1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
use std::{cmp, f64::consts, mem};

use ieee754::Ieee754;
use noisy_float::types::n64;
use probability::distribution::{Inverse, Laplace};
#[cfg(not(feature="use-mpfr"))]
use probability::prelude::Gaussian;
#[cfg(feature="use-mpfr")]
use rug::{Float, rand::{ThreadRandGen, ThreadRandState}};

use smartnoise_validator::components::snapping_mechanism::{compute_precision, get_smallest_greater_or_eq_power_of_two, redefine_epsilon};
use smartnoise_validator::errors::*;
use smartnoise_validator::Integer;

use crate::utilities;
use crate::utilities::get_closest_multiple_of_lambda;

// Give MPFR ability to draw randomness from OpenSSL
#[cfg(feature="use-mpfr")]
struct GeneratorOpenSSL;

#[cfg(feature="use-mpfr")]
impl ThreadRandGen for GeneratorOpenSSL {
    fn gen(&mut self) -> u32 {
        let mut buffer = [0u8; 4];
        // impossible not to panic here
        //    cannot ignore errors with .ok(), because the buffer will remain 0
        utilities::fill_bytes(&mut buffer).unwrap();
        u32::from_ne_bytes(buffer)
    }
}

/// Return sample from a censored Geometric distribution with parameter p=0.5 without calling to sample_bit_prob.
/// 
/// The algorithm generates 1023 bits uniformly at random and returns the
/// index of the first bit with value 1. If all 1023 bits are 0, then
/// the algorithm acts as if the last bit was a 1 and returns 1022.
/// 
/// This is a less general version of the sample_geometric_censored function, designed to be used
/// only inside of the sample_bit_prob function. The major difference is that this function does not 
/// call sample_bit_prob itself (whereas sample_geometric_censored does), so having this more specialized
/// version allows us to avoid an infinite dependence loop.
pub fn censored_specific_geom(enforce_constant_time: bool) -> Result<i16> {

    Ok(if enforce_constant_time {
        let mut buffer = vec!(0_u8; 128);
        utilities::fill_bytes(&mut buffer)?;

        cmp::min(buffer.into_iter().enumerate()
            // ignore samples that contain no events
            .filter(|(_, sample)| sample > &0)
            // compute the index of the smallest event in the batch
            .map(|(i, sample)| 8 * i + sample.leading_zeros() as usize)
            // retrieve the smallest index
            .min()
            // return 1022 if no events occurred (slight dp violation w.p. ~2^-52)
            .unwrap_or(1022) as i16, 1022)

    } else {
        // retrieve up to 128 bytes, each containing 8 trials
        for i in 0..128 {
            let mut buffer = vec!(0_u8; 1);
            utilities::fill_bytes(&mut buffer)?;

            if buffer[0] > 0 {
                return Ok(cmp::min(i * 8 + buffer[0].leading_zeros() as i16, 1022))
            }
        }
        1022
    })
}

/// Sample a single bit with arbitrary probability of success
///
/// Uses only an unbiased source of coin flips.
/// The strategy for doing this with 2 flips in expectation is described [here](https://amakelov.wordpress.com/2013/10/10/arbitrarily-biasing-a-coin-in-2-expected-tosses/).
///
/// # Arguments
/// * `prob`- The desired probability of success (bit = 1).
/// * `enforce_constant_time` - Whether or not to enforce the algorithm to run in constant time
///
/// # Return
/// A bit that is 1 with probability "prob"
///
/// # Examples
///
/// ```
/// // returns a bit with Pr(bit = 1) = 0.7
/// use smartnoise_runtime::utilities::noise::sample_bit_prob;
/// let n = sample_bit_prob(0.7, false);
/// # n.unwrap();
/// ```
/// ```should_panic
/// // fails because 1.3 not a valid probability
/// use smartnoise_runtime::utilities::noise::sample_bit_prob;
/// let n = sample_bit_prob(1.3, false);
/// # n.unwrap();
/// ```
/// ```should_panic
/// // fails because -0.3 is not a valid probability
/// use smartnoise_runtime::utilities::noise::sample_bit_prob;
/// let n = sample_bit_prob(-0.3, false);
/// # n.unwrap();
/// ```
pub fn sample_bit_prob(prob: f64, enforce_constant_time: bool) -> Result<bool> {

