1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
// Copyright © 2016–2020 University of Malta // This program is free software: you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public License // as published by the Free Software Foundation, either version 3 of // the License, or (at your option) any later version. // // This program is distributed in the hope that it will be useful, but // WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // this program. If not, see <https://www.gnu.org/licenses/>. /*! # Arbitrary-precision numbers Rug provides integers and floating-point numbers with arbitrary precision and correct rounding: * [`Integer`] is a bignum integer with arbitrary precision, * [`Rational`] is a bignum rational number with arbitrary precision, * [`Float`] is a multi-precision floating-point number with correct rounding, and * [`Complex`] is a multi-precision complex number with correct rounding. Rug is a high-level interface to the following [GNU] libraries: * [GMP] for integers and rational numbers, * [MPFR] for floating-point numbers, and * [MPC] for complex numbers. Rug is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. See the full text of the [GNU LGPL] and [GNU GPL] for details. You are also free to use the examples in this documentation without any restrictions; the examples are in the public domain. ## Quick example ```rust # #[cfg(feature = "integer")] { use rug::{Assign, Integer}; let mut int = Integer::new(); assert_eq!(int, 0); int.assign(14); assert_eq!(int, 14); let decimal = "98_765_432_109_876_543_210"; int.assign(Integer::parse(decimal).unwrap()); assert!(int > 100_000_000); let hex_160 = "ffff0000ffff0000ffff0000ffff0000ffff0000"; int.assign(Integer::parse_radix(hex_160, 16).unwrap()); assert_eq!(int.significant_bits(), 160); int = (int >> 128) - 1; assert_eq!(int, 0xfffe_ffff_u32); # } ``` * <code>[Integer][`Integer`]::[new][`new`]</code> creates a new [`Integer`] intialized to zero. * To assign values to Rug types, we use the [`Assign`] trait and its method [`Assign::assign`]. We do not use the [assignment operator `=`][assignment] as that would drop the left-hand-side operand and replace it with a right-hand-side operand of the same type, which is not what we want here. * Arbitrary precision numbers can hold numbers that are too large to fit in a primitive type. To assign such a number to the large types, we use strings rather than primitives; in the example this is done using <code>[Integer][`Integer`]::[parse][`parse`]</code> and <code>[Integer][`Integer`]::[parse_radix][`parse_radix`]</code>. * We can compare Rug types to primitive types or to other Rug types using the normal comparison operators, for example `int > 100_000_000`. * Most arithmetic operations are supported with Rug types and primitive types on either side of the operator, for example `int >> 128`. ## Using with primitive types With Rust primitive types, arithmetic operators usually operate on two values of the same type, for example `12i32 + 5i32`. Unlike primitive types, conversion to and from Rug types can be expensive, so the arithmetic operators are overloaded to work on many combinations of Rug types and primitives. The following are provided: 1. Where they make sense, all arithmetic operators are overloaded to work with Rug types and the primitives [`i8`], [`i16`], [`i32`], [`i64`], [`i128`], [`u8`], [`u16`], [`u32`], [`u64`], [`u128`], [`f32`] and [`f64`]. 2. Where they make sense, conversions using the [`From`] trait and assignments using the [`Assign`] trait are supported for all the primitives in 1 above as well as [`bool`], [`isize`] and [`usize`]. 3. Comparisons between Rug types and all the numeric primitives listed in 1 and 2 above are supported. 