1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
use smartnoise_validator::errors::*;
use crate::NodeArguments;
use smartnoise_validator::base::{Array, ReleaseNode};
use smartnoise_validator::utilities::{take_argument};
use crate::components::Evaluable;
use smartnoise_validator::proto;
use ndarray::{ArrayD};
use std::ops::Add;
use crate::utilities::get_num_columns;
use num::Zero;
impl Evaluable for proto::Sum {
fn evaluate(&self, _privacy_definition: &Option<proto::PrivacyDefinition>, mut arguments: NodeArguments) -> Result<ReleaseNode> {
match take_argument(&mut arguments, "data")?.array()? {
Array::Float(data) => Ok(sum(&data)?.into()),
Array::Int(data) => Ok(sum(&data)?.into()),
_ => return Err("data must be either f64 or i64".into())
}.map(ReleaseNode::new)
}
}
pub fn sum<T: Add<T, Output=T> + Zero + Copy>(data: &ArrayD<T>) -> Result<ArrayD<T>> {
let data = data.clone();
let means = data.gencolumns().into_iter()
.map(|column| column.fold(T::zero(), |sum, i| sum + *i)).collect::<Vec<T>>();
let array = match data.ndim() {
1 => ndarray::Array::from_shape_vec(vec![], means),
2 => ndarray::Array::from_shape_vec(vec![1 as usize, get_num_columns(&data)? as usize], means),
_ => return Err("invalid data shape for Sum".into())
};
match array {
Ok(array) => Ok(array),
Err(_) => Err("unable to package Sum result into an array".into())
}
}