1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
use crate::errors::*;
use crate::{proto, base, Warnable, Float};
use crate::components::{Component, Sensitivity};
use crate::base::{Value, NodeProperties, AggregatorProperties, SensitivitySpace, ValueProperties, DataType, IndexKey};
use crate::utilities::prepend;
use ndarray::prelude::*;
use indexmap::map::IndexMap;
impl Component for proto::Mean {
fn propagate_property(
&self,
_privacy_definition: &Option<proto::PrivacyDefinition>,
_public_arguments: IndexMap<base::IndexKey, &Value>,
properties: base::NodeProperties,
node_id: u32
) -> Result<Warnable<ValueProperties>> {
let mut data_property = properties.get::<IndexKey>(&"data".into())
.ok_or("data: missing")?.array()
.map_err(prepend("data:"))?.clone();
if !data_property.releasable {
data_property.assert_is_not_aggregated()?;
}
data_property.assert_is_not_empty()?;
let num_columns = data_property.num_columns()?;
data_property.aggregator = Some(AggregatorProperties::new(
proto::component::Variant::Mean(self.clone()), properties, num_columns));
if data_property.data_type != DataType::Float {
return Err("data: atomic type must be float".into())
}
data_property.num_records = Some(1);
data_property.dataset_id = Some(node_id as i64);
Ok(ValueProperties::Array(data_property).into())
}
}
impl Sensitivity for proto::Mean {
fn compute_sensitivity(
&self,
_privacy_definition: &proto::PrivacyDefinition,
properties: &NodeProperties,
sensitivity_type: &SensitivitySpace,
) -> Result<Value> {
match sensitivity_type {
SensitivitySpace::KNorm(k) => {
let data_property = properties.get::<IndexKey>(&"data".into())
.ok_or("data: missing")?.array()
.map_err(prepend("data:"))?.clone();
data_property.assert_non_null()?;
data_property.assert_is_not_aggregated()?;
let data_lower = data_property.lower_float()?;
let data_upper = data_property.upper_float()?;
let data_n = data_property.num_records()? as Float;
let row_sensitivity = match k {
1 | 2 => data_lower.iter()
.zip(data_upper.iter())
.map(|(min, max)| (max - min) / data_n)
.collect::<Vec<Float>>(),
_ => return Err("KNorm sensitivity is only supported in L1 and L2 spaces".into())
};
let mut array_sensitivity = Array::from(row_sensitivity).into_dyn();
array_sensitivity.insert_axis_inplace(Axis(0));
Ok(array_sensitivity.into())
}
_ => Err("Mean sensitivity is only implemented for KNorm".into())
}
}
}