Struct rug::Integer [−][src]
An arbitrary-precision integer.
Standard arithmetic operations, bitwise operations and comparisons are
supported. In standard arithmetic operations such as addition, you can
mix Integer
and primitive integer types; the result will be an
Integer
.
Internally the integer is not stored using a two’s-complement representation, however, for bitwise operations and shifts, the functionality is the same as if the representation was using two’s complement.
Examples
use rug::{Assign, Integer}; // Create an integer initialized as zero. let mut int = Integer::new(); assert_eq!(int, 0); assert_eq!(int.to_u32(), Some(0)); int.assign(-14); assert_eq!(int, -14); assert_eq!(int.to_u32(), None); assert_eq!(int.to_i32(), Some(-14));
Arithmetic operations with mixed arbitrary and primitive types are
allowed. Note that in the following example, there is only one
allocation. The Integer
instance is moved into the shift operation
so that the result can be stored in the same instance, then that
result is similarly consumed by the addition operation.
use rug::Integer; let mut a = Integer::from(0xc); a = (a << 80) + 0xffee; assert_eq!(a.to_string_radix(16), "c0000000000000000ffee"); // ↑ ↑ ↑ ↑ ↑ ↑ // 80 64 48 32 16 0
Bitwise operations on Integer
values behave as if the value uses a
two’s-complement representation.
use rug::Integer; let mut i = Integer::from(1); i = i << 1000; // i is now 1000000... (1000 zeros) assert_eq!(i.significant_bits(), 1001); assert_eq!(i.find_one(0), Some(1000)); i -= 1; // i is now 111111... (1000 ones) assert_eq!(i.count_ones(), Some(1000)); let a = Integer::from(0xf00d); // −1 is all ones in two’s complement let all_ones_xor_a = Integer::from(-1 ^ &a); // a is unchanged as we borrowed it let complement_a = !a; // now a has been moved, so this would cause an error: // assert!(a > 0); assert_eq!(all_ones_xor_a, complement_a); assert_eq!(complement_a, -0xf00e); assert_eq!(format!("{:x}", complement_a), "-f00e");
To initialize a large Integer
that does not fit in a primitive type,
you can parse a string.
use rug::Integer; let s1 = "123456789012345678901234567890"; let i1 = s1.parse::<Integer>().unwrap(); assert_eq!(i1.significant_bits(), 97); let s2 = "ffff0000ffff0000ffff0000ffff0000ffff0000"; let i2 = Integer::from_str_radix(s2, 16).unwrap(); assert_eq!(i2.significant_bits(), 160); assert_eq!(i2.count_ones(), Some(80));
Operations on two borrowed Integer
values result in an
incomplete-computation value that has to be assigned to a new
Integer
value.
use rug::Integer; let a = Integer::from(10); let b = Integer::from(3); let a_b_ref = &a + &b; let a_b = Integer::from(a_b_ref); assert_eq!(a_b, 13);
As a special case, when an incomplete-computation value is
obtained from multiplying two Integer
references, it can be added to
or subtracted from another Integer
(or reference). This can be
useful for multiply-accumulate operations.
use rug::Integer; let mut acc = Integer::from(100); let m1 = Integer::from(3); let m2 = Integer::from(7); // 100 + 3 × 7 = 121 acc += &m1 * &m2; assert_eq!(acc, 121); let other = Integer::from(2000); // Do not consume any values here: // 2000 − 3 × 7 = 1979 let sub = Integer::from(&other - &m1 * &m2); assert_eq!(sub, 1979);
The Integer
type supports various functions. Most methods have three
versions:
- The first method consumes the operand.
- The second method has a “
_mut
” suffix and mutates the operand. - The third method has a “
_ref
” suffix and borrows the operand. The returned item is an incomplete-computation value that can be assigned to anInteger
.
use rug::Integer; // 1. consume the operand let a = Integer::from(-15); let abs_a = a.abs(); assert_eq!(abs_a, 15); // 2. mutate the operand let mut b = Integer::from(-16); b.abs_mut(); assert_eq!(b, 16); // 3. borrow the operand let c = Integer::from(-17); let r = c.abs_ref(); let abs_c = Integer::from(r); assert_eq!(abs_c, 17); // c was not consumed assert_eq!(c, -17);
Implementations
impl Integer
[src]
pub const fn new() -> Self
[src]
Constructs a new arbitrary-precision Integer
with value 0.
The created Integer
will have no allocated memory yet.
Examples
use rug::Integer; let i = Integer::new(); assert_eq!(i, 0);
pub fn with_capacity(bits: usize) -> Self
[src]
Constructs a new arbitrary-precision Integer
with at least
the specified capacity.
Examples
use rug::Integer; let i = Integer::with_capacity(137); assert!(i.capacity() >= 137);
pub fn capacity(&self) -> usize
[src]
Returns the capacity in bits that can be stored without reallocating.
Examples
use rug::Integer; let i = Integer::with_capacity(137); assert!(i.capacity() >= 137);
pub fn reserve(&mut self, additional: usize)
[src]
Reserves capacity for at least additional
more bits in the
Integer
.
If the integer already has enough excess capacity, this function does nothing.
Examples
use rug::Integer; // 0x2000_0000 needs 30 bits. let mut i = Integer::from(0x2000_0000); assert_eq!(i.significant_bits(), 30); i.reserve(290); let capacity = i.capacity(); assert!(capacity >= 320); i.reserve(0); assert_eq!(i.capacity(), capacity); i.reserve(291); assert!(i.capacity() >= 321);
pub fn shrink_to_fit(&mut self)
[src]
Shrinks the capacity of the Integer
as much as possible.
The capacity can still be larger than the number of significant bits.
Examples
use rug::Integer; // let i be 100 bits wide let mut i = Integer::from_str_radix("fffff12345678901234567890", 16) .unwrap(); assert_eq!(i.significant_bits(), 100); assert!(i.capacity() >= 100); i >>= 80; i.shrink_to_fit(); assert!(i.capacity() >= 20);
pub const unsafe fn from_raw(raw: mpz_t) -> Self
[src]
Creates an Integer
from an initialized
GMP integer.
Safety
- The function must not be used to create a constant
Integer
, though it can be used to create a staticInteger
. This is because constant values are copied on use, leading to undefined behaviour when they are dropped. - The value must be initialized.
- The
mpz_t
type can be considered as a kind of pointer, so there can be multiple copies of it. Since this function takes over ownership, no other copies of the passed value should exist.
Examples
use core::mem::MaybeUninit; use gmp_mpfr_sys::gmp; use rug::Integer; let i = unsafe { let mut z = MaybeUninit::uninit(); gmp::mpz_init_set_ui(z.as_mut_ptr(), 15); let z = z.assume_init(); // z is initialized and unique Integer::from_raw(z) }; assert_eq!(i, 15); // since i is an Integer now, deallocation is automatic
This can be used to create a static Integer
using
MPZ_ROINIT_N
to initialize the raw value. See the
GMP documentation for details.
use gmp_mpfr_sys::gmp::{self, limb_t, mpz_t}; use rug::Integer; const LIMBS: [limb_t; 2] = [123, 456]; const MPZ: mpz_t = unsafe { gmp::MPZ_ROINIT_N(LIMBS.as_ptr() as *mut limb_t, -2) }; // Must *not* be const, otherwise it would lead to undefined // behavior on use, as it would create a copy that is dropped. static I: Integer = unsafe { Integer::from_raw(MPZ) }; let check = -((Integer::from(LIMBS[1]) << gmp::NUMB_BITS) + LIMBS[0]); assert_eq!(I, check);
pub const fn into_raw(self) -> mpz_t
[src]
Converts an Integer
into a GMP integer.
The returned object should be freed to avoid memory leaks.
Examples
use gmp_mpfr_sys::gmp; use rug::Integer; let i = Integer::from(15); let mut z = i.into_raw(); unsafe { let u = gmp::mpz_get_ui(&z); assert_eq!(u, 15); // free object to prevent memory leak gmp::mpz_clear(&mut z); }
pub const fn as_raw(&self) -> *const mpz_t
[src]
Returns a pointer to the inner GMP integer.
The returned pointer will be valid for as long as self
is
valid.
Examples
use gmp_mpfr_sys::gmp; use rug::Integer; let i = Integer::from(15); let z_ptr = i.as_raw(); unsafe { let u = gmp::mpz_get_ui(z_ptr); assert_eq!(u, 15); } // i is still valid assert_eq!(i, 15);
pub fn as_raw_mut(&mut self) -> *mut mpz_t
[src]
Returns an unsafe mutable pointer to the inner GMP integer.
The returned pointer will be valid for as long as self
is
valid.
Examples
use gmp_mpfr_sys::gmp; use rug::Integer; let mut i = Integer::from(15); let z_ptr = i.as_raw_mut(); unsafe { gmp::mpz_add_ui(z_ptr, z_ptr, 20); } assert_eq!(i, 35);
pub fn from_digits<T: UnsignedPrimitive>(digits: &[T], order: Order) -> Self
[src]
Creates an Integer
from a slice of digits of type T
,
where T
can be any unsigned integer primitive type.
The resulting value cannot be negative.
Examples
use rug::{integer::Order, Integer}; let digits = [0x5678u16, 0x1234u16]; let i = Integer::from_digits(&digits, Order::Lsf); assert_eq!(i, 0x1234_5678);
pub fn assign_digits<T: UnsignedPrimitive>(
&mut self,
digits: &[T],
order: Order
)
[src]
&mut self,
digits: &[T],
order: Order
)
Assigns from a slice of digits of type T
, where T
can be
any unsigned integer primitive type.
The resulting value cannot be negative.
Examples
use rug::{integer::Order, Integer}; let digits = [0x5678u16, 0x1234u16]; let mut i = Integer::new(); i.assign_digits(&digits, Order::Lsf); assert_eq!(i, 0x1234_5678);
pub unsafe fn assign_digits_unaligned<T: UnsignedPrimitive>(
&mut self,
src: *const T,
len: usize,
order: Order
)
[src]
&mut self,
src: *const T,
len: usize,
order: Order
)
Assigns from digits of type T
in a memory area, where T
can be any unsigned integer primitive type.
The memory area is addressed using a pointer and a length. The
len
parameter is the number of digits, not the number of
bytes.
There are no data alignment restrictions on src
, any address
is allowed.
The resulting value cannot be negative.
Safety
To avoid undefined behavior, src
must be valid for reading
len
digits, that is len
× size_of::<T>()
bytes.
Examples
use rug::{integer::Order, Integer}; // hex bytes: [ fe dc ba 98 87 87 87 87 76 54 32 10 ] let digits = [ 0xfedc_ba98u32.to_be(), 0x8787_8787u32.to_be(), 0x7654_3210u32.to_be(), ]; let ptr = digits.as_ptr(); let mut i = Integer::new(); unsafe { let unaligned = (ptr as *const u8).offset(2) as *const u32; i.assign_digits_unaligned(unaligned, 2, Order::MsfBe); } assert_eq!(i, 0xba98_8787_8787_7654u64);
pub fn significant_digits<T: UnsignedPrimitive>(&self) -> usize
[src]
Returns the number of digits of type T
required to represent
the absolute value.
T
can be any unsigned integer primitive type.
Examples
use rug::Integer; let i: Integer = Integer::from(1) << 256; assert_eq!(i.significant_digits::<bool>(), 257); assert_eq!(i.significant_digits::<u8>(), 33); assert_eq!(i.significant_digits::<u16>(), 17); assert_eq!(i.significant_digits::<u32>(), 9); assert_eq!(i.significant_digits::<u64>(), 5);
pub fn to_digits<T: UnsignedPrimitive>(&self, order: Order) -> Vec<T>
[src]
Converts the absolute value to a Vec
of digits of type
T
, where T
can be any
unsigned integer primitive type.
The Integer
type also implements
AsRef<[limb_t]>
,
which can be used to borrow the digits without copying them.
This does come with some disadvantages compared to
to_digits
:
- The digit width is not optional and depends on the
implementation:
limb_t
is typicallyu64
on 64-bit systems andu32
on 32-bit systems. - The order is not optional and is least significant digit
first, with each digit in the target’s endianness,
equivalent to
Order::Lsf
.
Examples
use rug::{integer::Order, Integer}; let i = Integer::from(0x1234_5678_9abc_def0u64); let digits = i.to_digits::<u32>(Order::MsfBe); assert_eq!(digits, [0x1234_5678u32.to_be(), 0x9abc_def0u32.to_be()]); let zero = Integer::new(); let digits_zero = zero.to_digits::<u32>(Order::MsfBe); assert!(digits_zero.is_empty());
int.as_ref()
is like a borrowing
non-copy version of
int.to_digits::<limb_t>(Order::Lsf)
.
use gmp_mpfr_sys::gmp::limb_t; use rug::{integer::Order, Integer}; let int = Integer::from(0x1234_5678_9abc_def0u64); // no copying for int_slice, which is borrowing int let int_slice = int.as_ref(); // digits is a copy and does not borrow int let digits = int.to_digits::<limb_t>(Order::Lsf); // no copying for digits_slice, which is borrowing digits let digits_slice = &digits[..]; assert_eq!(int_slice, digits_slice);
pub fn write_digits<T: UnsignedPrimitive>(&self, digits: &mut [T], order: Order)
[src]
Writes the absolute value into a slice of digits of type
T
, where T
can be any
unsigned integer primitive type.
The slice must be large enough to hold the digits; the minimum
size can be obtained using the significant_digits
method.
Panics
Panics if the slice does not have sufficient capacity.