    // ensure that prob is a valid probability
    if prob < 0.0 || prob > 1.0 {return Err("probability is not within [0, 1]".into())}

    // decompose probability into mantissa and exponent integers to quickly identify the value in the first_heads_index
    let (_sign, exponent, mantissa) = prob.decompose_raw();

    // repeatedly flip fair coin (up to 1023 times) and identify index (0-based) of first heads
    let first_heads_index = censored_specific_geom(enforce_constant_time)?;

    // if prob == 1., return after retrieving censored_specific_geom, to protect constant time
    if exponent == 1023 { return Ok(true) }

    // number of leading zeros in binary representation of prob
    //    cast is non-saturating because exponent only uses first 11 bits
    //    exponent is bounded within [0, 1022] by check for valid probability
    let num_leading_zeros = 1022_i16 - exponent as i16;

    // 0 is the most significant/leftmost implicit bit in the mantissa/fraction/significand
    // 52 is the least significant/rightmost
    Ok(match first_heads_index - num_leading_zeros {
        // index into the leading zeros of the binary representation
        i if i < 0 => false,
        // bit index 0 is implicitly set in ieee-754 when the exponent is nonzero
        i if i == 0 => exponent != 0,
        // all other digits out-of-bounds are not float-approximated/are-implicitly-zero
        i if i > 52 => false,
        // retrieve the bit at `i` slots shifted from the left
        i => mantissa & (1_u64 << (52 - i as usize)) != 0
    })
}

/// Sample from the binomial distribution.
///
/// # Arguments
/// * `n` - Number of trials
/// * `prob`- The desired probability of success (bit = 1).
/// * `enforce_constant_time` - Whether or not to enforce the algorithm to run in constant time
///
/// # Return
/// Number of successful trials
pub fn sample_binomial(n: i64, prob: f64, enforce_constant_time: bool) -> Result<i64> {
    (0..n).try_fold(0, |sum, _|
        sample_bit_prob(prob, enforce_constant_time)
            .map(|v| sum + if v {1} else {0}))
}

#[cfg(test)]
mod test_sample_bit_prob {
    use ieee754::Ieee754;
    use itertools::Itertools;

    use crate::utilities::noise::{sample_bit_prob, sample_uniform};

    fn check_bit_vs_string_equal(value: f64) {
        let (_sign, _exponent, mut mantissa) = value.decompose_raw();
        let mantissa_string = format!("1{:052b}", mantissa); // add implicit 1 to mantissa
        let mantissa_vec: Vec<i64> = mantissa_string.chars()
            .map(|x| x.to_digit(2).unwrap() as i64).collect();

        let to_str = |v| if v {"1"} else {"0"};

        let vec_bits = (0..mantissa_string.len())
            .map(|idx| mantissa_vec[idx] != 0)
            .map(to_str).join("");

        // set the implicit 1
        mantissa |= 1u64 << 52;

        let log_bits = (0..mantissa_string.len())
            .map(|idx| mantissa & (1u64 << (52 - idx)) != 0u64)
            .map(to_str).join("");

        // println!("vec_bits: {:?}", vec_bits);
        // println!("log_bits: {:?}", log_bits);

        assert_eq!(vec_bits, log_bits);
    }

    #[test]
    fn random_bit_vs_string() {
        for _ in 0..1000 {
            let prob = sample_uniform(0., 1., false).unwrap();
            check_bit_vs_string_equal(prob)
        }
    }

    #[test]
    fn sample_bit_prob_random() {
        let trials = 10_000;
        (0..=100)
            .map(|i| 0.01 * i as f64)
            .map(|prob| (prob, (0..trials)
                .fold(1, |sum, _|
                    sum + sample_bit_prob(prob, false).unwrap() as i32) as f64
                / trials as f64))
            .map(|(prob, actual)| (prob, actual - prob))
            .filter(|(_, bias)| bias.abs() > 0.01)
            .for_each(|(prob, bias)| println!("expected: {:?}, bias: {:?}", prob, bias));
    }