4. For [`Rational`] numbers, conversions and comparisons are also supported for tuples containing two integer primitives: the first is the numerator and the second is the denominator which must not be zero. The two primitives do not need to be of the same type. 5. For [`Complex`] numbers, conversions and comparisons are also supported for tuples containing two primitives: the first is the real part and the second is the imaginary part. The two primitives do not need to be of the same type. ## Operators Operators are overloaded to work on Rug types alone or on a combination of Rug types and Rust primitives. When at least one operand is an owned value of a Rug type, the operation will consume that value and return a value of the Rug type. For example ```rust # #[cfg(feature = "integer")] { use rug::Integer; let a = Integer::from(10); let b = 5 - a; assert_eq!(b, 5 - 10); # } ``` Here `a` is consumed by the subtraction, and `b` is an owned [`Integer`]. If on the other hand there are no owned Rug types and there are references instead, the returned value is not the final value, but an incomplete-computation value. For example ```rust # #[cfg(feature = "integer")] { use rug::Integer; let (a, b) = (Integer::from(10), Integer::from(20)); let incomplete = &a - &b; // This would fail to compile: assert_eq!(incomplete, -10); let sub = Integer::from(incomplete); assert_eq!(sub, -10); # } ``` Here `a` and `b` are not consumed, and `incomplete` is not the final value. It still needs to be converted or assigned into an [`Integer`]. This is covered in more detail in the [*Incomplete-computation values*] section. ### Shifting operations The left shift `<<` and right shift `>>` operators support shifting by negative values, for example `a << 5` is equivalent to `a >> -5`. The shifting operators are also supported for the [`Float`] and [`Complex`] number types, where they are equivalent to multiplication or division by a power of two. Only the exponent of the value is affected; the mantissa is unchanged. ### Exponentiation Exponentiation (raising to a power) does not have a dedicated operator in Rust. In order to perform exponentiation of Rug types, the [`Pow`] trait has to be brought into scope, for example ```rust # #[cfg(feature = "integer")] { use rug::{ops::Pow, Integer}; let base = Integer::from(10); let power = base.pow(5); assert_eq!(power, 100_000); # } ``` ### Compound assignments to right-hand-side operands Traits are provided for compound assignment to right-hand-side operands. This can be useful for non-commutative operations like subtraction. The names of the traits and their methods are similar to Rust compound assignment traits, with the suffix “`Assign`” replaced with “`From`”. For example the counterpart to [`SubAssign`] is [`SubFrom`]: ```rust # #[cfg(feature = "integer")] { use rug::{ops::SubFrom, Integer}; let mut rhs = Integer::from(10); // set rhs = 100 − rhs rhs.sub_from(100); assert_eq!(rhs, 90); # } ``` ## Incomplete-computation values There are two main reasons why operations like `&a - &b` do not perform a complete computation and return a Rug type: 1. Sometimes we need to assign the result to an object that already exists. Since Rug types require memory allocations, this can help reduce the number of allocations. (While the allocations might not affect performance noticeably for computationally intensive functions, they can have a much more significant effect on faster functions like addition.) 2. For the [`Float`] and [`Complex`] number types, we need to know the precision when we create a value, and the operation itself does not convey information about what precision is desired for the result. There are two things that can be done with incomplete-computation values: 1. Assign them to an existing object without unnecessary allocations. This is usually achieved using the [`Assign`] trait or a similar method, for example <code>int.[assign][`Assign::assign`](incomplete)</code> and <code>float.