1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
use crate::distribution::{Continuous, Gamma, Univariate};
use rand::distributions::Distribution;
use rand::Rng;
use crate::statistics::*;
use std::f64;
use crate::Result;

/// Implements the
/// [Chi-squared](https://en.wikipedia.org/wiki/Chi-squared_distribution)
/// distribution which is a special case of the
/// [Gamma](https://en.wikipedia.org/wiki/Gamma_distribution) distribution
/// (referenced [Here](./struct.Gamma.html))
///
/// # Examples
///
/// ```
/// use statrs::distribution::{ChiSquared, Continuous};
/// use statrs::statistics::Mean;
/// use statrs::prec;
///
/// let n = ChiSquared::new(3.0).unwrap();
/// assert_eq!(n.mean(), 3.0);
/// assert!(prec::almost_eq(n.pdf(4.0), 0.107981933026376103901, 1e-15));
/// ```
#[derive(Debug, Copy, Clone, PartialEq)]
pub struct ChiSquared {
    freedom: f64,
    g: Gamma,
}

impl ChiSquared {
    /// Constructs a new chi-squared distribution with `freedom`
    /// degrees of freedom. This is equivalent to a Gamma distribution
    /// with a shape of `freedom / 2.0` and a rate of `0.5`.
    ///
    /// # Errors
    ///
    /// Returns an error if `freedom` is `NaN` or less than
    /// or equal to `0.0`
    ///
    /// # Examples
    ///
    /// ```
    /// use statrs::distribution::ChiSquared;
    ///
    /// let mut result = ChiSquared::new(3.0);
    /// assert!(result.is_ok());
    ///
    /// result = ChiSquared::new(0.0);
    /// assert!(result.is_err());
    /// ```
    pub fn new(freedom: f64) -> Result<ChiSquared> {
        Gamma::new(freedom / 2.0, 0.5).map(|g| ChiSquared {
            freedom: freedom,
            g: g,
        })
    }

    /// Returns the degrees of freedom of the chi-squared
    /// distribution
    ///
    /// # Examples
    ///
    /// ```
    /// use statrs::distribution::ChiSquared;
    ///
    /// let n = ChiSquared::new(3.0).unwrap();
    /// assert_eq!(n.freedom(), 3.0);
    /// ```
    pub fn freedom(&self) -> f64 {
        self.freedom
    }

    /// Returns the shape of the underlying Gamma distribution
    ///
    /// # Examples
    ///
    /// ```
    /// use statrs::distribution::ChiSquared;
    ///
    /// let n = ChiSquared::new(3.0).unwrap();
    /// assert_eq!(n.shape(), 3.0 / 2.0);
    /// ```
    pub fn shape(&self) -> f64 {
        self.g.shape()
    }

    /// Returns the rate of the underlying Gamma distribution
    ///
    /// # Examples
    ///
    /// ```
    /// use statrs::distribution::ChiSquared;
    ///
    /// let n = ChiSquared::new(3.0).unwrap();
    /// assert_eq!(n.rate(), 0.5);
    /// ```
    pub fn rate(&self) -> f64 {
        self.g.rate()
    }
}

impl Distribution<f64> for ChiSquared {
    fn sample<R: Rng + ?Sized>(&self, r: &mut R) -> f64 {
        Distribution::sample(&self.g, r)
    }
}

impl Univariate<f64, f64> for ChiSquared {
    /// Calculates the cumulative distribution function for the
    /// chi-squared distribution at `x`
    ///
    /// # Formula
    ///
    /// ```ignore
    /// (1 / Γ(k / 2)) * γ(k / 2, x / 2)
    /// ```
    ///
    /// where `k` is the degrees of freedom, `Γ` is the gamma function,
    /// and `γ` is the lower incomplete gamma function
    fn cdf(&self, x: f64) -> f64 {
        self.g.cdf(x)
    }
}

impl Min<f64> for ChiSquared {
    /// Returns the minimum value in the domain of the
    /// chi-squared distribution representable by a double precision
    /// float
    ///
    /// # Formula
    ///
    /// ```ignore
    /// 0
    /// ```
    fn min(&self) -> f64 {
        0.0
    }
}

impl Max<f64> for ChiSquared {
    /// Returns the maximum value in the domain of the
    /// chi-squared distribution representable by a double precision
    /// float
    ///
    /// # Formula
    ///
    /// ```ignore
    /// INF
    /// ```
    fn max(&self) -> f64 {
        f64::INFINITY
    }
}

impl Mean<f64> for ChiSquared {
    /// Returns the mean of the chi-squared distribution
    ///
    /// # Formula
    ///
    /// ```ignore
    /// k
    /// ```
    ///
    /// where `k` is the degrees of freedom
    fn mean(&self) -> f64 {
        self.g.mean()
    }
}

impl Variance<f64> for ChiSquared {
    /// Returns the variance of the chi-squared distribution
    ///
    /// # Formula
    ///
    /// ```ignore
    /// 2k
    /// ```
    ///
    /// where `k` is the degrees of freedom
    fn variance(&self) -> f64 {
        self.g.variance()
    }