Examples
use rug::{integer::Order, Integer}; let i = Integer::from(0x1234_5678_9abc_def0u64); let mut digits = [0xffff_ffffu32; 4]; i.write_digits(&mut digits, Order::MsfBe); let word0 = 0x9abc_def0u32; let word1 = 0x1234_5678u32; assert_eq!(digits, [0, 0, word1.to_be(), word0.to_be()]);
pub unsafe fn write_digits_unaligned<T: UnsignedPrimitive>(
&self,
dst: *mut T,
len: usize,
order: Order
)
[src]
&self,
dst: *mut T,
len: usize,
order: Order
)
Writes the absolute value into a memory area of digits of type
T
, where T
can be any
unsigned integer primitive type.
The memory area is addressed using a pointer and a length. The
len
parameter is the number of digits, not the number of
bytes.
The length must be large enough to hold the digits; the
minimum length can be obtained using the
significant_digits
method.
There are no data alignment restrictions on dst
, any address
is allowed.
The memory locations can be uninitialized before this method
is called; this method sets all len
elements, padding with
zeros if the length is larger than required.
Safety
To avoid undefined behavior, dst
must be valid for writing
len
digits, that is len
× size_of::<T>()
bytes.
Panics
Panics if the length is less than the number of digits.
Examples
use rug::{integer::Order, Integer}; let i = Integer::from(0xfedc_ba98_7654_3210u64); let mut digits = [0xffff_ffffu32; 4]; let ptr = digits.as_mut_ptr(); unsafe { let unaligned = (ptr as *mut u8).offset(2) as *mut u32; i.write_digits_unaligned(unaligned, 3, Order::MsfBe); } assert_eq!( digits, [ 0xffff_0000u32.to_be(), 0x0000_fedcu32.to_be(), 0xba98_7654u32.to_be(), 0x3210_ffffu32.to_be(), ] );
The following example shows how to write into uninitialized
memory. In practice, the following code could be replaced by a
call to the safe method to_digits
.
use rug::{integer::Order, Integer}; let i = Integer::from(0x1234_5678_9abc_def0u64); let len = i.significant_digits::<u32>(); assert_eq!(len, 2); // The following code is equivalent to: // let digits = i.to_digits::<u32>(Order::MsfBe); let mut digits = Vec::<u32>::with_capacity(len); let ptr = digits.as_mut_ptr(); unsafe { i.write_digits_unaligned(ptr, len, Order::MsfBe); digits.set_len(len); } assert_eq!(digits, [0x1234_5678u32.to_be(), 0x9abc_def0u32.to_be()]);
pub fn from_f32(value: f32) -> Option<Self>
[src]
Creates an Integer
from an f32
if it is
finite, rounding towards zero.
This conversion can also be performed using
value.checked_as::<Integer>()
.
Examples
use core::f32; use rug::Integer; let i = Integer::from_f32(-5.6).unwrap(); assert_eq!(i, -5); let neg_inf = Integer::from_f32(f32::NEG_INFINITY); assert!(neg_inf.is_none());
pub fn from_f64(value: f64) -> Option<Self>
[src]
Creates an Integer
from an f64
if it is
finite, rounding towards zero.
This conversion can also be performed using
value.checked_as::<Integer>()
.
Examples
use core::f64; use rug::Integer; let i = Integer::from_f64(1e20).unwrap(); assert_eq!(i, "100000000000000000000".parse::<Integer>().unwrap()); let inf = Integer::from_f64(f64::INFINITY); assert!(inf.is_none());
pub fn from_str_radix(src: &str, radix: i32) -> Result<Self, ParseIntegerError>
[src]
Parses an Integer
using the given radix.
Panics
Panics if radix
is less than 2 or greater than 36.
Examples
use rug::Integer; let i = Integer::from_str_radix("-ff", 16).unwrap(); assert_eq!(i, -0xff);
pub fn parse<S: AsRef<[u8]>>(
src: S
) -> Result<ParseIncomplete, ParseIntegerError>
[src]
src: S
) -> Result<ParseIncomplete, ParseIntegerError>
Parses a decimal string slice (&str
) or
byte slice
(&[u8]
) into an
Integer
.
The following are implemented with the unwrapped returned
incomplete-computation value as Src
:
The string can start with an optional minus or plus sign. ASCII whitespace is ignored everywhere in the string. Underscores anywhere except before the first digit are ignored as well.
Examples
use rug::Integer; let valid1 = Integer::parse("1223"); let i1 = Integer::from(valid1.unwrap()); assert_eq!(i1, 1223); let valid2 = Integer::parse("123 456 789"); let i2 = Integer::from(valid2.unwrap()); assert_eq!(i2, 123_456_789); let invalid = Integer::parse("789a"); assert!(invalid.is_err());
pub fn parse_radix<S: AsRef<[u8]>>(
src: S,
radix: i32
) -> Result<ParseIncomplete, ParseIntegerError>
[src]
src: S,
radix: i32
) -> Result<ParseIncomplete, ParseIntegerError>
Parses a string slice (&str
) or byte slice
(&[u8]
) into an
Integer
.
The following are implemented with the unwrapped returned
incomplete-computation value as Src
:
The string can start with an optional minus or plus sign. ASCII whitespace is ignored everywhere in the string. Underscores anywhere except before the first digit are ignored as well.
Panics
Panics if radix
is less than 2 or greater than 36.
Examples
use rug::Integer; let valid1 = Integer::parse_radix("1223", 4); let i1 = Integer::from(valid1.unwrap()); assert_eq!(i1, 3 + 4 * (2 + 4 * (2 + 4 * 1))); let valid2 = Integer::parse_radix("1234 abcd", 16); let i2 = Integer::from(valid2.unwrap()); assert_eq!(i2, 0x1234_abcd); let invalid = Integer::parse_radix("123", 3); assert!(invalid.is_err());
pub fn to_i8(&self) -> Option<i8>
[src]
Converts to an i8
if the value fits.
This conversion can also be performed using
i8::try_from(&integer)
i8::try_from(integer)
(&integer).checked_as::<i8>()
integer.borrow().checked_as::<i8>()
Examples
use rug::Integer; let fits = Integer::from(-100); assert_eq!(fits.to_i8(), Some(-100)); let small = Integer::from(-200); assert_eq!(small.to_i8(), None); let large = Integer::from(200); assert_eq!(large.to_i8(), None);
pub fn to_i16(&self) -> Option<i16>
[src]
Converts to an i16
if the value fits.
This conversion can also be performed using
i16::try_from(&integer)
i16::try_from(integer)
(&integer).checked_as::<i16>()
integer.borrow().checked_as::<i16>()
Examples
use rug::Integer; let fits = Integer::from(-30_000); assert_eq!(fits.to_i16(), Some(-30_000)); let small = Integer::from(-40_000); assert_eq!(small.to_i16(), None); let large = Integer::from(40_000); assert_eq!(large.to_i16(), None);
pub fn to_i32(&self) -> Option<i32>
[src]
Converts to an i32
if the value fits.
This conversion can also be performed using
i32::try_from(&integer)
i32::try_from(integer)
(&integer).checked_as::<i32>()
integer.borrow().checked_as::<i32>()
Examples
use rug::Integer; let fits = Integer::from(-50); assert_eq!(fits.to_i32(), Some(-50)); let small = Integer::from(-123456789012345_i64); assert_eq!(small.to_i32(), None); let large = Integer::from(123456789012345_i64); assert_eq!(large.to_i32(), None);
pub fn to_i64(&self) -> Option<i64>
[src]
Converts to an i64
if the value fits.
This conversion can also be performed using
i64::try_from(&integer)
i64::try_from(integer)
(&integer).checked_as::<i64>()
integer.borrow().checked_as::<i64>()
Examples
use rug::Integer; let fits = Integer::from(-50); assert_eq!(fits.to_i64(), Some(-50)); let small = Integer::from_str_radix("-fedcba9876543210", 16).unwrap(); assert_eq!(small.to_i64(), None); let large = Integer::from_str_radix("fedcba9876543210", 16).unwrap(); assert_eq!(large.to_i64(), None);
pub fn to_i128(&self) -> Option<i128>
[src]
Converts to an i128
if the value fits.
This conversion can also be performed using
i128::try_from(&integer)
i128::try_from(integer)
(&integer).checked_as::<i128>()
integer.borrow().checked_as::<i128>()
Examples
use rug::Integer; let fits = Integer::from(-50); assert_eq!(fits.to_i128(), Some(-50)); let small: Integer = Integer::from(-1) << 130; assert_eq!(small.to_i128(), None); let large: Integer = Integer::from(1) << 130; assert_eq!(large.to_i128(), None);
pub fn to_isize(&self) -> Option<isize>
[src]
Converts to an isize
if the value fits.
This conversion can also be performed using
isize::try_from(&integer)
isize::try_from(integer)
(&integer).checked_as::<isize>()
integer.borrow().checked_as::<isize>()
Examples
use rug::Integer; let fits = Integer::from(0x1000); assert_eq!(fits.to_isize(), Some(0x1000)); let large: Integer = Integer::from(0x1000) << 128; assert_eq!(large.to_isize(), None);
pub fn to_u8(&self) -> Option<u8>
[src]
Converts to a u8
if the value fits.
This conversion can also be performed using
u8::try_from(&integer)
u8::try_from(integer)
(&integer).checked_as::<u8>()
integer.borrow().checked_as::<u8>()
Examples
use rug::Integer; let fits = Integer::from(200); assert_eq!(fits.to_u8(), Some(200)); let neg = Integer::from(-1); assert_eq!(neg.to_u8(), None); let large = Integer::from(300); assert_eq!(large.to_u8(), None);
pub fn to_u16(&self) -> Option<u16>
[src]
Converts to a u16
if the value fits.
This conversion can also be performed using
u16::try_from(&integer)
u16::try_from(integer)
(&integer).checked_as::<u16>()
integer.borrow().checked_as::<u16>()
Examples
use rug::Integer; let fits = Integer::from(60_000); assert_eq!(fits.to_u16(), Some(60_000)); let neg = Integer::from(-1); assert_eq!(neg.to_u16(), None); let large = Integer::from(70_000); assert_eq!(large.to_u16(), None);
pub fn to_u32(&self) -> Option<u32>
[src]
Converts to a u32
if the value fits.
This conversion can also be performed using
u32::try_from(&integer)
u32::try_from(integer)
(&integer).checked_as::<u32>()
integer.borrow().checked_as::<u32>()
Examples
use rug::Integer; let fits = Integer::from(1234567890); assert_eq!(fits.to_u32(), Some(1234567890)); let neg = Integer::from(-1); assert_eq!(neg.to_u32(), None); let large = Integer::from(123456789012345_u64); assert_eq!(large.to_u32(), None);
pub fn to_u64(&self) -> Option<u64>
[src]
Converts to a u64
if the value fits.
This conversion can also be performed using
u64::try_from(&integer)
u64::try_from(integer)
(&integer).checked_as::<u64>()
integer.borrow().checked_as::<u64>()
Examples
use rug::Integer; let fits = Integer::from(123456789012345_u64); assert_eq!(fits.to_u64(), Some(123456789012345)); let neg = Integer::from(-1); assert_eq!(neg.to_u64(), None); let large = "1234567890123456789012345".parse::<Integer>().unwrap(); assert_eq!(large.to_u64(), None);
pub fn to_u128(&self) -> Option<u128>
[src]
Converts to a u128
if the value fits.
This conversion can also be performed using
u128::try_from(&integer)
u128::try_from(integer)
(&integer).checked_as::<u128>()
integer.borrow().checked_as::<u128>()
Examples
use rug::Integer; let fits = Integer::from(12345678901234567890_u128); assert_eq!(fits.to_u128(), Some(12345678901234567890)); let neg = Integer::from(-1); assert_eq!(neg.to_u128(), None); let large = "1234567890123456789012345678901234567890" .parse::<Integer>() .unwrap(); assert_eq!(large.to_u128(), None);
pub fn to_usize(&self) -> Option<usize>
[src]
Converts to a usize
if the value fits.
This conversion can also be performed using
usize::try_from(&integer)
usize::try_from(integer)
(&integer).checked_as::<usize>()
integer.borrow().checked_as::<usize>()
Examples
use rug::Integer; let fits = Integer::from(0x1000); assert_eq!(fits.to_usize(), Some(0x1000)); let neg = Integer::from(-1); assert_eq!(neg.to_usize(), None); let large: Integer = Integer::from(0x1000) << 128; assert_eq!(large.to_usize(), None);
pub fn to_i8_wrapping(&self) -> i8
[src]
Converts to an i8
, wrapping if the value does not fit.
This conversion can also be performed using
(&integer).wrapping_as::<i8>()
integer.borrow().wrapping_as::<i8>()
Examples
use rug::Integer; let large = Integer::from(0x1234); assert_eq!(large.to_i8_wrapping(), 0x34);
pub fn to_i16_wrapping(&self) -> i16
[src]
Converts to an i16
, wrapping if the value does not fit.
This conversion can also be performed using
(&integer).wrapping_as::<i16>()
integer.borrow().wrapping_as::<i16>()
Examples
use rug::Integer; let large = Integer::from(0x1234_5678); assert_eq!(large.to_i16_wrapping(), 0x5678);
pub fn to_i32_wrapping(&self) -> i32
[src]
Converts to an i32
, wrapping if the value does not fit.
