1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
use indexmap::map::IndexMap;
use ndarray::prelude::*;
use crate::{base, Float, proto, Warnable};
use crate::base::{
AggregatorProperties, DataType, IndexKey, Nature, NatureContinuous,
NodeProperties, SensitivitySpace, Value, ValueProperties, Vector1DNull,
};
use crate::components::{Component, Sensitivity};
use crate::errors::*;
use crate::utilities::prepend;
impl Component for proto::Variance {
fn propagate_property(
&self,
_privacy_definition: &Option<proto::PrivacyDefinition>,
_public_arguments: IndexMap<base::IndexKey, &Value>,
properties: base::NodeProperties,
node_id: u32
) -> Result<Warnable<ValueProperties>> {
let mut data_property = properties.get::<IndexKey>(&"data".into())
.ok_or("data: missing")?.array()
.map_err(prepend("data:"))?.clone();
if !data_property.releasable {
data_property.assert_is_not_aggregated()?;
}
data_property.assert_is_not_empty()?;
let num_columns = data_property.num_columns()?;
data_property.aggregator = Some(AggregatorProperties::new(
proto::component::Variant::Variance(self.clone()), properties, num_columns));
if data_property.data_type != DataType::Float {
return Err("data: atomic type must be float".into())
}
data_property.nature = match (data_property.lower_float(), data_property.upper_float()) {
(Ok(lower), Ok(upper)) => Some(Nature::Continuous(NatureContinuous {
lower: Vector1DNull::Float((0..num_columns).map(|_| Some(0.)).collect()),
upper: Vector1DNull::Float(lower.iter().zip(upper)
.map(|(l, u)| Some((u - l).powi(2) / 4.)).collect()),
})),
_ => None
};
data_property.num_records = Some(1);
data_property.dataset_id = Some(node_id as i64);
Ok(ValueProperties::Array(data_property).into())
}
}
impl Sensitivity for proto::Variance {
fn compute_sensitivity(
&self,
privacy_definition: &proto::PrivacyDefinition,
properties: &NodeProperties,
sensitivity_type: &SensitivitySpace
) -> Result<Value> {
match sensitivity_type {
SensitivitySpace::KNorm(k) => {
let data_property = properties.get::<IndexKey>(&"data".into())
.ok_or("data: missing")?.array()
.map_err(prepend("data:"))?.clone();
data_property.assert_non_null()?;
data_property.assert_is_not_aggregated()?;
let data_min = data_property.lower_float()?;
let data_max = data_property.upper_float()?;
let data_n = data_property.num_records()? as f64;
let delta_degrees_of_freedom = if self.finite_sample_correction { 1 } else { 0 } as f64;
let normalization = data_n - delta_degrees_of_freedom;
use proto::privacy_definition::Neighboring;
let neighboring_type = Neighboring::from_i32(privacy_definition.neighboring)
.ok_or_else(|| Error::from("neighboring definition must be either \"AddRemove\" or \"Substitute\""))?;
let scaling_constant = match k {
1 | 2 => match neighboring_type {
Neighboring::AddRemove => data_n / (data_n + 1.) / normalization,
Neighboring::Substitute => (data_n - 1.) / data_n / normalization
},
_ => return Err("KNorm sensitivity is only supported in L1 and L2 spaces".into())
} as Float;
let row_sensitivity = data_min.iter()
.zip(data_max.iter())
.map(|(min, max)| ((max - min).powi(2) * scaling_constant))
.collect::<Vec<Float>>();
let mut array_sensitivity = Array::from(row_sensitivity).into_dyn();
array_sensitivity.insert_axis_inplace(Axis(0));
Ok(array_sensitivity.into())
},
_ => Err("Variance sensitivity is only implemented for KNorm of 1".into())
}
}
}