    #[test]
    fn sample_bit_prob_edge() {
        for _ in 0..10_000 {
            assert!(!sample_bit_prob(0., false).unwrap());
            assert!(sample_bit_prob(1., false).unwrap());
        }
    }

    #[test]
    fn edge_cases_bit_vs_string() {
        check_bit_vs_string_equal(0.);
        check_bit_vs_string_equal(1.);
        check_bit_vs_string_equal(f64::MAX);
        check_bit_vs_string_equal(f64::MIN)
    }
}

pub fn sample_bit() -> Result<bool> {
    let mut buffer = [0u8; 1];
    utilities::fill_bytes(&mut buffer)?;
    Ok(buffer[0] & 1 == 1)
}


#[cfg(test)]
mod test_sample_bit {
    use crate::utilities::noise::sample_bit;

    #[test]
    fn test_sample_bit() {
        (0..100).for_each(|_| {
            dbg!(sample_bit().unwrap());
        });
    }
}

/// Sample from uniform integers between min and max (inclusive).
///
/// # Arguments
///
/// * `min` - &i64, minimum value of distribution to sample from
/// * `max` - &i64, maximum value of distribution to sample from
///
/// # Return
/// Random uniform variable between min and max (inclusive).
///
/// # Example
///
/// ```
/// // returns a uniform draw from the set {0,1,2}
/// use smartnoise_runtime::utilities::noise::sample_uniform_int;
/// let n = sample_uniform_int(0, 2).unwrap();
/// assert!(n == 0 || n == 1 || n == 2);
/// ```
///
/// ```should_panic
/// // fails because min > max
/// use smartnoise_runtime::utilities::noise::sample_uniform_int;
/// let n = sample_uniform_int(2, 0);
/// # n.unwrap();
/// ```
pub fn sample_uniform_int(min: Integer, max: Integer) -> Result<Integer> {

    if min > max {return Err("min may not be greater than max".into());}

    // define number of possible integers we could sample and the maximum
    // number of bits it would take to represent them
    let n_ints: Integer = max - min + 1;
    let n_bytes = ((n_ints as f64).log2()).ceil() as usize / 8 + 1;

    // uniformly sample integers from the set {0, 1, ..., n_ints-1}
    // by filling the first n_bytes of a buffer with noise,
    // interpreting the buffer as an i64,
    // and rejecting integers that are too large
    let mut buffer = [0u8; mem::size_of::<Integer>()];
    loop {
        utilities::fill_bytes(&mut buffer[..n_bytes])?;
        let uniform_int = i64::from_le_bytes(buffer);
        if uniform_int < n_ints {
            return Ok(uniform_int + min)
        }
    }
}


#[cfg(test)]
mod test_sample_uniform_int {
    use crate::utilities::noise::sample_uniform_int;

    #[test]
    fn test_sample_bit() {
        (0..1_000).for_each(|_| {
            println!("{:?}", sample_uniform_int(0, 100).unwrap());
        });
    }
}


/// Returns random sample from Uniform[min,max).
///
/// All notes below refer to the version that samples from [0,1), before the final scaling takes place.
///
/// This algorithm is taken from [Mironov (2012)](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.366.5957&rep=rep1&type=pdf)
/// and is important for making some of the guarantees in the paper.
///
/// The idea behind the uniform sampling is to first sample a "precision band".
/// Each band is a range of floating point numbers with the same level of arithmetic precision
/// and is situated between powers of two.
/// A band is sampled with probability relative to the unit of least precision using the Geometric distribution.
/// That is, the uniform sampler will generate the band [1/2,1) with probability 1/2, [1/4,1/2) with probability 1/4,
/// and so on.
///
/// Once the precision band has been selected, floating numbers numbers are generated uniformly within the band
/// by generating a 52-bit mantissa uniformly at random.
///
/// # Arguments
///
/// `min`: f64 minimum of uniform distribution (inclusive)
/// `max`: f64 maximum of uniform distribution (non-inclusive)
///
/// # Return
/// Random draw from Unif[min, max).
///
/// # Example
/// ```
/// // valid draw from Unif[0,2)
/// use smartnoise_runtime::utilities::noise::sample_uniform;
/// let unif = sample_uniform(0.0, 2.0, false);
/// # unif.unwrap();
/// ```
/// ``` should_panic
/// // fails because min > max
/// use smartnoise_runtime::utilities::noise::sample_uniform;
/// let unif = sample_uniform(2.0, 0.0, false);
/// # unif.unwrap();
/// ```
pub fn sample_uniform(min: f64, max: f64, enforce_constant_time: bool) -> Result<f64> {