This conversion can also be performed using
(&integer).wrapping_as::<i32>()
integer.borrow().wrapping_as::<i32>()
Examples
use rug::Integer; let large = Integer::from(0x1234_5678_9abc_def0_u64); assert_eq!(large.to_i32_wrapping(), 0x9abc_def0_u32 as i32);
pub fn to_i64_wrapping(&self) -> i64
[src]
Converts to an i64
, wrapping if the value does not fit.
This conversion can also be performed using
(&integer).wrapping_as::<i64>()
integer.borrow().wrapping_as::<i64>()
Examples
use rug::Integer; let large = Integer::from_str_radix("f123456789abcdef0", 16).unwrap(); assert_eq!(large.to_i64_wrapping(), 0x1234_5678_9abc_def0);
pub fn to_i128_wrapping(&self) -> i128
[src]
Converts to an i128
, wrapping if the value does not fit.
This conversion can also be performed using
(&integer).wrapping_as::<i128>()
integer.borrow().wrapping_as::<i128>()
Examples
use rug::Integer; let s = "f123456789abcdef0123456789abcdef0"; let large = Integer::from_str_radix(s, 16).unwrap(); assert_eq!( large.to_i128_wrapping(), 0x1234_5678_9abc_def0_1234_5678_9abc_def0 );
pub fn to_isize_wrapping(&self) -> isize
[src]
Converts to an isize
, wrapping if the value does not fit.
This conversion can also be performed using
(&integer).wrapping_as::<isize>()
integer.borrow().wrapping_as::<isize>()
Examples
use rug::Integer; let large: Integer = (Integer::from(0x1000) << 128) | 0x1234; assert_eq!(large.to_isize_wrapping(), 0x1234);
pub fn to_u8_wrapping(&self) -> u8
[src]
Converts to a u8
, wrapping if the value does not fit.
This conversion can also be performed using
(&integer).wrapping_as::<u8>()
integer.borrow().wrapping_as::<u8>()
Examples
use rug::Integer; let neg = Integer::from(-1); assert_eq!(neg.to_u8_wrapping(), 0xff); let large = Integer::from(0x1234); assert_eq!(large.to_u8_wrapping(), 0x34);
pub fn to_u16_wrapping(&self) -> u16
[src]
Converts to a u16
, wrapping if the value does not fit.
This conversion can also be performed using
(&integer).wrapping_as::<u16>()
integer.borrow().wrapping_as::<u16>()
Examples
use rug::Integer; let neg = Integer::from(-1); assert_eq!(neg.to_u16_wrapping(), 0xffff); let large = Integer::from(0x1234_5678); assert_eq!(large.to_u16_wrapping(), 0x5678);
pub fn to_u32_wrapping(&self) -> u32
[src]
Converts to a u32
, wrapping if the value does not fit.
This conversion can also be performed using
(&integer).wrapping_as::<u32>()
integer.borrow().wrapping_as::<u32>()
Examples
use rug::Integer; let neg = Integer::from(-1); assert_eq!(neg.to_u32_wrapping(), 0xffff_ffff); let large = Integer::from(0x1234_5678_9abc_def0_u64); assert_eq!(large.to_u32_wrapping(), 0x9abc_def0);
pub fn to_u64_wrapping(&self) -> u64
[src]
Converts to a u64
, wrapping if the value does not fit.
This conversion can also be performed using
(&integer).wrapping_as::<u64>()
integer.borrow().wrapping_as::<u64>()
Examples
use rug::Integer; let neg = Integer::from(-1); assert_eq!(neg.to_u64_wrapping(), 0xffff_ffff_ffff_ffff); let large = Integer::from_str_radix("f123456789abcdef0", 16).unwrap(); assert_eq!(large.to_u64_wrapping(), 0x1234_5678_9abc_def0);
pub fn to_u128_wrapping(&self) -> u128
[src]
Converts to a u128
, wrapping if the value does not fit.
This conversion can also be performed using
(&integer).wrapping_as::<u128>()
integer.borrow().wrapping_as::<u128>()
Examples
use rug::Integer; let neg = Integer::from(-1); assert_eq!( neg.to_u128_wrapping(), 0xffff_ffff_ffff_ffff_ffff_ffff_ffff_ffff ); let s = "f123456789abcdef0123456789abcdef0"; let large = Integer::from_str_radix(s, 16).unwrap(); assert_eq!( large.to_u128_wrapping(), 0x1234_5678_9abc_def0_1234_5678_9abc_def0 );
pub fn to_usize_wrapping(&self) -> usize
[src]
Converts to a usize
, wrapping if the value does not fit.
This conversion can also be performed using
(&integer).wrapping_as::<usize>()
integer.borrow().wrapping_as::<usize>()
Examples
use rug::Integer; let large: Integer = (Integer::from(0x1000) << 128) | 0x1234; assert_eq!(large.to_usize_wrapping(), 0x1234);
pub fn to_f32(&self) -> f32
[src]
Converts to an f32
, rounding towards zero.
This conversion can also be performed using
Examples
use core::f32; use rug::Integer; let min = Integer::from_f32(f32::MIN).unwrap(); let min_minus_one = min - 1u32; // min_minus_one is truncated to f32::MIN assert_eq!(min_minus_one.to_f32(), f32::MIN); let times_two = min_minus_one * 2u32; // times_two is too small assert_eq!(times_two.to_f32(), f32::NEG_INFINITY);
pub fn to_f64(&self) -> f64
[src]
Converts to an f64
, rounding towards zero.
This conversion can also be performed using
Examples
use core::f64; use rug::Integer; // An `f64` has 53 bits of precision. let exact = 0x1f_ffff_ffff_ffff_u64; let i = Integer::from(exact); assert_eq!(i.to_f64(), exact as f64); // large has 56 ones let large = 0xff_ffff_ffff_ffff_u64; // trunc has 53 ones followed by 3 zeros let trunc = 0xff_ffff_ffff_fff8_u64; let j = Integer::from(large); assert_eq!(j.to_f64() as u64, trunc); let max = Integer::from_f64(f64::MAX).unwrap(); let max_plus_one = max + 1u32; // max_plus_one is truncated to f64::MAX assert_eq!(max_plus_one.to_f64(), f64::MAX); let times_two = max_plus_one * 2u32; // times_two is too large assert_eq!(times_two.to_f64(), f64::INFINITY);
pub fn to_f32_exp(&self) -> (f32, u32)
[src]
Converts to an f32
and an exponent, rounding towards zero.
The returned f32
is in the range 0.5 ≤ x < 1. If
the value is zero, (0.0, 0)
is returned.
Examples
use rug::Integer; let zero = Integer::new(); let (d0, exp0) = zero.to_f32_exp(); assert_eq!((d0, exp0), (0.0, 0)); let fifteen = Integer::from(15); let (d15, exp15) = fifteen.to_f32_exp(); assert_eq!((d15, exp15), (15.0 / 16.0, 4));
pub fn to_f64_exp(&self) -> (f64, u32)
[src]
Converts to an f64
and an exponent, rounding towards zero.
The returned f64
is in the range 0.5 ≤ x < 1. If
the value is zero, (0.0, 0)
is returned.
Examples
use rug::Integer; let zero = Integer::new(); let (d0, exp0) = zero.to_f64_exp(); assert_eq!((d0, exp0), (0.0, 0)); let fifteen = Integer::from(15); let (d15, exp15) = fifteen.to_f64_exp(); assert_eq!((d15, exp15), (15.0 / 16.0, 4));
pub fn to_string_radix(&self, radix: i32) -> String
[src]
Returns a string representation of the number for the
specified radix
.
Panics
Panics if radix
is less than 2 or greater than 36.
Examples
use rug::{Assign, Integer}; let mut i = Integer::new(); assert_eq!(i.to_string_radix(10), "0"); i.assign(-10); assert_eq!(i.to_string_radix(16), "-a"); i.assign(0x1234cdef); assert_eq!(i.to_string_radix(4), "102031030313233"); i.assign(Integer::parse_radix("123456789aAbBcCdDeEfF", 16).unwrap()); assert_eq!(i.to_string_radix(16), "123456789aabbccddeeff");
pub fn assign_f32(&mut self, val: f32) -> Result<(), ()>
[src]
Assigns from an f32
if it is finite,
rounding towards zero.
Examples
use core::f32; use rug::Integer; let mut i = Integer::new(); let ret = i.assign_f64(-12.7); assert!(ret.is_ok()); assert_eq!(i, -12); let ret = i.assign_f32(f32::NAN); assert!(ret.is_err()); assert_eq!(i, -12);
pub fn assign_f64(&mut self, val: f64) -> Result<(), ()>
[src]
Assigns from an f64
if it is finite,
rounding towards zero.
Examples
use rug::Integer; let mut i = Integer::new(); let ret = i.assign_f64(12.7); assert!(ret.is_ok()); assert_eq!(i, 12); let ret = i.assign_f64(1.0 / 0.0); assert!(ret.is_err()); assert_eq!(i, 12);
pub fn as_neg(&self) -> BorrowInteger<'_>
[src]
Borrows a negated copy of the Integer
.
The returned object implements
Deref<Target = Integer>
.
This method performs a shallow copy and negates it, and negation does not change the allocated data.
Examples
use rug::Integer; let i = Integer::from(42); let neg_i = i.as_neg(); assert_eq!(*neg_i, -42); // methods taking &self can be used on the returned object let reneg_i = neg_i.as_neg(); assert_eq!(*reneg_i, 42); assert_eq!(*reneg_i, i);
pub fn as_abs(&self) -> BorrowInteger<'_>
[src]
Borrows an absolute copy of the Integer
.
The returned object implements
Deref<Target = Integer>
.
This method performs a shallow copy and possibly negates it, and negation does not change the allocated data.
Examples
use rug::Integer; let i = Integer::from(-42); let abs_i = i.as_abs(); assert_eq!(*abs_i, 42); // methods taking &self can be used on the returned object let reabs_i = abs_i.as_abs(); assert_eq!(*reabs_i, 42); assert_eq!(*reabs_i, *abs_i);
pub fn is_even(&self) -> bool
[src]
Returns true
if the number is even.
Examples
use rug::Integer; assert!(!(Integer::from(13).is_even())); assert!(Integer::from(-14).is_even());
pub fn is_odd(&self) -> bool
[src]
Returns true
if the number is odd.
Examples
use rug::Integer; assert!(Integer::from(13).is_odd()); assert!(!Integer::from(-14).is_odd());
pub fn is_divisible(&self, divisor: &Self) -> bool
[src]
Returns true
if the number is divisible by divisor
. Unlike
other division functions, divisor
can be zero.
Examples
use rug::Integer; let i = Integer::from(230); assert!(i.is_divisible(&Integer::from(10))); assert!(!i.is_divisible(&Integer::from(100))); assert!(!i.is_divisible(&Integer::new()));
pub fn is_divisible_u(&self, divisor: u32) -> bool
[src]
Returns true
if the number is divisible by divisor
. Unlike
other division functions, divisor
can be zero.
Examples
use rug::Integer; let i = Integer::from(230); assert!(i.is_divisible_u(23)); assert!(!i.is_divisible_u(100)); assert!(!i.is_divisible_u(0));
pub fn is_divisible_2pow(&self, b: u32) -> bool
[src]
Returns true
if the number is divisible by 2b.
Examples
use rug::Integer; let i = Integer::from(15 << 17); assert!(i.is_divisible_2pow(16)); assert!(i.is_divisible_2pow(17)); assert!(!i.is_divisible_2pow(18));
pub fn is_congruent(&self, c: &Self, divisor: &Self) -> bool
[src]
Returns true
if the number is congruent to c mod
divisor, that is, if there exists a q such that
self
= c + q × divisor. Unlike other
division functions, divisor
can be zero.
Examples
use rug::Integer; let n = Integer::from(105); let divisor = Integer::from(10); assert!(n.is_congruent(&Integer::from(5), &divisor)); assert!(n.is_congruent(&Integer::from(25), &divisor)); assert!(!n.is_congruent(&Integer::from(7), &divisor)); // n is congruent to itself if divisor is 0 assert!(n.is_congruent(&n, &Integer::from(0)));
pub fn is_congruent_u(&self, c: u32, divisor: u32) -> bool
[src]
Returns true
if the number is congruent to c mod
divisor, that is, if there exists a q such that
self
= c + q × divisor. Unlike other
division functions, divisor
can be zero.
Examples
use rug::Integer; let n = Integer::from(105); assert!(n.is_congruent_u(3335, 10)); assert!(!n.is_congruent_u(107, 10)); // n is congruent to itself if divisor is 0 assert!(n.is_congruent_u(105, 0));
pub fn is_congruent_2pow(&self, c: &Self, b: u32) -> bool
[src]
Returns true
if the number is congruent to c mod
2b, that is, if there exists a q such
that self
= c + q × 2b.
Examples
use rug::Integer; let n = Integer::from(13 << 17 | 21); assert!(n.is_congruent_2pow(&Integer::from(7 << 17 | 21), 17)); assert!(!n.is_congruent_2pow(&Integer::from(13 << 17 | 22), 17));
pub fn is_perfect_power(&self) -> bool
[src]
Returns true
if the number is a perfect power.
Examples
use rug::Integer; // 0 is 0 to the power of anything assert!(Integer::from(0).is_perfect_power()); // 25 is 5 to the power of 2 assert!(Integer::from(25).is_perfect_power()); // −243 is −3 to the power of 5 assert!(Integer::from(243).is_perfect_power()); assert!(!Integer::from(24).is_perfect_power()); assert!(!Integer::from(-100).is_perfect_power());
pub fn is_perfect_square(&self) -> bool
[src]
Returns true
if the number is a perfect square.
