Trait ndarray_stats::Quantile1dExt [−][src]
Quantile methods for 1-D arrays.
Required methods
fn quantile_mut<I>(
&mut self,
q: N64,
interpolate: &I
) -> Result<A, QuantileError> where
A: Ord + Clone,
S: DataMut,
I: Interpolate<A>,
[src]
&mut self,
q: N64,
interpolate: &I
) -> Result<A, QuantileError> where
A: Ord + Clone,
S: DataMut,
I: Interpolate<A>,
Return the qth quantile of the data.
q
needs to be a float between 0 and 1, bounds included.
The qth quantile for a 1-dimensional array of length N
is defined
as the element that would be indexed as (N-1)q
if the array were to be sorted
in increasing order.
If (N-1)q
is not an integer the desired quantile lies between
two data points: we return the lower, nearest, higher or interpolated
value depending on the interpolate
strategy.
Some examples:
q=0.
returns the minimum;q=0.5
returns the median;q=1.
returns the maximum. (q=0
andq=1
are considered improper quantiles)
The array is shuffled in place in order to produce the required quantile without allocating a copy. No assumptions should be made on the ordering of the array elements after this computation.
Complexity (quickselect):
- average case: O(
m
); - worst case: O(
m
^2); wherem
is the number of elements in the array.
Returns Err(EmptyInput)
if the array is empty.
Returns Err(InvalidQuantile(q))
if q
is not between 0.
and 1.
(inclusive).
fn quantiles_mut<S2, I>(
&mut self,
qs: &ArrayBase<S2, Ix1>,
interpolate: &I
) -> Result<Array1<A>, QuantileError> where
A: Ord + Clone,
S: DataMut,
S2: Data<Elem = N64>,
I: Interpolate<A>,
[src]
&mut self,
qs: &ArrayBase<S2, Ix1>,
interpolate: &I
) -> Result<Array1<A>, QuantileError> where
A: Ord + Clone,
S: DataMut,
S2: Data<Elem = N64>,
I: Interpolate<A>,
A bulk version of quantile_mut
, optimized to retrieve multiple
quantiles at once.
Returns an Array
, where the elements of the array correspond to the
elements of qs
.
Returns Err(EmptyInput)
if the array is empty.
Returns Err(InvalidQuantile(q))
if any q
in
qs
is not between 0.
and 1.
(inclusive).
See quantile_mut
for additional details on quantiles and the algorithm
used to retrieve them.
fn __private__(&self, _: PrivateMarker)
[src]
This method makes this trait impossible to implement outside of
ndarray-stats
so that we can freely add new methods, etc., to
this trait without breaking changes.
We don’t anticipate any other crates needing to implement this trait, but if you do have such a use-case, please let us know.
Warning This method is not considered part of the public API, and client code should not rely on it being present. It may be removed in a non-breaking release.
Implementations on Foreign Types
impl<A, S> Quantile1dExt<A, S> for ArrayBase<S, Ix1> where
S: Data<Elem = A>,
[src]
S: Data<Elem = A>,
fn quantile_mut<I>(
&mut self,
q: N64,
interpolate: &I
) -> Result<A, QuantileError> where
A: Ord + Clone,
S: DataMut,
I: Interpolate<A>,
[src]
&mut self,
q: N64,
interpolate: &I
) -> Result<A, QuantileError> where
A: Ord + Clone,
S: DataMut,
I: Interpolate<A>,
fn quantiles_mut<S2, I>(
&mut self,
qs: &ArrayBase<S2, Ix1>,
interpolate: &I
) -> Result<Array1<A>, QuantileError> where
A: Ord + Clone,
S: DataMut,
S2: Data<Elem = N64>,
I: Interpolate<A>,
[src]
&mut self,
qs: &ArrayBase<S2, Ix1>,
interpolate: &I
) -> Result<Array1<A>, QuantileError> where
A: Ord + Clone,
S: DataMut,
S2: Data<Elem = N64>,
I: Interpolate<A>,