    if min > max {return Err("min may not be greater than max".into());}

    // Generate mantissa
    let mut mantissa_buffer = [0u8; 8];
    // mantissa bit index zero is implicit
    utilities::fill_bytes(&mut mantissa_buffer[1..])?;
    // limit the buffer to 52 bits
    mantissa_buffer[1] %= 16;

    // convert mantissa to integer
    let mantissa_int = u64::from_be_bytes(mantissa_buffer);

    // Generate exponent. A saturated mantissa with implicit bit is ~2
    let exponent: i16 = -(1 + censored_specific_geom(enforce_constant_time)?);

    // Generate uniform random number from [0,1)
    let uniform_rand = f64::recompose(false, exponent, mantissa_int);
    Ok(uniform_rand * (max - min) + min)
}


#[cfg(test)]
mod test_uniform {
    use crate::utilities::noise::sample_uniform;

    #[test]
    fn test_uniform() {
        // (1..=100).for_each(|idx| println!("{:?}", (1. / 100. * idx as f64).decompose()));
        // println!("{:?}", 1.0f64.decompose());

        let min = 0.;
        let max = 1.;
        if !(0..1000).all(|_| {
            let sample = sample_uniform(min, max, false).unwrap();
            let within = min <= sample && max >= sample;
            if !within {
                println!("value outside of range: {:?}", sample);
            }
            within
        }) {
            panic!("not all numbers are within the range")
        }
    }

    #[test]
    fn test_endian() {

        use ieee754::Ieee754;
        let old_mantissa = 0.192f64.decompose().2;
        let mut buffer = old_mantissa.to_be_bytes();
        // from str_radix ignores these extra bits, but reconstruction from_be_bytes uses them
        buffer[1] = buffer[1] + 32;
        println!("{:?}", buffer);

        let new_buffer = buffer.iter()
            .map(|v| format!("{:08b}", v))
            .collect::<Vec<String>>();
        println!("{:?}", new_buffer);
        let new_mantissa = u64::from_str_radix(&new_buffer.concat(), 2).unwrap();
        println!("{:?} {:?}", old_mantissa, new_mantissa);

        let int_bytes = 12i64.to_le_bytes();
        println!("{:?}", int_bytes);
    }
}

/// Returns random sample from Uniform[min,max) using the MPFR library.
///
/// If [min, max) == [0, 1), then this is done in a way that respects exact rounding.
/// Otherwise, the return will be the result of a composition of two operations that
/// respect exact rounding (though the result will not necessarily).
///
/// # Arguments
/// * `min` - Lower bound of uniform distribution.
/// * `max` - Upper bound of uniform distribution.
///
/// # Return
/// Draw from Unif[min, max].
///
/// # Example
/// ```
/// use smartnoise_runtime::utilities::noise::sample_uniform_mpfr;
/// let unif = sample_uniform_mpfr(0.0, 1.0);
/// # unif.unwrap();
/// ```
#[cfg(feature = "use-mpfr")]
pub fn sample_uniform_mpfr(min: f64, max: f64) -> Result<rug::Float> {
    // initialize 64-bit floats within mpfr/rug
    let mpfr_min = Float::with_val(53, min);
    let mpfr_max = Float::with_val(53, max);

    // initialize randomness
    let mut rng = GeneratorOpenSSL {};
    let mut state = ThreadRandState::new_custom(&mut rng);

    // generate Unif[0,1] according to mpfr standard, then convert to correct scale
    let unif = Float::with_val(53, Float::random_cont(&mut state));