Examples
use rug::Integer; assert!(Integer::from(0).is_perfect_square()); assert!(Integer::from(1).is_perfect_square()); assert!(Integer::from(4).is_perfect_square()); assert!(Integer::from(9).is_perfect_square()); assert!(!Integer::from(15).is_perfect_square()); assert!(!Integer::from(-9).is_perfect_square());
pub fn is_power_of_two(&self) -> bool
[src]
Returns true
if the number is a power of two.
Examples
use rug::Integer; assert!(Integer::from(1).is_power_of_two()); assert!(Integer::from(4).is_power_of_two()); assert!(Integer::from(1 << 30).is_power_of_two()); assert!(!Integer::from(7).is_power_of_two()); assert!(!Integer::from(0).is_power_of_two()); assert!(!Integer::from(-1).is_power_of_two());
pub fn cmp0(&self) -> Ordering
[src]
Returns the same result as
self.cmp(&0.into())
, but is faster.
Examples
use core::cmp::Ordering; use rug::Integer; assert_eq!(Integer::from(-5).cmp0(), Ordering::Less); assert_eq!(Integer::from(0).cmp0(), Ordering::Equal); assert_eq!(Integer::from(5).cmp0(), Ordering::Greater);
pub fn cmp_abs(&self, other: &Self) -> Ordering
[src]
Compares the absolute values.
Examples
use core::cmp::Ordering; use rug::Integer; let a = Integer::from(-10); let b = Integer::from(4); assert_eq!(a.cmp(&b), Ordering::Less); assert_eq!(a.cmp_abs(&b), Ordering::Greater);
pub fn significant_bits(&self) -> u32
[src]
Returns the number of bits required to represent the absolute value.
Examples
use rug::Integer; assert_eq!(Integer::from(0).significant_bits(), 0); // “” assert_eq!(Integer::from(1).significant_bits(), 1); // “1” assert_eq!(Integer::from(4).significant_bits(), 3); // “100” assert_eq!(Integer::from(7).significant_bits(), 3); // “111” assert_eq!(Integer::from(-1).significant_bits(), 1); // “1” assert_eq!(Integer::from(-4).significant_bits(), 3); // “100” assert_eq!(Integer::from(-7).significant_bits(), 3); // “111”
pub fn signed_bits(&self) -> u32
[src]
Returns the number of bits required to represent the value using a two’s-complement representation.
For non-negative numbers, this method returns one more than
the significant_bits
method, since an extra zero is needed
before the most significant bit.
Examples
use rug::Integer; assert_eq!(Integer::from(-5).signed_bits(), 4); // “1011” assert_eq!(Integer::from(-4).signed_bits(), 3); // “100” assert_eq!(Integer::from(-3).signed_bits(), 3); // “101” assert_eq!(Integer::from(-2).signed_bits(), 2); // “10” assert_eq!(Integer::from(-1).signed_bits(), 1); // “1” assert_eq!(Integer::from(0).signed_bits(), 1); // “0” assert_eq!(Integer::from(1).signed_bits(), 2); // “01” assert_eq!(Integer::from(2).signed_bits(), 3); // “010” assert_eq!(Integer::from(3).signed_bits(), 3); // “011” assert_eq!(Integer::from(4).signed_bits(), 4); // “0100”
pub fn count_ones(&self) -> Option<u32>
[src]
Returns the number of one bits if the value ≥ 0.
Examples
use rug::Integer; assert_eq!(Integer::from(0).count_ones(), Some(0)); assert_eq!(Integer::from(15).count_ones(), Some(4)); assert_eq!(Integer::from(-1).count_ones(), None);
pub fn count_zeros(&self) -> Option<u32>
[src]
Returns the number of zero bits if the value < 0.
Examples
use rug::Integer; assert_eq!(Integer::from(0).count_zeros(), None); assert_eq!(Integer::from(1).count_zeros(), None); assert_eq!(Integer::from(-1).count_zeros(), Some(0)); assert_eq!(Integer::from(-2).count_zeros(), Some(1)); assert_eq!(Integer::from(-7).count_zeros(), Some(2)); assert_eq!(Integer::from(-8).count_zeros(), Some(3));
pub fn find_zero(&self, start: u32) -> Option<u32>
[src]
Returns the location of the first zero, starting at start
.
If the bit at location start
is zero, returns start
.
use rug::Integer; // −2 is ...11111110 assert_eq!(Integer::from(-2).find_zero(0), Some(0)); assert_eq!(Integer::from(-2).find_zero(1), None); // 15 is ...00001111 assert_eq!(Integer::from(15).find_zero(0), Some(4)); assert_eq!(Integer::from(15).find_zero(20), Some(20));
pub fn find_one(&self, start: u32) -> Option<u32>
[src]
Returns the location of the first one, starting at start
.
If the bit at location start
is one, returns start
.
use rug::Integer; // 1 is ...00000001 assert_eq!(Integer::from(1).find_one(0), Some(0)); assert_eq!(Integer::from(1).find_one(1), None); // −16 is ...11110000 assert_eq!(Integer::from(-16).find_one(0), Some(4)); assert_eq!(Integer::from(-16).find_one(20), Some(20));
pub fn set_bit(&mut self, index: u32, val: bool) -> &mut Self
[src]
Sets the bit at location index
to 1 if val
is true
or
0 if val
is false
.
Examples
use rug::{Assign, Integer}; let mut i = Integer::from(-1); assert_eq!(*i.set_bit(0, false), -2); i.assign(0xff); assert_eq!(*i.set_bit(11, true), 0x8ff);
pub fn get_bit(&self, index: u32) -> bool
[src]
Returns true
if the bit at location index
is 1 or
false
if the bit is 0.
Examples
use rug::Integer; let i = Integer::from(0b100101); assert!(i.get_bit(0)); assert!(!i.get_bit(1)); assert!(i.get_bit(5)); let neg = Integer::from(-1); assert!(neg.get_bit(1000));
pub fn toggle_bit(&mut self, index: u32) -> &mut Self
[src]
Toggles the bit at location index
.
Examples
use rug::Integer; let mut i = Integer::from(0b100101); i.toggle_bit(5); assert_eq!(i, 0b101);
pub fn hamming_dist(&self, other: &Self) -> Option<u32>
[src]
Retuns the Hamming distance if the two numbers have the same sign.
The Hamming distance is the number of different bits.
Examples
use rug::Integer; let i = Integer::from(-1); assert_eq!(Integer::from(0).hamming_dist(&i), None); assert_eq!(Integer::from(-1).hamming_dist(&i), Some(0)); // −1 is ...11111111 and −13 is ...11110011 assert_eq!(Integer::from(-13).hamming_dist(&i), Some(2));
pub fn sum<'a, I>(values: I) -> SumIncomplete<'a, I> where
I: Iterator<Item = &'a Self>,
[src]
I: Iterator<Item = &'a Self>,
Adds a list of Integer
values.
The following are implemented with the returned
incomplete-computation value as Src
:
Examples
use rug::Integer; let values = [ Integer::from(5), Integer::from(1024), Integer::from(-100_000), Integer::from(-4), ]; let r = Integer::sum(values.iter()); let sum = Integer::from(r); let expected = 5 + 1024 - 100_000 - 4; assert_eq!(sum, expected);
pub fn dot<'a, I>(values: I) -> DotIncomplete<'a, I> where
I: Iterator<Item = (&'a Self, &'a Self)>,
[src]
I: Iterator<Item = (&'a Self, &'a Self)>,
Finds the dot product of a list of Integer
value pairs.
The following are implemented with the returned
incomplete-computation value as Src
:
Examples
use rug::Integer; let a = [Integer::from(270), Integer::from(-11)]; let b = [Integer::from(100), Integer::from(5)]; let r = Integer::dot(a.iter().zip(b.iter())); let dot = Integer::from(r); let expected = 270 * 100 - 11 * 5; assert_eq!(dot, expected);
pub fn product<'a, I>(values: I) -> ProductIncomplete<'a, I> where
I: Iterator<Item = &'a Self>,
[src]
I: Iterator<Item = &'a Self>,
Multiplies a list of Integer
values.
The following are implemented with the returned
incomplete-computation value as Src
:
Examples
use rug::Integer; let values = [ Integer::from(5), Integer::from(1024), Integer::from(-100_000), Integer::from(-4), ]; let r = Integer::product(values.iter()); let product = Integer::from(r); let expected = 5 * 1024 * -100_000 * -4; assert_eq!(product, expected);
pub fn abs(self) -> Self
[src]
Computes the absolute value.
Examples
use rug::Integer; let i = Integer::from(-100); let abs = i.abs(); assert_eq!(abs, 100);
pub fn abs_mut(&mut self)
[src]
Computes the absolute value.
Examples
use rug::Integer; let mut i = Integer::from(-100); i.abs_mut(); assert_eq!(i, 100);
pub fn abs_ref(&self) -> AbsIncomplete<'_>
[src]
Computes the absolute value.
The following are implemented with the returned
incomplete-computation value as Src
:
Examples
use rug::Integer; let i = Integer::from(-100); let r = i.abs_ref(); let abs = Integer::from(r); assert_eq!(abs, 100); assert_eq!(i, -100);
pub fn signum(self) -> Self
[src]
Computes the signum.
- 0 if the value is zero
- 1 if the value is positive
- −1 if the value is negative
Examples
use rug::Integer; assert_eq!(Integer::from(-100).signum(), -1); assert_eq!(Integer::from(0).signum(), 0); assert_eq!(Integer::from(100).signum(), 1);
pub fn signum_mut(&mut self)
[src]
Computes the signum.
- 0 if the value is zero
- 1 if the value is positive
- −1 if the value is negative
Examples
use rug::Integer; let mut i = Integer::from(-100); i.signum_mut(); assert_eq!(i, -1);
pub fn signum_ref(&self) -> SignumIncomplete<'_>
[src]
Computes the signum.
- 0 if the value is zero
- 1 if the value is positive
- −1 if the value is negative
The following are implemented with the returned
incomplete-computation value as Src
:
Examples
use rug::Integer; let i = Integer::from(-100); let r = i.signum_ref(); let signum = Integer::from(r); assert_eq!(signum, -1); assert_eq!(i, -100);
pub fn clamp<Min, Max>(self, min: &Min, max: &Max) -> Self where
Self: PartialOrd<Min> + PartialOrd<Max> + for<'a> Assign<&'a Min> + for<'a> Assign<&'a Max>,
[src]
Self: PartialOrd<Min> + PartialOrd<Max> + for<'a> Assign<&'a Min> + for<'a> Assign<&'a Max>,
Clamps the value within the specified bounds.
Panics
Panics if the maximum value is less than the minimum value.
Examples
use rug::Integer; let min = -10; let max = 10; let too_small = Integer::from(-100); let clamped1 = too_small.clamp(&min, &max); assert_eq!(clamped1, -10); let in_range = Integer::from(3); let clamped2 = in_range.clamp(&min, &max); assert_eq!(clamped2, 3);
pub fn clamp_mut<Min, Max>(&mut self, min: &Min, max: &Max) where
Self: PartialOrd<Min> + PartialOrd<Max> + for<'a> Assign<&'a Min> + for<'a> Assign<&'a Max>,
[src]
Self: PartialOrd<Min> + PartialOrd<Max> + for<'a> Assign<&'a Min> + for<'a> Assign<&'a Max>,
Clamps the value within the specified bounds.
Panics
Panics if the maximum value is less than the minimum value.
Examples
use rug::Integer; let min = -10; let max = 10; let mut too_small = Integer::from(-100); too_small.clamp_mut(&min, &max); assert_eq!(too_small, -10); let mut in_range = Integer::from(3); in_range.clamp_mut(&min, &max); assert_eq!(in_range, 3);
pub fn clamp_ref<'min, 'max, Min, Max>(
&self,
min: &'min Min,
max: &'max Max
) -> ClampIncomplete<'_, 'min, 'max, Min, Max> where
Self: PartialOrd<Min> + PartialOrd<Max> + for<'a> Assign<&'a Min> + for<'a> Assign<&'a Max>,
[src]
&self,
min: &'min Min,
max: &'max Max
) -> ClampIncomplete<'_, 'min, 'max, Min, Max> where
Self: PartialOrd<Min> + PartialOrd<Max> + for<'a> Assign<&'a Min> + for<'a> Assign<&'a Max>,
Clamps the value within the specified bounds.
The following are implemented with the returned
incomplete-computation value as Src
:
Panics
Panics if the maximum value is less than the minimum value.
Examples
use rug::Integer; let min = -10; let max = 10; let too_small = Integer::from(-100); let r1 = too_small.clamp_ref(&min, &max); let clamped1 = Integer::from(r1); assert_eq!(clamped1, -10); let in_range = Integer::from(3); let r2 = in_range.clamp_ref(&min, &max); let clamped2 = Integer::from(r2); assert_eq!(clamped2, 3);
pub fn keep_bits(self, n: u32) -> Self
[src]
Keeps the n least significant bits only, producing a result that is greater or equal to 0.
Examples
use rug::Integer; let i = Integer::from(-1); let keep_8 = i.keep_bits(8); assert_eq!(keep_8, 0xff);
pub fn keep_bits_mut(&mut self, n: u32)
[src]
Keeps the n least significant bits only, producing a result that is greater or equal to 0.
Examples
use rug::Integer; let mut i = Integer::from(-1); i.keep_bits_mut(8); assert_eq!(i, 0xff);
pub fn keep_bits_ref(&self, n: u32) -> KeepBitsIncomplete<'_>
[src]
Keeps the n least significant bits only, producing a result that is greater or equal to 0.
