1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
use smartnoise_validator::errors::*;

use crate::NodeArguments;
use smartnoise_validator::base::{Value, Array, Jagged, ReleaseNode, IndexKey};
use smartnoise_validator::utilities::{standardize_numeric_argument, standardize_categorical_argument, standardize_null_target_argument, take_argument};
use crate::components::Evaluable;
use ndarray::ArrayD;
use crate::utilities::get_num_columns;
use smartnoise_validator::{proto, Float, Integer};
use std::hash::Hash;

impl Evaluable for proto::Clamp {
    fn evaluate(&self, _privacy_definition: &Option<proto::PrivacyDefinition>, mut arguments: NodeArguments) -> Result<ReleaseNode> {
        // if categories argument was provided, clamp data as if they are categorical (regardless of atomic type)
        if arguments.contains_key::<IndexKey>(&"categories".into()) {
            match (take_argument(&mut arguments, "data")?, take_argument(&mut arguments, "categories")?, take_argument(&mut arguments, "null_value")?) {
                (Value::Array(data), Value::Jagged(categories), Value::Array(nulls)) => Ok(match (data, categories, nulls) {
                    (Array::Bool(data), Jagged::Bool(categories), Array::Bool(nulls)) =>
                        clamp_categorical(data, categories, nulls)?.into(),
                    (Array::Float(_), Jagged::Float(_), Array::Float(_)) =>
                        return Err("float clamping is not supported".into()),
//                        clamp_categorical(&data, &categories, &nulls)?.into(),
                    (Array::Int(data), Jagged::Int(categories), Array::Int(nulls)) =>
                        clamp_categorical(data, categories, nulls)?.into(),
                    (Array::Str(data), Jagged::Str(categories), Array::Str(nulls)) =>
                        clamp_categorical(data, categories, nulls)?.into(),
                    _ => return Err("types of data, categories, and null must be consistent".into())
                }),
                _ => return Err("data must be ArrayND, categories must be Vector2DJagged, and null must be ArrayND".into())
            }
        }
        // if categories argument was not provided, clamp data as numeric
        else {
            match (take_argument(&mut arguments, "data")?, take_argument(&mut arguments, "lower")?, take_argument(&mut arguments, "upper")?) {
                (Value::Array(data), Value::Array(lower), Value::Array(upper)) => Ok(match (data, lower, upper) {
                    (Array::Float(data), Array::Float(lower), Array::Float(upper)) =>
                        clamp_numeric_float(data, lower, upper)?.into(),
                    (Array::Int(data), Array::Int(lower), Array::Int(upper)) =>
                        clamp_numeric_integer(data, lower, upper)?.into(),
                    _ => return Err("data, lower, and upper must all have type f64".into())
                }),
                _ => return Err("data, lower, and upper must all be ArrayND".into())
            }
        }.map(ReleaseNode::new)
    }
}

/// Clamps each column of float data to within desired range.
///
/// # Arguments
/// * `data` - Data to be clamped.
/// * `lower` - Desired lower bound for each column of the data.
/// * `upper` - Desired upper bound for each column of the data.
///
/// # Return
/// Data clamped to desired bounds.
///
/// # Example
/// ```
/// use ndarray::{ArrayD, arr2, arr1};
/// use smartnoise_runtime::components::clamp::clamp_numeric_float;
/// use smartnoise_validator::Float;
/// let data = arr2(&[ [1.,2.,3.], [7.,11.,9.] ]).into_dyn();
/// let lower: ArrayD<Float> = arr1(&[0.5, 8., 4.]).into_dyn();
/// let upper: ArrayD<Float> = arr1(&[2.5, 10., 12.]).into_dyn();
///
/// let clamped_data = clamp_numeric_float(data, lower, upper).unwrap();
/// assert_eq!(clamped_data, arr2(&[ [1., 8., 4.], [2.5, 10., 9.] ]).into_dyn());
/// ```
pub fn clamp_numeric_float(
    mut data: ArrayD<Float>, lower: ArrayD<Float>, upper: ArrayD<Float>
)-> Result<ArrayD<Float>> {

    let num_columns = get_num_columns(&data)?;

    // iterate over the generalized columns
    data.gencolumns_mut().into_iter()
        // pair generalized columns with arguments
        .zip(standardize_numeric_argument(lower, num_columns)?.into_iter())
        .zip(standardize_numeric_argument(upper, num_columns)?.into_iter())
        // for each pairing, iterate over the cells
        .for_each(|((mut column, min), max)| column.iter_mut()
            // ignore nan values
            .filter(|v| !v.is_nan())
            // mutate the cell via the operator
            .for_each(|v| *v = min.max(max.min(*v))));

