#[inline(always)]
fn insert(mut self, w: W, i: u32) -> Self {
self.0[i as usize] = w;
self
}
}
impl<W: Copy + Store<vec128_storage>> Store<vec512_storage> for x4<W> {
#[inline(always)]
unsafe fn unpack(p: vec512_storage) -> Self {
let p = p.split128();
x4([
W::unpack(p[0]),
W::unpack(p[1]),
W::unpack(p[2]),
W::unpack(p[3]),
])
}
}
impl<W> From<x4<W>> for vec512_storage
where
W: Copy,
vec128_storage: From<W>,
{
#[inline(always)]
fn from(x: x4<W>) -> Self {
vec512_storage::new128([x.0[0].into(), x.0[1].into(), x.0[2].into(), x.0[3].into()])
}
}
impl<W> Swap64 for x4<W>
where
W: Swap64 + Copy,
{
fwd_unop_x4!(swap1);
fwd_unop_x4!(swap2);
fwd_unop_x4!(swap4);
fwd_unop_x4!(swap8);
fwd_unop_x4!(swap16);
fwd_unop_x4!(swap32);
fwd_unop_x4!(swap64);
}
impl<W: Copy> MultiLane<[W; 4]> for x4<W> {
#[inline(always)]
fn to_lanes(self) -> [W; 4] {
self.0
}
#[inline(always)]
fn from_lanes(lanes: [W; 4]) -> Self {
x4(lanes)
}
}
impl<W: BSwap + Copy> BSwap for x4<W> {
#[inline(always)]
fn bswap(self) -> Self {
x4([
self.0[0].bswap(),
self.0[1].bswap(),
self.0[2].bswap(),
self.0[3].bswap(),
])
}
}
impl<W: StoreBytes + BSwap + Copy> StoreBytes for x4<W> {
#[inline(always)]
unsafe fn unsafe_read_le(input: &[u8]) -> Self {
x4([
W::unsafe_read_le(&input[0..16]),
W::unsafe_read_le(&input[16..32]),
W::unsafe_read_le(&input[32..48]),
W::unsafe_read_le(&input[48..64]),
])
}
#[inline(always)]
unsafe fn unsafe_read_be(input: &[u8]) -> Self {
x4::unsafe_read_le(input).bswap()
}
#[inline(always)]
fn write_le(self, out: &mut [u8]) {
self.0[0].write_le(&mut out[0..16]);
self.0[1].write_le(&mut out[16..32]);
self.0[2].write_le(&mut out[32..48]);
self.0[3].write_le(&mut out[48..64]);
}
#[inline(always)]
fn write_be(self, out: &mut [u8]) {
self.0[0].write_be(&mut out[0..16]);
self.0[1].write_be(&mut out[16..32]);
self.0[2].write_be(&mut out[32..48]);
self.0[3].write_be(&mut out[48..64]);
}
}
impl<W: Copy + LaneWords4> LaneWords4 for x4<W> {
#[inline(always)]
fn shuffle_lane_words2301(self) -> Self {
x4([
self.0[0].shuffle_lane_words2301(),
self.0[1].shuffle_lane_words2301(),
self.0[2].shuffle_lane_words2301(),
self.0[3].shuffle_lane_words2301(),
])
}
#[inline(always)]
fn shuffle_lane_words1230(self) -> Self {
x4([
self.0[0].shuffle_lane_words1230(),
self.0[1].shuffle_lane_words1230(),
self.0[2].shuffle_lane_words1230(),
self.0[3].shuffle_lane_words1230(),
])
}
#[inline(always)]
fn shuffle_lane_words3012(self) -> Self {
x4([
self.0[0].shuffle_lane_words3012(),
self.0[1].shuffle_lane_words3012(),
self.0[2].shuffle_lane_words3012(),
self.0[3].shuffle_lane_words3012(),
])
}
}