The following are implemented with the returned
incomplete-computation value as Src
:
Examples
use rug::Integer; let i = Integer::from(-1); let r = i.keep_bits_ref(8); let eight_bits = Integer::from(r); assert_eq!(eight_bits, 0xff);
pub fn keep_signed_bits(self, n: u32) -> Self
[src]
Keeps the n least significant bits only, producing a negative result if the nth least significant bit is one.
Examples
use rug::Integer; let i = Integer::from(-1); let i_keep_8 = i.keep_signed_bits(8); assert_eq!(i_keep_8, -1); let j = Integer::from(15 << 8 | 15); let j_keep_8 = j.keep_signed_bits(8); assert_eq!(j_keep_8, 15);
pub fn keep_signed_bits_mut(&mut self, n: u32)
[src]
Keeps the n least significant bits only, producing a negative result if the nth least significant bit is one.
Examples
use rug::Integer; let mut i = Integer::from(-1); i.keep_signed_bits_mut(8); assert_eq!(i, -1); let mut j = Integer::from(15 << 8 | 15); j.keep_signed_bits_mut(8); assert_eq!(j, 15);
pub fn keep_signed_bits_ref(&self, n: u32) -> KeepSignedBitsIncomplete<'_>
[src]
Keeps the n least significant bits only, producing a negative result if the nth least significant bit is one.
The following are implemented with the returned
incomplete-computation value as Src
:
Examples
use rug::Integer; let i = Integer::from(-1); let r = i.keep_signed_bits_ref(8); let eight_bits = Integer::from(r); assert_eq!(eight_bits, -1);
pub fn next_power_of_two(self) -> Self
[src]
Finds the next power of two, or 1 if the number ≤ 0.
Examples
use rug::Integer; let i = Integer::from(-3).next_power_of_two(); assert_eq!(i, 1); let i = Integer::from(4).next_power_of_two(); assert_eq!(i, 4); let i = Integer::from(7).next_power_of_two(); assert_eq!(i, 8);
pub fn next_power_of_two_mut(&mut self)
[src]
Finds the next power of two, or 1 if the number ≤ 0.
Examples
use rug::Integer; let mut i = Integer::from(53); i.next_power_of_two_mut(); assert_eq!(i, 64);
pub fn next_power_of_two_ref(&self) -> NextPowerOfTwoIncomplete<'_>
[src]
Finds the next power of two, or 1 if the number ≤ 0.
The following are implemented with the returned
incomplete-computation value as Src
:
Examples
use rug::Integer; let i = Integer::from(53); let r = i.next_power_of_two_ref(); let next = Integer::from(r); assert_eq!(next, 64);
pub fn div_rem(self, divisor: Self) -> (Self, Self)
[src]
Performs a division producing both the quotient and remainder.
The remainder has the same sign as the dividend.
Panics
Panics if divisor
is zero.
Examples
use rug::Integer; let dividend = Integer::from(23); let divisor = Integer::from(-10); let (quotient, rem) = dividend.div_rem(divisor); assert_eq!(quotient, -2); assert_eq!(rem, 3);
pub fn div_rem_mut(&mut self, divisor: &mut Self)
[src]
Performs a division producing both the quotient and remainder.
The remainder has the same sign as the dividend.
The quotient is stored in self
and the remainder is
stored in divisor
.
Panics
Panics if divisor
is zero.
Examples
use rug::Integer; let mut dividend_quotient = Integer::from(-23); let mut divisor_rem = Integer::from(10); dividend_quotient.div_rem_mut(&mut divisor_rem); assert_eq!(dividend_quotient, -2); assert_eq!(divisor_rem, -3);
pub fn div_rem_ref<'a>(&'a self, divisor: &'a Self) -> DivRemIncomplete<'_>
[src]
Performs a division producing both the quotient and remainder.
The following are implemented with the returned
incomplete-computation value as Src
:
Assign<Src> for (Integer, Integer)
Assign<Src> for (&mut Integer, &mut Integer)
From<Src> for (Integer, Integer)
The remainder has the same sign as the dividend.
Examples
use rug::Integer; let dividend = Integer::from(-23); let divisor = Integer::from(-10); let r = dividend.div_rem_ref(&divisor); let (quotient, rem) = <(Integer, Integer)>::from(r); assert_eq!(quotient, 2); assert_eq!(rem, -3);
pub fn div_rem_ceil(self, divisor: Self) -> (Self, Self)
[src]
Performs a division producing both the quotient and remainder, with the quotient rounded up.
The sign of the remainder is the opposite of the divisor’s sign.
Panics
Panics if divisor
is zero.
Examples
use rug::Integer; let dividend = Integer::from(23); let divisor = Integer::from(-10); let (quotient, rem) = dividend.div_rem_ceil(divisor); assert_eq!(quotient, -2); assert_eq!(rem, 3);
pub fn div_rem_ceil_mut(&mut self, divisor: &mut Self)
[src]
Performs a division producing both the quotient and remainder, with the quotient rounded up.
The sign of the remainder is the opposite of the divisor’s sign.
The quotient is stored in self
and the remainder is
stored in divisor
.
Panics
Panics if divisor
is zero.
Examples
use rug::Integer; let mut dividend_quotient = Integer::from(-23); let mut divisor_rem = Integer::from(10); dividend_quotient.div_rem_ceil_mut(&mut divisor_rem); assert_eq!(dividend_quotient, -2); assert_eq!(divisor_rem, -3);
pub fn div_rem_ceil_ref<'a>(
&'a self,
divisor: &'a Self
) -> DivRemCeilIncomplete<'_>
[src]
&'a self,
divisor: &'a Self
) -> DivRemCeilIncomplete<'_>
Performs a division producing both the quotient and remainder, with the quotient rounded up.
The sign of the remainder is the opposite of the divisor’s sign.
The following are implemented with the returned
incomplete-computation value as Src
:
Assign<Src> for (Integer, Integer)
Assign<Src> for (&mut Integer, &mut Integer)
From<Src> for (Integer, Integer)
Examples
use rug::Integer; let dividend = Integer::from(-23); let divisor = Integer::from(-10); let r = dividend.div_rem_ceil_ref(&divisor); let (quotient, rem) = <(Integer, Integer)>::from(r); assert_eq!(quotient, 3); assert_eq!(rem, 7);
pub fn div_rem_floor(self, divisor: Self) -> (Self, Self)
[src]
Performs a division producing both the quotient and remainder, with the quotient rounded down.
The remainder has the same sign as the divisor.
Panics
Panics if divisor
is zero.
Examples
use rug::Integer; let dividend = Integer::from(23); let divisor = Integer::from(-10); let (quotient, rem) = dividend.div_rem_floor(divisor); assert_eq!(quotient, -3); assert_eq!(rem, -7);
pub fn div_rem_floor_mut(&mut self, divisor: &mut Self)
[src]
Performs a division producing both the quotient and remainder, with the quotient rounded down.
The remainder has the same sign as the divisor.
The quotient is stored in self
and the remainder is
stored in divisor
.
Panics
Panics if divisor
is zero.
Examples
use rug::Integer; let mut dividend_quotient = Integer::from(-23); let mut divisor_rem = Integer::from(10); dividend_quotient.div_rem_floor_mut(&mut divisor_rem); assert_eq!(dividend_quotient, -3); assert_eq!(divisor_rem, 7);
pub fn div_rem_floor_ref<'a>(
&'a self,
divisor: &'a Self
) -> DivRemFloorIncomplete<'_>
[src]
&'a self,
divisor: &'a Self
) -> DivRemFloorIncomplete<'_>
Performs a division producing both the quotient and remainder, with the quotient rounded down.
The remainder has the same sign as the divisor.
The following are implemented with the returned
incomplete-computation value as Src
:
Assign<Src> for (Integer, Integer)
Assign<Src> for (&mut Integer, &mut Integer)
From<Src> for (Integer, Integer)
Examples
use rug::Integer; let dividend = Integer::from(-23); let divisor = Integer::from(-10); let r = dividend.div_rem_floor_ref(&divisor); let (quotient, rem) = <(Integer, Integer)>::from(r); assert_eq!(quotient, 2); assert_eq!(rem, -3);
pub fn div_rem_round(self, divisor: Self) -> (Self, Self)
[src]
Performs a division producing both the quotient and remainder, with the quotient rounded to the nearest integer.
When the quotient before rounding lies exactly between two integers, it is rounded away from zero.
Panics
Panics if divisor
is zero.
Examples
use rug::Integer; // 23 / −10 → −2 rem 3 let (q, rem) = Integer::from(23).div_rem_round((-10).into()); assert!(q == -2 && rem == 3); // 25 / 10 → 3 rem −5 let (q, rem) = Integer::from(25).div_rem_round(10.into()); assert!(q == 3 && rem == -5); // −27 / 10 → −3 rem 3 let (q, rem) = Integer::from(-27).div_rem_round(10.into()); assert!(q == -3 && rem == 3);
pub fn div_rem_round_mut(&mut self, divisor: &mut Self)
[src]
Performs a division producing both the quotient and remainder, with the quotient rounded to the nearest integer.
When the quotient before rounding lies exactly between two integers, it is rounded away from zero.
Panics
Panics if divisor
is zero.
Examples
use rug::Integer; // −25 / −10 → 3 rem 5 let mut dividend_quotient = Integer::from(-25); let mut divisor_rem = Integer::from(-10); dividend_quotient.div_rem_round_mut(&mut divisor_rem); assert_eq!(dividend_quotient, 3); assert_eq!(divisor_rem, 5);
pub fn div_rem_round_ref<'a>(
&'a self,
divisor: &'a Self
) -> DivRemRoundIncomplete<'_>
[src]
&'a self,
divisor: &'a Self
) -> DivRemRoundIncomplete<'_>
Performs a division producing both the quotient and remainder, with the quotient rounded to the nearest integer.
When the quotient before rounding lies exactly between two integers, it is rounded away from zero.
The following are implemented with the returned
incomplete-computation value as Src
:
Assign<Src> for (Integer, Integer)
Assign<Src> for (&mut Integer, &mut Integer)
From<Src> for (Integer, Integer)
Examples
use rug::Integer; // −28 / −10 → 3 rem 2 let dividend = Integer::from(-28); let divisor = Integer::from(-10); let r = dividend.div_rem_round_ref(&divisor); let (quotient, rem) = <(Integer, Integer)>::from(r); assert_eq!(quotient, 3); assert_eq!(rem, 2);
pub fn div_rem_euc(self, divisor: Self) -> (Self, Self)
[src]
Performs Euclidean division producing both the quotient and remainder, with a positive remainder.
Panics
Panics if divisor
is zero.
Examples
use rug::Integer; let dividend = Integer::from(23); let divisor = Integer::from(-10); let (quotient, rem) = dividend.div_rem_euc(divisor); assert_eq!(quotient, -2); assert_eq!(rem, 3);
pub fn div_rem_euc_mut(&mut self, divisor: &mut Self)
[src]
Performs Euclidean division producing both the quotient and remainder, with a positive remainder.
The quotient is stored in self
and the remainder is
stored in divisor
.
Panics
Panics if divisor
is zero.
Examples
use rug::Integer; let mut dividend_quotient = Integer::from(-23); let mut divisor_rem = Integer::from(10); dividend_quotient.div_rem_euc_mut(&mut divisor_rem); assert_eq!(dividend_quotient, -3); assert_eq!(divisor_rem, 7);
pub fn div_rem_euc_ref<'a>(
&'a self,
divisor: &'a Self
) -> DivRemEucIncomplete<'_>
[src]
&'a self,
divisor: &'a Self
) -> DivRemEucIncomplete<'_>
Performs Euclidan division producing both the quotient and remainder, with a positive remainder.
The following are implemented with the returned
incomplete-computation value as Src
:
Assign<Src> for (Integer, Integer)
Assign<Src> for (&mut Integer, &mut Integer)
From<Src> for (Integer, Integer)
Examples
use rug::Integer; let dividend = Integer::from(-23); let divisor = Integer::from(-10); let r = dividend.div_rem_euc_ref(&divisor); let (quotient, rem) = <(Integer, Integer)>::from(r); assert_eq!(quotient, 3); assert_eq!(rem, 7);
pub fn mod_u(&self, modulo: u32) -> u32
[src]
Returns the modulo, or the remainder of Euclidean division by
a u32
.
The result is always zero or positive.
Panics
Panics if modulo
is zero.
Examples
use rug::Integer; let pos = Integer::from(23); assert_eq!(pos.mod_u(1), 0); assert_eq!(pos.mod_u(10), 3); assert_eq!(pos.mod_u(100), 23); let neg = Integer::from(-23); assert_eq!(neg.mod_u(1), 0); assert_eq!(neg.mod_u(10), 7); assert_eq!(neg.mod_u(100), 77);
pub fn div_exact(self, divisor: &Self) -> Self
[src]
Performs an exact division.
This is much faster than normal division, but produces correct results only when the division is exact.
Panics
Panics if divisor
is zero.
Examples
use rug::Integer; let i = Integer::from(12345 * 54321); let quotient = i.div_exact(&Integer::from(12345)); assert_eq!(quotient, 54321);
pub fn div_exact_mut(&mut self, divisor: &Self)
[src]
Performs an exact division.
This is much faster than normal division, but produces correct results only when the division is exact.
Panics
Panics if divisor
is zero.
Examples
use rug::Integer; let mut i = Integer::from(12345 * 54321); i.div_exact_mut(&Integer::from(12345)); assert_eq!(i, 54321);
pub fn div_exact_from(&mut self, dividend: &Integer)
[src]
Performs an exact division dividend
/ self
.