    // return uniform
    Ok(unif.mul_add(&(mpfr_max - &mpfr_min), &mpfr_min))
}

/// Sample from Laplace distribution centered at shift and scaled by scale.
/// 
/// # Arguments
///
/// * `shift` - The expectation of the Laplace distribution.
/// * `scale` - The scaling parameter of the Laplace distribution.
///
/// # Return
/// Draw from Laplace(shift, scale).
///
/// # Example
/// ```
/// use smartnoise_runtime::utilities::noise::sample_laplace;
/// let n = sample_laplace(0.0, 2.0, false);
/// # n.unwrap();
/// ```
pub fn sample_laplace(shift: f64, scale: f64, enforce_constant_time: bool) -> Result<f64> {
    let probability: f64 = sample_uniform(0., 1., enforce_constant_time)?;
    Ok(Laplace::new(shift, scale).inverse(probability))
}

/// Sample from Gaussian distribution centered at shift and scaled by scale.
///
/// # Arguments
///
/// * `shift` - The expectation of the Gaussian distribution.
/// * `scale` - The scaling parameter (standard deviation) of the Gaussian distribution.
///
/// # Return
/// A draw from Gaussian(shift, scale).
///
/// # Example
/// ```
/// use smartnoise_runtime::utilities::noise::sample_gaussian;
/// let n = sample_gaussian(0.0, 2.0, false);
/// # n.unwrap();
/// ```
#[cfg(not(feature = "use-mpfr"))]
pub fn sample_gaussian(shift: f64, scale: f64, enforce_constant_time: bool) -> Result<f64> {
    let probability: f64 = sample_uniform(0., 1., enforce_constant_time)?;
    Ok(Gaussian::new(shift, scale).inverse(probability))
}

/// Generates a draw from a Gaussian(loc, scale) distribution using the MPFR library.
///
/// If shift = 0 and scale = 1, sampling is done in a way that respects exact rounding.
/// Otherwise, the return will be the result of a composition of two operations that
/// respect exact rounding (though the result will not necessarily).
///
/// # Arguments
/// * `shift` - The expectation of the Gaussian distribution.
/// * `scale` - The scaling parameter (standard deviation) of the Gaussian distribution.
///
/// # Return
/// Draw from Gaussian(loc, scale)
///
/// # Example
/// ```
/// use smartnoise_runtime::utilities::noise::sample_gaussian;
/// let gaussian = sample_gaussian(0.0, 1.0, false);
/// ```
#[cfg(feature = "use-mpfr")]
pub fn sample_gaussian(shift: f64, scale: f64, _enforce_constant_time: bool) -> Result<f64> {
    // initialize 64-bit floats within mpfr/rug
    // NOTE: We square the scale here because we ask for the standard deviation as the function input, but
    //       the mpfr library wants the variance. We ask for std. dev. to be consistent with the rest of the library.
    let mpfr_shift = Float::with_val(53, shift);
    let mpfr_scale = Float::with_val(53, scale);

    // initialize randomness
    let mut rng = GeneratorOpenSSL {};
    let mut state = ThreadRandState::new_custom(&mut rng);

    // generate Gaussian(0,1) according to mpfr standard, then convert to correct scale
    let gauss = Float::with_val(64, Float::random_normal(&mut state));
    Ok(gauss.mul_add(&mpfr_scale, &mpfr_shift).to_f64())
}

/// Sample from truncated Gaussian distribution.
///
/// This function uses a rejection sampling approach.
/// This means that values outside of the truncation bounds are ignored, rather
/// than pushed to the bounds (as they would be for a censored distribution).
///
/// # Arguments
///
/// * `shift` - The expectation of the untruncated Gaussian distribution.
/// * `scale` - The scaling parameter (standard deviation) of the untruncated Gaussian distribution.
/// * `min` - The minimum value you want to allow to be sampled.
/// * `max` - The maximum value you want to allow to be sampled.
///
/// # Return
/// A draw from a Gaussian(shift, scale) truncated to [min, max].
///
/// # Example
/// ```
/// use smartnoise_runtime::utilities::noise::sample_gaussian_truncated;
/// let n= sample_gaussian_truncated(0.0, 1.0, 0.0, 2.0, false);
/// # n.unwrap();
/// ```
pub fn sample_gaussian_truncated(
    min: f64, max: f64, shift: f64, scale: f64,
    enforce_constant_time: bool
) -> Result<f64> {
    if min > max {return Err("lower may not be greater than upper".into());}
    if scale <= 0.0 {return Err("scale must be greater than zero".into());}