[assign_round][`assign_round`](incomplete, [Round][`Round`]::[Up][`Up`])</code>. 2. Convert them to the final value using the [`From`] trait or a similar method, for example <code>[Integer][`Integer`]::[from][`From::from`](incomplete)</code> and <code>[Float][`Float`]::[with_val][`with_val`](53, incomplete)</code>. Let us consider a couple of examples. ```rust # #[cfg(feature = "integer")] { use rug::{Assign, Integer}; let mut buffer = Integer::new(); // ... buffer can be used and reused ... let (a, b) = (Integer::from(10), Integer::from(20)); let incomplete = &a - &b; buffer.assign(incomplete); assert_eq!(buffer, -10); # } ``` Here the assignment from `incomplete` into `buffer` does not require an allocation unless the result does not fit in the current capacity of `buffer`. If `&a - &b` returned an [`Integer`] instead, then an allocation would take place even if it is not necessary. ```rust # #[cfg(feature = "float")] { use rug::{float::Constant, Float}; // x has a precision of 10 bits let x = Float::with_val(10, 180); // y has a precision of 50 bits let y = Float::with_val(50, Constant::Pi); let incomplete = &x / &y; // z has a precision of 45 bits let z = Float::with_val(45, incomplete); assert!(57.295 < z && z < 57.296); # } ``` The precision to use for the result depends on the requirements of the algorithm being implemented. Here `z` is created with a precision of 45. Many operations can return incomplete-computation values: * unary operators applied to references, for example `-&int`; * binary operators applied to two references, for example `&int1 + &int2`; * binary operators applied to a primitive and a reference, for example `&int * 10`; * methods that take a reference, for example <code>int.[abs_ref][`abs_ref`]()</code>; * methods that take two references, for example <code>int1.[gcd_ref][`gcd_ref`](&int2)</code>; * string parsing, for example <code>[Integer][`Integer`]::[parse][`parse`]("12")</code>; * and more. These operations return objects that can be stored in temporary variables like `incomplete` in the last few examples. However, the names of the types are not public, and consequently, the incomplete-computation values cannot be for example stored in a struct. If you need to store the value in a struct, convert it to its final type and value. ## Using Rug Rug is available on [crates.io][rug crate]. To use Rug in your crate, add it as a dependency inside [*Cargo.toml*]: ```toml [dependencies] rug = "1.10" ``` Rug requires rustc version 1.37.0 or later. Rug also depends on the [GMP], [MPFR] and [MPC] libraries through the low-level FFI bindings in the [gmp-mpfr-sys crate][sys crate], which needs some setup to build; the [gmp-mpfr-sys documentation][sys] has some details on usage under [GNU/Linux][sys gnu], [macOS][sys mac] and [Windows][sys win]. ## Optional features The Rug crate has six optional features: 1. `integer`, enabled by default. Required for the [`Integer`] type and its supporting features. 2. `rational`, enabled by default. Required for the [`Rational`] number type and its supporting features. This feature requires the `integer` feature. 3. `float`, enabled by default. Required for the [`Float`] type and its supporting features. 4. `complex`, enabled by default. Required for the [`Complex`] number type and its supporting features. This feature requires the `float` feature. 5. `rand`, enabled by default. Required for the [`RandState`] type and its supporting features. This feature requires the `integer` feature. 