This is much faster than normal division, but produces correct results only when the division is exact.
Panics
Panics if self
is zero.
Examples
use rug::Integer; let mut i = Integer::from(12345); i.div_exact_from(&Integer::from(12345 * 54321)); assert_eq!(i, 54321);
pub fn div_exact_ref<'a>(&'a self, divisor: &'a Self) -> DivExactIncomplete<'_>
[src]
Performs an exact division.
This is much faster than normal division, but produces correct results only when the division is exact.
The following are implemented with the returned
incomplete-computation value as Src
:
Examples
use rug::Integer; let i = Integer::from(12345 * 54321); let divisor = Integer::from(12345); let r = i.div_exact_ref(&divisor); let quotient = Integer::from(r); assert_eq!(quotient, 54321);
pub fn div_exact_u(self, divisor: u32) -> Self
[src]
Performs an exact division.
This is much faster than normal division, but produces correct results only when the division is exact.
Panics
Panics if divisor
is zero.
Examples
use rug::Integer; let i = Integer::from(12345 * 54321); let q = i.div_exact_u(12345); assert_eq!(q, 54321);
pub fn div_exact_u_mut(&mut self, divisor: u32)
[src]
Performs an exact division.
This is much faster than normal division, but produces correct results only when the division is exact.
Panics
Panics if divisor
is zero.
Examples
use rug::Integer; let mut i = Integer::from(12345 * 54321); i.div_exact_u_mut(12345); assert_eq!(i, 54321);
pub fn div_exact_u_ref(&self, divisor: u32) -> DivExactUIncomplete<'_>
[src]
Performs an exact division.
This is much faster than normal division, but produces correct results only when the division is exact.
The following are implemented with the returned
incomplete-computation value as Src
:
Examples
use rug::Integer; let i = Integer::from(12345 * 54321); let r = i.div_exact_u_ref(12345); assert_eq!(Integer::from(r), 54321);
pub fn invert(self, modulo: &Self) -> Result<Self, Self>
[src]
Finds the inverse modulo modulo
and returns
Ok(inverse)
if it exists, or
Err(unchanged)
if the inverse does not exist.
The inverse exists if the modulo is not zero, and self
and
the modulo are co-prime, that is their GCD is 1.
Examples
use rug::Integer; let n = Integer::from(2); // Modulo 4, 2 has no inverse: there is no i such that 2 × i = 1. let inv_mod_4 = match n.invert(&Integer::from(4)) { Ok(_) => unreachable!(), Err(unchanged) => unchanged, }; // no inverse exists, so value is unchanged assert_eq!(inv_mod_4, 2); let n = inv_mod_4; // Modulo 5, the inverse of 2 is 3, as 2 × 3 = 1. let inv_mod_5 = match n.invert(&Integer::from(5)) { Ok(inverse) => inverse, Err(_) => unreachable!(), }; assert_eq!(inv_mod_5, 3);
pub fn invert_mut(&mut self, modulo: &Self) -> Result<(), ()>
[src]
Finds the inverse modulo modulo
if an inverse exists.
The inverse exists if the modulo is not zero, and self
and
the modulo are co-prime, that is their GCD is 1.
Examples
use rug::Integer; let mut n = Integer::from(2); // Modulo 4, 2 has no inverse: there is no i such that 2 × i = 1. match n.invert_mut(&Integer::from(4)) { Ok(()) => unreachable!(), Err(()) => assert_eq!(n, 2), } // Modulo 5, the inverse of 2 is 3, as 2 × 3 = 1. match n.invert_mut(&Integer::from(5)) { Ok(()) => assert_eq!(n, 3), Err(()) => unreachable!(), }
pub fn invert_ref<'a>(
&'a self,
modulo: &'a Self
) -> Option<InvertIncomplete<'a>>
[src]
&'a self,
modulo: &'a Self
) -> Option<InvertIncomplete<'a>>
Finds the inverse modulo modulo
if an inverse exists.
The inverse exists if the modulo is not zero, and self
and
the modulo are co-prime, that is their GCD is 1.
The following are implemented with the unwrapped returned
incomplete-computation value as Src
:
Examples
use rug::Integer; let two = Integer::from(2); let four = Integer::from(4); let five = Integer::from(5); // Modulo 4, 2 has no inverse, there is no i such that 2 × i = 1. // For this conversion, if no inverse exists, the Integer // created is left unchanged as 0. assert!(two.invert_ref(&four).is_none()); // Modulo 5, the inverse of 2 is 3, as 2 × 3 = 1. let r = two.invert_ref(&five).unwrap(); let inverse = Integer::from(r); assert_eq!(inverse, 3);
pub fn pow_mod(self, exponent: &Self, modulo: &Self) -> Result<Self, Self>
[src]
Raises a number to the power of exponent
modulo modulo
and
returns Ok(power)
if an answer exists, or
Err(unchanged)
if it does not.
If the exponent is negative, then the number must have an inverse for an answer to exist.
When the exponent is positive and the modulo is not zero, an answer always exists.
Examples
use rug::Integer; // 7 ^ 5 = 16807 let n = Integer::from(7); let e = Integer::from(5); let m = Integer::from(1000); let power = match n.pow_mod(&e, &m) { Ok(power) => power, Err(_) => unreachable!(), }; assert_eq!(power, 807);
When the exponent is negative, an answer exists if an inverse exists.
use rug::Integer; // 7 × 143 modulo 1000 = 1, so 7 has an inverse 143. // 7 ^ −5 modulo 1000 = 143 ^ 5 modulo 1000 = 943. let n = Integer::from(7); let e = Integer::from(-5); let m = Integer::from(1000); let power = match n.pow_mod(&e, &m) { Ok(power) => power, Err(_) => unreachable!(), }; assert_eq!(power, 943);
pub fn pow_mod_mut(&mut self, exponent: &Self, modulo: &Self) -> Result<(), ()>
[src]
Raises a number to the power of exponent
modulo modulo
if
an answer exists.
If the exponent is negative, then the number must have an inverse for an answer to exist.
Examples
use rug::{Assign, Integer}; // Modulo 1000, 2 has no inverse: there is no i such that 2 × i = 1. let mut n = Integer::from(2); let e = Integer::from(-5); let m = Integer::from(1000); match n.pow_mod_mut(&e, &m) { Ok(()) => unreachable!(), Err(()) => assert_eq!(n, 2), } // 7 × 143 modulo 1000 = 1, so 7 has an inverse 143. // 7 ^ −5 modulo 1000 = 143 ^ 5 modulo 1000 = 943. n.assign(7); match n.pow_mod_mut(&e, &m) { Ok(()) => assert_eq!(n, 943), Err(()) => unreachable!(), }
pub fn pow_mod_ref<'a>(
&'a self,
exponent: &'a Self,
modulo: &'a Self
) -> Option<PowModIncomplete<'a>>
[src]
&'a self,
exponent: &'a Self,
modulo: &'a Self
) -> Option<PowModIncomplete<'a>>
Raises a number to the power of exponent
modulo modulo
if
an answer exists.
If the exponent is negative, then the number must have an inverse for an answer to exist.
The following are implemented with the unwrapped returned
incomplete-computation value as Src
:
Examples
use rug::Integer; let two = Integer::from(2); let thousand = Integer::from(1000); let minus_five = Integer::from(-5); let seven = Integer::from(7); // Modulo 1000, 2 has no inverse: there is no i such that 2 × i = 1. assert!(two.pow_mod_ref(&minus_five, &thousand).is_none()); // 7 × 143 modulo 1000 = 1, so 7 has an inverse 143. // 7 ^ −5 modulo 1000 = 143 ^ 5 modulo 1000 = 943. let r = seven.pow_mod_ref(&minus_five, &thousand).unwrap(); let power = Integer::from(r); assert_eq!(power, 943);
pub fn secure_pow_mod(self, exponent: &Self, modulo: &Self) -> Self
[src]
Raises a number to the power of exponent
modulo modulo
,
with resilience to side-channel attacks.
The exponent must be greater than zero, and the modulo must be odd.
This method is intended for cryptographic purposes where resilience to side-channel attacks is desired. The function is designed to take the same time and use the same cache access patterns for same-sized arguments, assuming that the arguments are placed at the same position and the machine state is identical when starting.
Panics
Panics if exponent
≤ 0 or if modulo
is even.
Examples
use rug::Integer; // 7 ^ 4 mod 13 = 9 let n = Integer::from(7); let e = Integer::from(4); let m = Integer::from(13); let power = n.secure_pow_mod(&e, &m); assert_eq!(power, 9);
pub fn secure_pow_mod_mut(&mut self, exponent: &Self, modulo: &Self)
[src]
Raises a number to the power of exponent
modulo modulo
,
with resilience to side-channel attacks.
The exponent must be greater than zero, and the modulo must be odd.
This method is intended for cryptographic purposes where resilience to side-channel attacks is desired. The function is designed to take the same time and use the same cache access patterns for same-sized arguments, assuming that the arguments are placed at the same position and the machine state is identical when starting.
Panics
Panics if exponent
≤ 0 or if modulo
is even.
Examples
use rug::Integer; // 7 ^ 4 mod 13 = 9 let mut n = Integer::from(7); let e = Integer::from(4); let m = Integer::from(13); n.secure_pow_mod_mut(&e, &m); assert_eq!(n, 9);
pub fn secure_pow_mod_ref<'a>(
&'a self,
exponent: &'a Self,
modulo: &'a Self
) -> SecurePowModIncomplete<'a>
[src]
&'a self,
exponent: &'a Self,
modulo: &'a Self
) -> SecurePowModIncomplete<'a>
Raises a number to the power of exponent
modulo modulo
,
with resilience to side-channel attacks.
The exponent must be greater than zero, and the modulo must be odd.
This method is intended for cryptographic purposes where resilience to side-channel attacks is desired. The function is designed to take the same time and use the same cache access patterns for same-sized arguments, assuming that the arguments are placed at the same position and the machine state is identical when starting.
The following are implemented with the returned
incomplete-computation value as Src
:
Panics
Panics if exponent
≤ 0 or if modulo
is even.
Examples
use rug::Integer; // 7 ^ 4 mod 13 = 9 let n = Integer::from(7); let e = Integer::from(4); let m = Integer::from(13); let power = Integer::from(n.secure_pow_mod_ref(&e, &m)); assert_eq!(power, 9);
pub fn u_pow_u(base: u32, exponent: u32) -> UPowUIncomplete
[src]
Raises base
to the power of exponent
.
The following are implemented with the returned
incomplete-computation value as Src
:
Examples
use rug::Integer; let p = Integer::u_pow_u(13, 12); let i = Integer::from(p); assert_eq!(i, 13_u64.pow(12));
pub fn i_pow_u(base: i32, exponent: u32) -> IPowUIncomplete
[src]
Raises base
to the power of exponent
.
The following are implemented with the returned
incomplete-computation value as Src
:
Examples
use rug::Integer; let p1 = Integer::i_pow_u(-13, 13); let i1 = Integer::from(p1); assert_eq!(i1, (-13_i64).pow(13)); let p2 = Integer::i_pow_u(13, 13); let i2 = Integer::from(p2); assert_eq!(i2, (13_i64).pow(13));
pub fn root(self, n: u32) -> Self
[src]
Computes the nth root and truncates the result.
Panics
Panics if n is zero or if n is even and the value is negative.
Examples
use rug::Integer; let i = Integer::from(1004); let root = i.root(3); assert_eq!(root, 10);
pub fn root_mut(&mut self, n: u32)
[src]
Computes the nth root and truncates the result.
Panics
Panics if n is zero or if n is even and the value is negative.
Examples
use rug::Integer; let mut i = Integer::from(1004); i.root_mut(3); assert_eq!(i, 10);
pub fn root_ref(&self, n: u32) -> RootIncomplete<'_>
[src]
Computes the nth root and truncates the result.
The following are implemented with the returned
incomplete-computation value as Src
:
Examples
use rug::Integer; let i = Integer::from(1004); assert_eq!(Integer::from(i.root_ref(3)), 10);
pub fn root_rem(self, remainder: Self, n: u32) -> (Self, Self)
[src]
Computes the nth root and returns the truncated root and the remainder.
The remainder is the original number minus the truncated root raised to the power of n.
The initial value of remainder
is ignored.
Panics
Panics if n is zero or if n is even and the value is negative.
Examples
use rug::Integer; let i = Integer::from(1004); let (root, rem) = i.root_rem(Integer::new(), 3); assert_eq!(root, 10); assert_eq!(rem, 4);
pub fn root_rem_mut(&mut self, remainder: &mut Self, n: u32)
[src]
Computes the nth root and returns the truncated root and the remainder.
The remainder is the original number minus the truncated root raised to the power of n.
The initial value of remainder
is ignored.
Panics
Panics if n is zero or if n is even and the value is negative.
Examples
use rug::Integer; let mut i = Integer::from(1004); let mut rem = Integer::new(); i.root_rem_mut(&mut rem, 3); assert_eq!(i, 10); assert_eq!(rem, 4);
pub fn root_rem_ref(&self, n: u32) -> RootRemIncomplete<'_>
[src]
Computes the nth root and returns the truncated root and the remainder.
The remainder is the original number minus the truncated root raised to the power of n.