    /// Returns the standard deviation of the chi-squared distribution
    ///
    /// # Formula
    ///
    /// ```ignore
    /// sqrt(2k)
    /// ```
    ///
    /// where `k` is the degrees of freedom
    fn std_dev(&self) -> f64 {
        self.g.std_dev()
    }
}

impl Entropy<f64> for ChiSquared {
    /// Returns the entropy of the chi-squared distribution
    ///
    /// # Formula
    ///
    /// ```ignore
    /// (k / 2) + ln(2 * Γ(k / 2)) + (1 - (k / 2)) * ψ(k / 2)
    /// ```
    ///
    /// where `k` is the degrees of freedom, `Γ` is the gamma function,
    /// and `ψ` is the digamma function
    fn entropy(&self) -> f64 {
        self.g.entropy()
    }
}

impl Skewness<f64> for ChiSquared {
    /// Returns the skewness of the chi-squared distribution
    ///
    /// # Formula
    ///
    /// ```ignore
    /// sqrt(8 / k)
    /// ```
    ///
    /// where `k` is the degrees of freedom
    fn skewness(&self) -> f64 {
        self.g.skewness()
    }
}

impl Median<f64> for ChiSquared {
    /// Returns the median  of the chi-squared distribution
    ///
    /// # Formula
    ///
    /// ```ignore
    /// k * (1 - (2 / 9k))^3
    /// ```
    fn median(&self) -> f64 {
        if self.freedom < 1.0 {
            // if k is small, calculate using expansion of formula
            self.freedom - 2.0 / 3.0 + 12.0 / (81.0 * self.freedom)
                - 8.0 / (729.0 * self.freedom * self.freedom)
        } else {
            // if k is large enough, median heads toward k - 2/3
            self.freedom - 2.0 / 3.0
        }
    }
}

impl Mode<f64> for ChiSquared {
    /// Returns the mode of the chi-squared distribution
    ///
    /// # Formula
    ///
    /// ```ignore
    /// k - 2
    /// ```
    ///
    /// where `k` is the degrees of freedom
    fn mode(&self) -> f64 {
        self.g.mode()
    }
}

impl Continuous<f64, f64> for ChiSquared {
    /// Calculates the probability density function for the chi-squared
    /// distribution at `x`
    ///
    /// # Formula
    ///
    /// ```ignore
    /// 1 / (2^(k / 2) * Γ(k / 2)) * x^((k / 2) - 1) * e^(-x / 2)
    /// ```
    ///
    /// where `k` is the degrees of freedom and `Γ` is the gamma function
    fn pdf(&self, x: f64) -> f64 {
        self.g.pdf(x)
    }

    /// Calculates the log probability density function for the chi-squared
    /// distribution at `x`
    ///
    /// # Formula
    ///
    /// ```ignore
    /// ln(1 / (2^(k / 2) * Γ(k / 2)) * x^((k / 2) - 1) * e^(-x / 2))
    /// ```
    fn ln_pdf(&self, x: f64) -> f64 {
        self.g.ln_pdf(x)
    }
}

#[cfg_attr(rustfmt, rustfmt_skip)]
#[cfg(test)]
mod test {
    use std::f64;
    use crate::statistics::Median;
    use crate::distribution::ChiSquared;
    use crate::distribution::internal::*;

    fn try_create(freedom: f64) -> ChiSquared {
        let n = ChiSquared::new(freedom);
        assert!(n.is_ok());
        n.unwrap()
    }

    fn test_case<F>(freedom: f64, expected: f64, eval: F)
        where F: Fn(ChiSquared) -> f64
    {
        let n = try_create(freedom);
        let x = eval(n);
        assert_eq!(expected, x);
    }

    fn test_almost<F>(freedom: f64, expected: f64, acc: f64, eval: F)
        where F: Fn(ChiSquared) -> f64
    {
        let n = try_create(freedom);
        let x = eval(n);
        assert_almost_eq!(expected, x, acc);
    }

    #[test]
    fn test_median() {
        test_almost(0.5, 0.0857338820301783264746, 1e-16, |x| x.median());
        test_case(1.0, 1.0 - 2.0 / 3.0, |x| x.median());
        test_case(2.0, 2.0 - 2.0 / 3.0, |x| x.median());
        test_case(2.5, 2.5 - 2.0 / 3.0, |x| x.median());
        test_case(3.0, 3.0 - 2.0 / 3.0, |x| x.median());
    }

    #[test]
    fn test_continuous() {
        // TODO: figure out why this test fails:
        //test::check_continuous_distribution(&try_create(1.0), 0.0, 10.0);
        test::check_continuous_distribution(&try_create(2.0), 0.0, 10.0);
        test::check_continuous_distribution(&try_create(5.0), 0.0, 50.0);
    }
}