6. `serde`, disabled by default. This provides serialization support for the [`Integer`], [`Rational`], [`Float`] and [`Complex`] number types, providing that they are enabled. This feature requires the [serde crate]. The first five optional features are enabled by default; to use features selectively, you can add the dependency like this to [*Cargo.toml*]: ```toml [dependencies.rug] version = "1.10" default-features = false features = ["integer", "float", "rand"] ``` Here only the `integer`, `float` and `rand` features are enabled. If none of the features are selected, the [gmp-mpfr-sys crate][sys crate] is not required and thus not enabled. In that case, only the [`Assign`] trait and the traits that are in the [`ops`] module are provided by the crate. [*Cargo.toml*]: https://doc.rust-lang.org/cargo/guide/dependencies.html [*Incomplete-computation values*]: #incomplete-computation-values [GMP]: https://gmplib.org/ [GNU GPL]: https://www.gnu.org/licenses/gpl-3.0.html [GNU LGPL]: https://www.gnu.org/licenses/lgpl-3.0.en.html [GNU]: https://www.gnu.org/ [MPC]: http://www.multiprecision.org/mpc/ [MPFR]: https://www.mpfr.org/ [`Assign::assign`]: trait.Assign.html#tymethod.assign [`Assign`]: trait.Assign.html [`Complex`]: struct.Complex.html [`Float`]: struct.Float.html [`From::from`]: https://doc.rust-lang.org/nightly/core/convert/trait.From.html#tymethod.from [`From`]: https://doc.rust-lang.org/nightly/core/convert/trait.From.html [`Integer`]: struct.Integer.html [`Pow`]: ops/trait.Pow.html [`RandState`]: rand/struct.RandState.html [`Rational`]: struct.Rational.html [`Round`]: float/enum.Round.html [`SubAssign`]: https://doc.rust-lang.org/nightly/core/ops/trait.SubAssign.html [`SubFrom`]: ops/trait.SubFrom.html [`Up`]: float/enum.Round.html#variant.Up [`abs_ref`]: struct.Integer.html#method.abs_ref [`assign_round`]: ops/trait.AssignRound.html#tymethod.assign_round [`bool`]: https://doc.rust-lang.org/nightly/std/primitive.bool.html [`f32`]: https://doc.rust-lang.org/nightly/std/primitive.f32.html [`f64`]: https://doc.rust-lang.org/nightly/std/primitive.f64.html [`gcd_ref`]: struct.Integer.html#method.gcd_ref [`i128`]: https://doc.rust-lang.org/nightly/std/primitive.i128.html [`i16`]: https://doc.rust-lang.org/nightly/std/primitive.i16.html [`i32`]: https://doc.rust-lang.org/nightly/std/primitive.i32.html [`i64`]: https://doc.rust-lang.org/nightly/std/primitive.i64.html [`i8`]: https://doc.rust-lang.org/nightly/std/primitive.i8.html [`isize`]: https://doc.rust-lang.org/nightly/std/primitive.isize.html [`new`]: struct.Integer.html#method.new [`ops`]: ops/index.html [`parse_radix`]: struct.Integer.html#method.parse_radix [`parse`]: struct.Integer.html#method.parse [`u128`]: https://doc.rust-lang.org/nightly/std/primitive.u128.html [`u16`]: https://doc.rust-lang.org/nightly/std/primitive.u16.html [`u32`]: https://doc.rust-lang.org/nightly/std/primitive.u32.html [`u64`]: https://doc.rust-lang.org/nightly/std/primitive.u64.html [`u8`]: https://doc.rust-lang.org/nightly/std/primitive.u8.html [`usize`]: https://doc.rust-lang.org/nightly/std/primitive.usize.html [`with_val`]: struct.Float.html#method.with_val [assignment]: https://doc.rust-lang.org/reference/expressions/operator-expr.html#assignment-expressions [rug crate]: https://crates.io/crates/rug [serde crate]: https://crates.io/crates/serde [sys crate]: https://crates.io/crates/gmp-mpfr-sys [sys gnu]: https://docs.rs/gmp-mpfr-sys/~1.3/gmp_mpfr_sys/index.html#building-on-gnulinux [sys mac]: https://docs.rs/gmp-mpfr-sys/~1.3/gmp_mpfr_sys/index.html#building-on-macos [sys win]: https://docs.rs/gmp-mpfr-sys/~1.3/gmp_mpfr_sys/index.html#building-on-windows [sys]: https://docs.rs/gmp-mpfr-sys/~1.3/gmp_mpfr_sys/index.html */ #![warn(missing_docs)] #![doc(html_root_url = "https://docs.rs/rug/~1.10")] #![doc(html_logo_url = "https://tspiteri.gitlab.io/rug/rug.svg")] #![doc(test(attr(deny(warnings))))] #![cfg_attr(feature = "fail-on-warnings", deny(warnings))] // allowed to deal with e.g. 1i32.into(): c_long which can be i32 or i64 #![allow(clippy::useless_conversion)] #[macro_use] mod macros; mod ext; #[cfg(any(feature = "integer", feature = "float"))] mod misc; mod ops_prim; #[cfg(all(feature = "serde", any(feature = "integer", feature = "float")))] mod serdeize; pub mod ops; /** Assigns to a number from another value. # Examples ```rust use rug::Assign; struct I(i32); impl Assign<i16> for I { fn assign(&mut self, rhs: i16) { self.0 = rhs.into(); } } let mut i = I(0); i.assign(42_i16); assert_eq!