The following are implemented with the returned
incomplete-computation value as Src
:
Assign<Src> for (Integer, Integer)
Assign<Src> for (&mut Integer, &mut Integer)
From<Src> for (Integer, Integer)
Examples
use rug::{Assign, Integer}; let i = Integer::from(1004); let mut root = Integer::new(); let mut rem = Integer::new(); let r = i.root_rem_ref(3); (&mut root, &mut rem).assign(r); assert_eq!(root, 10); assert_eq!(rem, 4); let r = i.root_rem_ref(3); let (other_root, other_rem) = <(Integer, Integer)>::from(r); assert_eq!(other_root, 10); assert_eq!(other_rem, 4);
pub fn square(self) -> Self
[src]
Computes the square.
Examples
use rug::Integer; let i = Integer::from(13); let square = i.square(); assert_eq!(square, 169);
pub fn square_mut(&mut self)
[src]
Computes the square.
Examples
use rug::Integer; let mut i = Integer::from(13); i.square_mut(); assert_eq!(i, 169);
pub fn square_ref(&self) -> SquareIncomplete<'_>
[src]
Computes the square.
The following are implemented with the returned
incomplete-computation value as Src
:
Examples
use rug::Integer; let i = Integer::from(13); assert_eq!(Integer::from(i.square_ref()), 169);
pub fn sqrt(self) -> Self
[src]
Computes the square root and truncates the result.
Panics
Panics if the value is negative.
Examples
use rug::Integer; let i = Integer::from(104); let sqrt = i.sqrt(); assert_eq!(sqrt, 10);
pub fn sqrt_mut(&mut self)
[src]
Computes the square root and truncates the result.
Panics
Panics if the value is negative.
Examples
use rug::Integer; let mut i = Integer::from(104); i.sqrt_mut(); assert_eq!(i, 10);
pub fn sqrt_ref(&self) -> SqrtIncomplete<'_>
[src]
Computes the square root and truncates the result.
The following are implemented with the returned
incomplete-computation value as Src
:
Examples
use rug::Integer; let i = Integer::from(104); assert_eq!(Integer::from(i.sqrt_ref()), 10);
pub fn sqrt_rem(self, remainder: Self) -> (Self, Self)
[src]
Computes the square root and the remainder.
The remainder is the original number minus the truncated root squared.
The initial value of remainder
is ignored.
Panics
Panics if the value is negative.
Examples
use rug::Integer; let i = Integer::from(104); let (sqrt, rem) = i.sqrt_rem(Integer::new()); assert_eq!(sqrt, 10); assert_eq!(rem, 4);
pub fn sqrt_rem_mut(&mut self, remainder: &mut Self)
[src]
Computes the square root and the remainder.
The remainder is the original number minus the truncated root squared.
The initial value of remainder
is ignored.
Panics
Panics if the value is negative.
Examples
use rug::Integer; let mut i = Integer::from(104); let mut rem = Integer::new(); i.sqrt_rem_mut(&mut rem); assert_eq!(i, 10); assert_eq!(rem, 4);
pub fn sqrt_rem_ref(&self) -> SqrtRemIncomplete<'_>
[src]
Computes the square root and the remainder.
The remainder is the original number minus the truncated root squared.
The following are implemented with the returned
incomplete-computation value as Src
:
Assign<Src> for (Integer, Integer)
Assign<Src> for (&mut Integer, &mut Integer)
From<Src> for (Integer, Integer)
Examples
use rug::{Assign, Integer}; let i = Integer::from(104); let mut sqrt = Integer::new(); let mut rem = Integer::new(); let r = i.sqrt_rem_ref(); (&mut sqrt, &mut rem).assign(r); assert_eq!(sqrt, 10); assert_eq!(rem, 4); let r = i.sqrt_rem_ref(); let (other_sqrt, other_rem) = <(Integer, Integer)>::from(r); assert_eq!(other_sqrt, 10); assert_eq!(other_rem, 4);
pub fn is_probably_prime(&self, reps: u32) -> IsPrime
[src]
Determines wheter a number is prime.
This function uses some trial divisions, a Baille-PSW probable
prime test, then reps
− 24 Miller-Rabin probabilistic
primality tests.
Examples
use rug::{integer::IsPrime, Integer}; let no = Integer::from(163 * 4003); assert_eq!(no.is_probably_prime(30), IsPrime::No); let yes = Integer::from(817_504_243); assert_eq!(yes.is_probably_prime(30), IsPrime::Yes); // 16_412_292_043_871_650_369 is actually a prime. let probably = Integer::from(16_412_292_043_871_650_369_u64); assert_eq!(probably.is_probably_prime(30), IsPrime::Probably);
pub fn next_prime(self) -> Self
[src]
Identifies primes using a probabilistic algorithm; the chance of a composite passing will be extremely small.
Examples
use rug::Integer; let i = Integer::from(800_000_000); let prime = i.next_prime(); assert_eq!(prime, 800_000_011);
pub fn next_prime_mut(&mut self)
[src]
Identifies primes using a probabilistic algorithm; the chance of a composite passing will be extremely small.
Examples
use rug::Integer; let mut i = Integer::from(800_000_000); i.next_prime_mut(); assert_eq!(i, 800_000_011);
pub fn next_prime_ref(&self) -> NextPrimeIncomplete<'_>
[src]
Identifies primes using a probabilistic algorithm; the chance of a composite passing will be extremely small.
The following are implemented with the returned
incomplete-computation value as Src
:
Examples
use rug::Integer; let i = Integer::from(800_000_000); let r = i.next_prime_ref(); let prime = Integer::from(r); assert_eq!(prime, 800_000_011);
pub fn gcd(self, other: &Self) -> Self
[src]
Finds the greatest common divisor.
The result is always positive except when both inputs are zero.
Examples
use rug::{Assign, Integer}; let a = Integer::new(); let mut b = Integer::new(); // gcd of 0, 0 is 0 let gcd1 = a.gcd(&b); assert_eq!(gcd1, 0); b.assign(10); // gcd of 0, 10 is 10 let gcd2 = gcd1.gcd(&b); assert_eq!(gcd2, 10); b.assign(25); // gcd of 10, 25 is 5 let gcd3 = gcd2.gcd(&b); assert_eq!(gcd3, 5);
pub fn gcd_mut(&mut self, other: &Self)
[src]
Finds the greatest common divisor.
The result is always positive except when both inputs are zero.
Examples
use rug::{Assign, Integer}; let mut a = Integer::new(); let mut b = Integer::new(); // gcd of 0, 0 is 0 a.gcd_mut(&b); assert_eq!(a, 0); b.assign(10); // gcd of 0, 10 is 10 a.gcd_mut(&b); assert_eq!(a, 10); b.assign(25); // gcd of 10, 25 is 5 a.gcd_mut(&b); assert_eq!(a, 5);
pub fn gcd_ref<'a>(&'a self, other: &'a Self) -> GcdIncomplete<'_>
[src]
Finds the greatest common divisor.
The result is always positive except when both inputs are zero.
The following are implemented with the returned
incomplete-computation value as Src
:
Examples
use rug::Integer; let a = Integer::from(100); let b = Integer::from(125); let r = a.gcd_ref(&b); // gcd of 100, 125 is 25 assert_eq!(Integer::from(r), 25);
pub fn gcd_u(self, other: u32) -> Self
[src]
Finds the greatest common divisor.
The result is always positive except when both inputs are zero.
Examples
use rug::Integer; let i = Integer::new(); // gcd of 0, 0 is 0 let gcd1 = i.gcd_u(0); assert_eq!(gcd1, 0); // gcd of 0, 10 is 10 let gcd2 = gcd1.gcd_u(10); assert_eq!(gcd2, 10); // gcd of 10, 25 is 5 let gcd3 = gcd2.gcd_u(25); assert_eq!(gcd3, 5);
pub fn gcd_u_mut(&mut self, other: u32)
[src]
Finds the greatest common divisor.
The result is always positive except when both inputs are zero.
Examples
use rug::Integer; let mut i = Integer::new(); // gcd of 0, 0 is 0 i.gcd_u_mut(0); assert_eq!(i, 0); // gcd of 0, 10 is 10 i.gcd_u_mut(10); assert_eq!(i, 10); // gcd of 10, 25 is 5 i.gcd_u_mut(25); assert_eq!(i, 5);
pub fn gcd_u_ref(&self, other: u32) -> GcdUIncomplete<'_>
[src]
Finds the greatest common divisor.
The result is always positive except when both inputs are zero.
The following are implemented with the returned
incomplete-computation value as Src
:
The last item above is useful to obtain the result as a
u32
if it fits. If other
> 0 , the result always
fits. If the result does not fit, it is equal to the
absolute value of self
.
Examples
use rug::Integer; let i = Integer::from(100); let r = i.gcd_u_ref(125); // gcd of 100, 125 is 25 assert_eq!(Integer::from(r), 25); let r = i.gcd_u_ref(125); assert_eq!(Option::<u32>::from(r), Some(25));
pub fn gcd_cofactors(self, other: Self, rop: Self) -> (Self, Self, Self)
[src]
Finds the greatest common divisor (GCD) of the two inputs
(self
and other
), and two cofactors to obtain the GCD
from the two inputs.
The GCD is always positive except when both inputs are zero. If the inputs are a and b, then the GCD is g and the cofactors are s and t such that
a × s + b × t = g
The values s and t are chosen such that normally, |s| < |b| / (2g) and |t| < |a| / (2g), and these relations define s and t uniquely. There are a few exceptional cases:
- If |a| = |b|, then s = 0, t = sgn(b).
- Otherwise, if b = 0 or |b| = 2g, then s = sgn(a), and if a = 0 or |a| = 2g, then t = sgn(b).
The initial value of rop
is ignored.
Examples
use rug::Integer; let a = Integer::from(4); let b = Integer::from(6); let (g, s, t) = a.gcd_cofactors(b, Integer::new()); assert_eq!(g, 2); assert_eq!(s, -1); assert_eq!(t, 1);
pub fn gcd_cofactors_mut(&mut self, other: &mut Self, rop: &mut Self)
[src]
Finds the greatest common divisor (GCD) of the two inputs
(self
and other
), and two cofactors to obtain the GCD
from the two inputs.
The GCD is stored in self
, and the two cofactors are
stored in other
and rop
.
The GCD is always positive except when both inputs are zero. If the inputs are a and b, then the GCD is g and the cofactors are s and t such that
a × s + b × t = g
The values s and t are chosen such that normally, |s| < |b| / (2g) and |t| < |a| / (2g), and these relations define s and t uniquely. There are a few exceptional cases:
- If |a| = |b|, then s = 0, t = sgn(b).
- Otherwise, if b = 0 or |b| = 2g, then s = sgn(a), and if a = 0 or |a| = 2g, then t = sgn(b).
The initial value of rop
is ignored.
Examples
use rug::Integer; let mut a_g = Integer::from(4); let mut b_s = Integer::from(6); let mut t = Integer::new(); a_g.gcd_cofactors_mut(&mut b_s, &mut t); assert_eq!(a_g, 2); assert_eq!(b_s, -1); assert_eq!(t, 1);
pub fn gcd_cofactors_ref<'a>(&'a self, other: &'a Self) -> GcdIncomplete<'_>
[src]
Finds the greatest common divisor (GCD) of the two inputs
(self
and other
), and two cofactors to obtain the GCD
from the two inputs.
The following are implemented with the returned
incomplete-computation value as Src
:
Assign<Src> for (Integer, Integer, Integer)
Assign<Src> for (&mut Integer, &mut Integer, &mut Integer)
From<Src> for (Integer, Integer, Integer)
In the case that only one of the two cofactors is required, the following are also implemented:
Assign<Src> for (Integer, Integer)
Assign<Src> for (&mut Integer, &mut Integer)
From<Src> for (Integer, Integer)
The GCD is always positive except when both inputs are zero. If the inputs are a and b, then the GCD is g and the cofactors are s and t such that
a × s + b × t = g
The values s and t are chosen such that normally, |s| < |b| / (2g) and |t| < |a| / (2g), and these relations define s and t uniquely. There are a few exceptional cases:
- If |a| = |b|, then s = 0, t = sgn(b).
- Otherwise, if b = 0 or |b| = 2g, then s = sgn(a), and if a = 0 or |a| = 2g, then t = sgn(b).
Examples
use rug::{Assign, Integer}; let a = Integer::from(4); let b = Integer::from(6); let r = a.gcd_cofactors_ref(&b); let mut g = Integer::new(); let mut s = Integer::new(); let mut t = Integer::new(); (&mut g, &mut s, &mut t).assign(r); assert_eq!(a, 4); assert_eq!(b, 6); assert_eq!(g, 2); assert_eq!(s, -1); assert_eq!(t, 1);
In the case that only one of the two cofactors is required, this can be achieved as follows:
use rug::{Assign, Integer}; let a = Integer::from(4); let b = Integer::from(6); // no t required let (mut g1, mut s1) = (Integer::new(), Integer::new()); (&mut g1, &mut s1).assign(a.gcd_cofactors_ref(&b)); assert_eq!(g1, 2); assert_eq!(s1, -1); // no s required let (mut g2, mut t2) = (Integer::new(), Integer::new()); (&mut g2, &mut t2).assign(b.gcd_cofactors_ref(&a)); assert_eq!(g2, 2); assert_eq!(t2, 1);
pub fn lcm(self, other: &Self) -> Self
[src]
Finds the least common multiple.
The result is always positive except when one or both inputs are zero.
Examples
use rug::{Assign, Integer}; let a = Integer::from(10); let mut b = Integer::from(25); // lcm of 10, 25 is 50 let lcm1 = a.lcm(&b); assert_eq!(lcm1, 50); b.assign(0); // lcm of 50, 0 is 0 let lcm2 = lcm1.lcm(&b); assert_eq!(lcm2, 0);
pub fn lcm_mut(&mut self, other: &Self)
[src]
Finds the least common multiple.