    // return draw from distribution only if it is in correct range
    loop {
        let trunc_gauss = sample_gaussian(shift, scale, enforce_constant_time)?;
        if trunc_gauss >= min && trunc_gauss <= max {
            return Ok(trunc_gauss)
        }
    }
}

/// Sample from the censored geometric distribution with parameter "prob" and maximum
/// number of trials "max_trials".
///
/// # Arguments
/// * `prob` - Parameter for the geometric distribution, the probability of success on any given trials.
/// * `max_trials` - The maximum number of trials allowed.
/// * `enforce_constant_time` - Whether or not to enforce the algorithm to run in constant time; if true,
///                             it will always run for "max_trials" trials.
///
/// # Return
/// A draw from the censored geometric distribution.
///
/// # Example
/// ```
/// use smartnoise_runtime::utilities::noise::sample_geometric_censored;
/// let geom = sample_geometric_censored(0.1, 20, false);
/// # geom.unwrap();
/// ```
pub fn sample_geometric_censored(prob: f64, max_trials: i64, enforce_constant_time: bool) -> Result<i64> {

    // ensure that prob is a valid probability
    if prob < 0.0 || prob > 1.0 {return Err("probability is not within [0, 1]".into())}

    let mut bit: bool;
    let mut n_trials: i64 = 0;
    let mut geom_return: i64 = 0;

    // generate bits until we find a 1
    // if enforcing the runtime of the algorithm to be constant, the while loop
    // continues after the 1 is found and just stores the first location of a 1 bit.
    while n_trials < max_trials {
        bit = sample_bit_prob(prob, enforce_constant_time)?;
        n_trials += 1;

        // If we haven't seen a 1 yet, set the return to the current number of trials
        if bit && geom_return == 0 {
            geom_return = n_trials;
            if !enforce_constant_time {
                return Ok(geom_return);
            }
        }
    }

    // set geom_return to max if we never saw a bit equaling 1
    if geom_return == 0 {
        geom_return = max_trials; // could also set this equal to n_trials - 1.
    }

    Ok(geom_return)
}

/// Sample noise according to geometric mechanism
///
/// This function uses coin flips to sample from the geometric distribution,
/// rather than using the inverse probability transform. This is done
/// to avoid finite precision attacks.
///
/// For this algorithm, the number of steps it takes to sample from the geometric
/// is bounded above by (max - min).
///
/// # Arguments
/// * `scale` - scale parameter
/// * `min` - minimum value of function to which you want to add noise
/// * `max` - maximum value of function to which you want to add noise
/// * `enforce_constant_time` - boolean for whether or not to require the geometric to run for the maximum number of trials
///
/// # Return
/// noise according to the geometric mechanism
///
/// # Example
/// ```
/// use ndarray::prelude::*;
/// use smartnoise_runtime::utilities::noise::sample_simple_geometric_mechanism;
/// let geom_noise = sample_simple_geometric_mechanism(1., 0, 100, false);
/// ```
pub fn sample_simple_geometric_mechanism(
    scale: f64, min: i64, max: i64, enforce_constant_time: bool
) -> Result<i64> {

    let alpha: f64 = consts::E.powf(-1. / scale);
    let max_trials: i64 = max - min;

    // return 0 noise with probability (1-alpha) / (1+alpha), otherwise sample from geometric
    let unif: f64 = sample_uniform(0., 1., enforce_constant_time)?;
    Ok(if unif < (1. - alpha) / (1. + alpha) {
        0
    } else {
        // get random sign
        let sign: i64 = 2 * sample_bit()? as i64 - 1;
        // sample from censored geometric
        let geom: i64 = sample_geometric_censored(1. - alpha, max_trials, enforce_constant_time)?;
        sign * geom
    })
}

