1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
use smartnoise_validator::errors::*;
use crate::NodeArguments;
use smartnoise_validator::base::ReleaseNode;
use smartnoise_validator::utilities::take_argument;
use crate::components::Evaluable;
use ndarray::{ArrayD, Array};
use crate::utilities::get_num_columns;
use smartnoise_validator::{proto, Float};
use crate::components::mean::mean;
impl Evaluable for proto::Variance {
fn evaluate(&self, _privacy_definition: &Option<proto::PrivacyDefinition>, mut arguments: NodeArguments) -> Result<ReleaseNode> {
let delta_degrees_of_freedom = if self.finite_sample_correction { 1 } else { 0 } as usize;
Ok(ReleaseNode::new(variance(
&take_argument(&mut arguments, "data")?.array()?.float()?,
delta_degrees_of_freedom
)?.into()))
}
}
pub fn variance(data: &ArrayD<Float>, delta_degrees_of_freedom: usize) -> Result<ArrayD<Float>> {
let means: Vec<Float> = mean(data)?.iter().copied().collect();
let variances = data.gencolumns().into_iter().zip(means)
.map(|(column, mean)| column.iter()
.fold(0., |sum, v| sum + (v - mean).powi(2)) / (column.len() - delta_degrees_of_freedom) as Float)
.collect::<Vec<Float>>();
let array = match data.ndim() {
1 => Array::from_shape_vec(vec![], variances),
2 => Array::from_shape_vec(vec![1 as usize, get_num_columns(&data)? as usize], variances),
_ => return Err("invalid data shape for Variance".into())
};
match array {
Ok(array) => Ok(array),
Err(_) => Err("unable to package Variance result into an array".into())
}
}