(i.0, 42); ``` */ pub trait Assign<Src = Self> { /// Peforms the assignement. /// /// # Examples /// /// ```rust /// # #[cfg(feature = "integer")] { /// use rug::{Assign, Integer}; /// let mut i = Integer::from(15); /// assert_eq!(i, 15); /// i.assign(23); /// assert_eq!(i, 23); /// # } /// ``` fn assign(&mut self, src: Src); } #[cfg(feature = "integer")] pub mod integer; #[cfg(feature = "integer")] pub use crate::integer::big::Integer; #[cfg(feature = "rational")] pub mod rational; #[cfg(feature = "rational")] pub use crate::rational::big::Rational; #[cfg(feature = "float")] pub mod float; #[cfg(feature = "float")] pub use crate::float::big::Float; #[cfg(feature = "complex")] pub mod complex; #[cfg(feature = "complex")] pub use crate::complex::big::Complex; #[cfg(feature = "rand")] pub mod rand; #[cfg(any(feature = "integer", feature = "float"))] mod static_assertions { use core::mem; use gmp_mpfr_sys::gmp::{limb_t, LIMB_BITS, NAIL_BITS, NUMB_BITS}; static_assert!(NAIL_BITS == 0); static_assert!(NUMB_BITS == LIMB_BITS); static_assert!(cfg!(target_pointer_width = "32") ^ cfg!(target_pointer_width = "64")); static_assert!(cfg!(gmp_limb_bits_32) ^ cfg!(gmp_limb_bits_64)); #[cfg(gmp_limb_bits_64)] static_assert!(NUMB_BITS == 64); #[cfg(gmp_limb_bits_32)] static_assert!(NUMB_BITS == 32); static_assert!(NUMB_BITS % 8 == 0); static_assert!(mem::size_of::<limb_t>() == NUMB_BITS as usize / 8); } #[cfg(all(test, any(feature = "integer", feature = "float")))] mod tests { #[cfg(any(feature = "rational", feature = "float"))] use core::{f32, f64}; use core::{i128, i16, i32, i64, i8, u128, u16, u32, u64, u8}; pub const U8: &[u8] = &[0, 1, 100, 101, i8::MAX as u8 + 1, u8::MAX]; pub const I8: &[i8] = &[i8::MIN, -101, -100, -1, 0, 1, 100, 101, i8::MAX]; pub const U16: &[u16] = &[0, 1, 1000, 1001, i16::MAX as u16 + 1, u16::MAX]; pub const I16: &[i16] = &[i16::MIN, -1001, -1000, -1, 0, 1, 1000, 1001, i16::MAX]; pub const U32: &[u32] = &[0, 1, 1000, 1001, i32::MAX as u32 + 1, u32::MAX]; pub const I32: &[i32] = &[i32::MIN, -1001, -1000, -1, 0, 1, 1000, 1001, i32::MAX]; pub const U64: &[u64] = &[ 0, 1, 1000, 1001, i32::MAX as u64 + 1, u32::MAX as u64 + 1, u64::MAX, ]; pub const I64: &[i64] = &[ i64::MIN, -(u32::MAX as i64) - 1, i32::MIN as i64 - 1, -1001, -1000, -1, 0, 1, 1000, 1001, i32::MAX as i64 + 1, u32::MAX as i64 + 1, i64::MAX, ]; pub const U128: &[u128] = &[ 0, 1, 1000, 1001, i32::MAX as u128 + 1, u32::MAX as u128 + 1, i64::MAX as u128 + 1, u64::MAX as u128 + 1, u128::MAX, ]; pub const I128: &[i128] = &[ i128::MIN, -(u64::MAX as i128) - 1, i64::MIN as i128 - 1, -(u32::MAX as i128) - 1, i32::MIN as i128 - 1, -1001, -1000, -1, 0, 1, 1000, 1001, i32::MAX as i128 + 1, u32::MAX as i128 + 1, i64::MAX as i128 + 1, u64::MAX as i128 + 1, i128::MAX, ]; #[cfg(any(feature = "rational", feature = "float"))] pub const F32: &[f32] = &[ -f32::NAN, f32::NEG_INFINITY, f32::MIN, -12.0e30, -2.0, -1.0 - f32::EPSILON, -1.0, -f32::MIN_POSITIVE, -f32::MIN_POSITIVE * f32::EPSILON, -0.0, 0.0, f32::MIN_POSITIVE * f32::EPSILON, f32::MIN_POSITIVE, 1.0, 1.0 + f32::EPSILON, 2.0, 12.0e30, f32::MAX, f32::INFINITY, f32::NAN, ]; #[cfg(any(feature = "rational", feature = "float"))] pub const F64: &[f64] = &[ -f64::NAN, f64::NEG_INFINITY, f64::MIN, -12.0e43, -2.0, -1.0 - f64::EPSILON, -1.0, -f64::MIN_POSITIVE, -f64::MIN_POSITIVE * f64::EPSILON, -0.0, 0.0, f64::MIN_POSITIVE * f64::EPSILON, f64::MIN_POSITIVE, 1.0, 1.0 + f64::EPSILON, 2.0, 12.0e43, f64::MAX, f64::INFINITY, f64::NAN, ]; }