/// Apply noise to value according to the Snapping mechanism.
/// Sensitivity is assumed to be 1 in L1 space.
///
/// # Arguments
/// * `value` - Non-private value of the statistic to be privatized.
/// * `epsilon` - Desired privacy guarantee.
/// * `b` - Upper bound on function value being privatized.
/// * `enforce_constant_time` - Whether or not to enforce the algorithm to run in constant time
///
/// # Returns
/// Value of statistic with noise applied according to the Snapping mechanism.
///
/// # Example
/// ```
/// use smartnoise_runtime::utilities::noise::apply_snapping_noise;
/// let value: f64 = 50.0;
/// let epsilon: f64 = 1.0;
/// let b: f64 = 100.0;
/// let value = apply_snapping_noise(value, epsilon, b, false);
/// println!("snapped value: {:?}", value.unwrap());
/// ```
#[cfg(feature = "use-mpfr")]
pub fn apply_snapping_noise(
    mut value: f64, mut epsilon: f64, b: f64,
    enforce_constant_time: bool
) -> Result<(f64, f64)> {
    // must be computed before redefining epsilon
    let precision = compute_precision(epsilon)?;

    // ensure that precision is supported by the OS
    if precision > rug::float::prec_max() {
        return Err("Operating system does not support sufficient precision to use the Snapping Mechanism".into());
    }
    macro_rules! to_rug {($v:expr) => {rug::Float::with_val(precision, $v)}};

    // effective epsilon is reduced due to snapping mechanism
    epsilon = redefine_epsilon(epsilon, b, precision);
    if epsilon == 0.0 {
        return Err("epsilon is zero due to floating-point round-off".into())
    }

    let sign = if sample_bit()? {-1.} else {1.};
    // 1.0 because sensitivity has been scaled to one
    let lambda = 1.0 / epsilon;
    // draw from {d: d in Doubles && d in (0, 1)} with probability based on unit of least precision
    let u_star_sample = to_rug!(sample_uniform(0., 1., enforce_constant_time)?);

    // add noise
    //    rug is mandatory for ln
    //    rug is optional for sign * lambda
    value += (to_rug!(sign * lambda) * u_star_sample.ln()).to_f64();

    // snap to lambda
    let m = get_smallest_greater_or_eq_power_of_two(lambda)?;
    value = get_closest_multiple_of_lambda(value, m)?;

    Ok((value, epsilon))
}

#[cfg(not(feature = "use-mpfr"))]
pub fn snapping_mechanism(
    mechanism_input: &f64, epsilon: &f64, b: &f64, sensitivity: &f64
) -> Result<f64> {
    Err(Error::from("Crate must be compiled with gmp-mpfr to use the snapping mechanism."))
}

/// Sample noise from the Gumbel Distribution
///
/// Based on C implementation from https://github.com/numpy/numpy/blob/d329a66dbb9710aefd03cce6a8b0f46da51490ca/numpy/random/src/distributions/distributions.c
///
/// # Arguments
/// * `loc` - location parameter
/// * `scale` - scale parameter
///
/// # Return
///  Noise according to the Gumbel Distribution
pub fn sample_gumbel(loc: f64, scale: f64) -> f64 {
    let rug_loc = Float::with_val(120, loc);
    let rug_scale = Float::with_val(120, scale);
    let u = Float::with_val(120, sample_uniform_mpfr(0.0, 1.0).unwrap());
    // Accept if u > 0, otherwise reject and call function again
    if u.gt(&Float::with_val(120, 0.0)) {
        let negative_log = -(u.ln());
        let log_term = negative_log.ln();
        (-rug_scale.mul_add(&log_term, &rug_loc)).to_f64()
    } else {
        sample_gumbel(loc, scale)
    }
}

/// Shuffle a vector
///
pub fn shuffle<T>(vector: Vec<T>, enforce_constant_time: bool) -> Result<Vec<T>> {
    let mut vector = vector
        .into_iter()
        .map(|v| Ok((v, n64(sample_uniform(0., 1., enforce_constant_time)?))))
        .collect::<Result<Vec<_>>>()?;
    vector.sort_unstable_by_key(|v| v.1);
    Ok(vector.into_iter().map(|(v, _)| v).collect())
}