    Ok(data)
}


/// Clamps each column of integral data to within desired range.
///
/// # Arguments
/// * `data` - Data to be clamped.
/// * `lower` - Desired lower bound for each column of the data.
/// * `upper` - Desired upper bound for each column of the data.
///
/// # Return
/// Data clamped to desired bounds.
///
/// # Example
/// ```
/// use ndarray::{ArrayD, arr2, arr1};
/// use smartnoise_runtime::components::clamp::clamp_numeric_integer;
/// use smartnoise_validator::Integer;
/// let data = arr2(&[ [1, 2, 3], [7, 11, 9] ]).into_dyn();
/// let lower: ArrayD<Integer> = arr1(&[0, 8, 4]).into_dyn();
/// let upper: ArrayD<Integer> = arr1(&[2, 10, 12]).into_dyn();
///
/// let clamped_data = clamp_numeric_integer(data, lower, upper).unwrap();
/// assert_eq!(clamped_data, arr2(&[ [1, 8, 4], [2, 10, 9] ]).into_dyn());
/// ```
pub fn clamp_numeric_integer(
    mut data: ArrayD<Integer>, lower: ArrayD<Integer>, upper: ArrayD<Integer>
)-> Result<ArrayD<Integer>> {

    let num_columns = get_num_columns(&data)?;

    // iterate over the generalized columns
    data.gencolumns_mut().into_iter()
        // pair generalized columns with arguments
        .zip(standardize_numeric_argument(lower, num_columns)?.into_iter())
        .zip(standardize_numeric_argument(upper, num_columns)?.into_iter())
        // for each pairing, iterate over the cells
        .for_each(|((mut column, min), max)| column.iter_mut()
            // mutate the cell via the operator
            .for_each(|v| *v = *min.max(max.min(v))));

    Ok(data)
}

/// Clamps each column of categorical data to desired set.
///
/// Clamping for categorical data is not as obvious a concept as clamping for numeric data.
/// Clamping takes elements not included in `categories` and maps them to the `null_value`.
///
/// This is useful in the library because having a well-defined set of categories (and a default way
/// to refer to elements outside of this set) is important for common procedures like a
/// differentially private histogram release.
///
/// # Arguments
/// * `data` - Data to be clamped.
/// * `categories` - For each column, the set of categories you want to be represented.
/// * `null_value` - For each column, the value to which elements not included in `categories` will be mapped.
///
/// # Return
/// Data clamped to desired bounds.
///
/// # Example
/// ```
/// use ndarray::{ArrayD, arr2, arr1};
/// use smartnoise_runtime::components::clamp::clamp_categorical;
/// let data: ArrayD<String> = arr2(&[["a".to_string(), "b".to_string(), "3".to_string()],
///                                   ["a".to_string(), "2".to_string(), "b".to_string()]]).into_dyn();
/// let categories: Vec<Vec<String>> = vec![vec!["a".to_string(), "b".to_string()],
///                                                 vec!["a".to_string(), "b".to_string()],
///                                                 vec!["a".to_string(), "b".to_string()]];
/// let null_value: ArrayD<String> = arr1(&["not_a_letter".to_string(),
///                                         "not_a_letter".to_string(),
///                                         "not_a_letter".to_string()]).into_dyn();
///
/// let clamped_data = clamp_categorical(data, categories, null_value).unwrap();
/// assert_eq!(clamped_data, arr2(&[["a".to_string(), "b".to_string(), "not_a_letter".to_string()],
///                                ["a".to_string(), "not_a_letter".to_string(), "b".to_string()]]).into_dyn());
/// ```
pub fn clamp_categorical<T: Ord + Hash + Clone>(
    mut data: ArrayD<T>,
    categories: Vec<Vec<T>>,
    null_value: ArrayD<T>
) -> Result<ArrayD<T>> where T:Clone, T:PartialEq, T:Default {

    let num_columns = get_num_columns(&data)?;

    // iterate over the generalized columns
    data.gencolumns_mut().into_iter()
        // pair generalized columns with arguments
        .zip(standardize_categorical_argument(categories.to_vec(), num_columns)?)
        .zip(standardize_null_target_argument(null_value, num_columns)?)
        // for each pairing, iterate over the cells
        .for_each(|((mut column, categories), null)| column.iter_mut()
            // ignore known values
            .filter(|v| !categories.contains(v))
            // mutate the cell via the operator
            .for_each(|v| *v = null.clone()));

    Ok(data)
}