The result is always positive except when one or both inputs are zero.
Examples
use rug::{Assign, Integer}; let mut a = Integer::from(10); let mut b = Integer::from(25); // lcm of 10, 25 is 50 a.lcm_mut(&b); assert_eq!(a, 50); b.assign(0); // lcm of 50, 0 is 0 a.lcm_mut(&b); assert_eq!(a, 0);
pub fn lcm_ref<'a>(&'a self, other: &'a Self) -> LcmIncomplete<'_>
[src]
Finds the least common multiple.
The result is always positive except when one or both inputs are zero.
The following are implemented with the returned
incomplete-computation value as Src
:
Examples
use rug::Integer; let a = Integer::from(100); let b = Integer::from(125); let r = a.lcm_ref(&b); // lcm of 100, 125 is 500 assert_eq!(Integer::from(r), 500);
pub fn lcm_u(self, other: u32) -> Self
[src]
Finds the least common multiple.
The result is always positive except when one or both inputs are zero.
Examples
use rug::Integer; let i = Integer::from(10); // lcm of 10, 25 is 50 let lcm1 = i.lcm_u(25); assert_eq!(lcm1, 50); // lcm of 50, 0 is 0 let lcm2 = lcm1.lcm_u(0); assert_eq!(lcm2, 0);
pub fn lcm_u_mut(&mut self, other: u32)
[src]
Finds the least common multiple.
The result is always positive except when one or both inputs are zero.
Examples
use rug::Integer; let mut i = Integer::from(10); // lcm of 10, 25 is 50 i.lcm_u_mut(25); assert_eq!(i, 50); // lcm of 50, 0 is 0 i.lcm_u_mut(0); assert_eq!(i, 0);
pub fn lcm_u_ref(&self, other: u32) -> LcmUIncomplete<'_>
[src]
Finds the least common multiple.
The result is always positive except when one or both inputs are zero.
The following are implemented with the returned
incomplete-computation value as Src
:
Examples
use rug::Integer; let i = Integer::from(100); let r = i.lcm_u_ref(125); // lcm of 100, 125 is 500 assert_eq!(Integer::from(r), 500);
pub fn jacobi(&self, n: &Self) -> i32
[src]
Calculates the Jacobi symbol (self
/n).
Examples
use rug::{Assign, Integer}; let m = Integer::from(10); let mut n = Integer::from(13); assert_eq!(m.jacobi(&n), 1); n.assign(15); assert_eq!(m.jacobi(&n), 0); n.assign(17); assert_eq!(m.jacobi(&n), -1);
pub fn legendre(&self, p: &Self) -> i32
[src]
Calculates the Legendre symbol (self
/p).
Examples
use rug::{Assign, Integer}; let a = Integer::from(5); let mut p = Integer::from(7); assert_eq!(a.legendre(&p), -1); p.assign(11); assert_eq!(a.legendre(&p), 1);
pub fn kronecker(&self, n: &Self) -> i32
[src]
Calculates the Jacobi symbol (self
/n) with the
Kronecker extension.
Examples
use rug::{Assign, Integer}; let k = Integer::from(3); let mut n = Integer::from(16); assert_eq!(k.kronecker(&n), 1); n.assign(17); assert_eq!(k.kronecker(&n), -1); n.assign(18); assert_eq!(k.kronecker(&n), 0);
pub fn remove_factor(self, factor: &Self) -> (Self, u32)
[src]
Removes all occurrences of factor
, and returns the number of
occurrences removed.
Examples
use rug::Integer; let mut i = Integer::from(Integer::u_pow_u(13, 50)); i *= 1000; let (remove, count) = i.remove_factor(&Integer::from(13)); assert_eq!(remove, 1000); assert_eq!(count, 50);
pub fn remove_factor_mut(&mut self, factor: &Self) -> u32
[src]
Removes all occurrences of factor
, and returns the number of
occurrences removed.
Examples
use rug::Integer; let mut i = Integer::from(Integer::u_pow_u(13, 50)); i *= 1000; let count = i.remove_factor_mut(&Integer::from(13)); assert_eq!(i, 1000); assert_eq!(count, 50);
pub fn remove_factor_ref<'a>(
&'a self,
factor: &'a Self
) -> RemoveFactorIncomplete<'a>
[src]
&'a self,
factor: &'a Self
) -> RemoveFactorIncomplete<'a>
Removes all occurrences of factor
, and counts the number of
occurrences removed.
Examples
use rug::{Assign, Integer}; let mut i = Integer::from(Integer::u_pow_u(13, 50)); i *= 1000; let factor = Integer::from(13); let r = i.remove_factor_ref(&factor); let (mut j, mut count) = (Integer::new(), 0); (&mut j, &mut count).assign(r); assert_eq!(count, 50); assert_eq!(j, 1000);
pub fn factorial(n: u32) -> FactorialIncomplete
[src]
Computes the factorial of n.
The following are implemented with the returned
incomplete-computation value as Src
:
Examples
use rug::Integer; // 10 × 9 × 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1 let f = Integer::factorial(10); let i = Integer::from(f); assert_eq!(i, 3628800);
pub fn factorial_2(n: u32) -> Factorial2Incomplete
[src]
Computes the double factorial of n.
The following are implemented with the returned
incomplete-computation value as Src
:
Examples
use rug::Integer; // 10 × 8 × 6 × 4 × 2 let f = Integer::factorial_2(10); let i = Integer::from(f); assert_eq!(i, 3840);
pub fn factorial_m(n: u32, m: u32) -> FactorialMIncomplete
[src]
Computes the m-multi factorial of n.
The following are implemented with the returned
incomplete-computation value as Src
:
Examples
use rug::Integer; // 10 × 7 × 4 × 1 let f = Integer::factorial_m(10, 3); let i = Integer::from(f); assert_eq!(i, 280);
pub fn primorial(n: u32) -> PrimorialIncomplete
[src]
Computes the primorial of n.
The following are implemented with the returned
incomplete-computation value as Src
:
Examples
use rug::Integer; // 7 × 5 × 3 × 2 let p = Integer::primorial(10); let i = Integer::from(p); assert_eq!(i, 210);
pub fn binomial(self, k: u32) -> Self
[src]
Computes the binomial coefficient over k.
Examples
use rug::Integer; // 7 choose 2 is 21 let i = Integer::from(7); let bin = i.binomial(2); assert_eq!(bin, 21);
pub fn binomial_mut(&mut self, k: u32)
[src]
Computes the binomial coefficient over k.
Examples
use rug::Integer; // 7 choose 2 is 21 let mut i = Integer::from(7); i.binomial_mut(2); assert_eq!(i, 21);
pub fn binomial_ref(&self, k: u32) -> BinomialIncomplete<'_>
[src]
Computes the binomial coefficient over k.
The following are implemented with the returned
incomplete-computation value as Src
:
Examples
use rug::Integer; // 7 choose 2 is 21 let i = Integer::from(7); assert_eq!(Integer::from(i.binomial_ref(2)), 21);
pub fn binomial_u(n: u32, k: u32) -> BinomialUIncomplete
[src]
Computes the binomial coefficient n over k.
The following are implemented with the returned
incomplete-computation value as Src
:
Examples
use rug::Integer; // 7 choose 2 is 21 let b = Integer::binomial_u(7, 2); let i = Integer::from(b); assert_eq!(i, 21);
pub fn fibonacci(n: u32) -> FibonacciIncomplete
[src]
Computes the Fibonacci number.
The following are implemented with the returned
incomplete-computation value as Src
:
This function is meant for an isolated number. If a
sequence of Fibonacci numbers is required, the first two
values of the sequence should be computed with the
fibonacci_2
method, then iterations should be used.
Examples
use rug::Integer; let f = Integer::fibonacci(12); let i = Integer::from(f); assert_eq!(i, 144);
pub fn fibonacci_2(n: u32) -> FibonacciIncomplete
[src]
Computes a Fibonacci number, and the previous Fibonacci number.
The following are implemented with the returned
incomplete-computation value as Src
:
Assign<Src> for (Integer, Integer)
Assign<Src> for (&mut Integer, &mut Integer)
From<Src> for (Integer, Integer)
This function is meant to calculate isolated numbers. If a sequence of Fibonacci numbers is required, the first two values of the sequence should be computed with this function, then iterations should be used.
Examples
use rug::{Assign, Integer}; let f = Integer::fibonacci_2(12); let mut pair = <(Integer, Integer)>::from(f); assert_eq!(pair.0, 144); assert_eq!(pair.1, 89); // Fibonacci number F[−1] is 1 pair.assign(Integer::fibonacci_2(0)); assert_eq!(pair.0, 0); assert_eq!(pair.1, 1);
pub fn lucas(n: u32) -> LucasIncomplete
[src]
Computes the Lucas number.
The following are implemented with the returned
incomplete-computation value as Src
:
This function is meant for an isolated number. If a
sequence of Lucas numbers is required, the first two
values of the sequence should be computed with the
lucas_2
method, then iterations should be used.
Examples
use rug::Integer; let l = Integer::lucas(12); let i = Integer::from(l); assert_eq!(i, 322);
pub fn lucas_2(n: u32) -> LucasIncomplete
[src]
Computes a Lucas number, and the previous Lucas number.
The following are implemented with the returned
incomplete-computation value as Src
:
Assign<Src> for (Integer, Integer)
Assign<Src> for (&mut Integer, &mut Integer)
From<Src> for (Integer, Integer)
This function is meant to calculate isolated numbers. If a sequence of Lucas numbers is required, the first two values of the sequence should be computed with this function, then iterations should be used.
Examples
use rug::{Assign, Integer}; let l = Integer::lucas_2(12); let mut pair = <(Integer, Integer)>::from(l); assert_eq!(pair.0, 322); assert_eq!(pair.1, 199); pair.assign(Integer::lucas_2(0)); assert_eq!(pair.0, 2); assert_eq!(pair.1, -1);
pub fn random_bits(
bits: u32,
rng: &mut dyn MutRandState
) -> RandomBitsIncomplete<'_>
[src]
bits: u32,
rng: &mut dyn MutRandState
) -> RandomBitsIncomplete<'_>
Generates a random number with a specified maximum number of bits.
The following are implemented with the returned
incomplete-computation value as Src
:
Examples
use rug::{rand::RandState, Assign, Integer}; let mut rand = RandState::new(); let mut i = Integer::from(Integer::random_bits(0, &mut rand)); assert_eq!(i, 0); i.assign(Integer::random_bits(80, &mut rand)); assert!(i.significant_bits() <= 80);
pub fn random_below(self, rng: &mut dyn MutRandState) -> Self
[src]
Generates a non-negative random number below the given boundary value.
Panics
Panics if the boundary value is less than or equal to zero.
Examples
use rug::{rand::RandState, Integer}; let mut rand = RandState::new(); let i = Integer::from(15); let below = i.random_below(&mut rand); println!("0 ≤ {} < 15", below); assert!(below < 15);
pub fn random_below_mut(&mut self, rng: &mut dyn MutRandState)
[src]
Generates a non-negative random number below the given boundary value.
Panics
Panics if the boundary value is less than or equal to zero.
Examples
use rug::{rand::RandState, Integer}; let mut rand = RandState::new(); let mut i = Integer::from(15); i.random_below_mut(&mut rand); println!("0 ≤ {} < 15", i); assert!(i < 15);
pub fn random_below_ref<'a>(
&'a self,
rng: &'a mut dyn MutRandState
) -> RandomBelowIncomplete<'a>
[src]
&'a self,
rng: &'a mut dyn MutRandState
) -> RandomBelowIncomplete<'a>
Generates a non-negative random number below the given boundary value.
The following are implemented with the returned
incomplete-computation value as Src
:
Panics
Panics if the boundary value is less than or equal to zero.
Examples
use rug::{rand::RandState, Integer}; let mut rand = RandState::new(); let bound = Integer::from(15); let i = Integer::from(bound.random_below_ref(&mut rand)); println!("0 ≤ {} < {}", i, bound); assert!(i < bound);
Trait Implementations
impl Add<&'_ Integer> for Integer
[src]
type Output = Integer
The resulting type after applying the +
operator.
fn add(self, rhs: &Integer) -> Integer
[src]
impl Add<&'_ Integer> for Float
[src]
type Output = Float
The resulting type after applying the +
operator.
fn add(self, rhs: &Integer) -> Float
[src]
impl Add<&'_ i128> for Integer
[src]
type Output = Integer
The resulting type after applying the +
operator.
fn add(self, rhs: &i128) -> Integer
[src]
impl<'b> Add<&'_ i128> for &'b Integer
[src]
type Output = AddI128Incomplete<'b>
The resulting type after applying the +
operator.
fn add(self, rhs: &i128) -> AddI128Incomplete<'b>
[src]
impl Add<&'_ i16> for Integer
[src]
type Output = Integer
The resulting type after applying the +
operator.
fn add(self, rhs: &i16) -> Integer
[src]
impl<'b> Add<&'_ i16> for &'b Integer
[src]
type Output = AddI16Incomplete<'b>
The resulting type after applying the +
operator.
fn add(self, rhs: &i16) -> AddI16Incomplete<'b>
[src]
impl Add<&'_ i32> for Integer
[src]
type Output = Integer
The resulting type after applying the +
operator.
fn add(self, rhs: &i32) -> Integer
[src]
impl<'b> Add<&'_ i32> for &'b Integer
[src]
type Output = AddI32Incomplete<'b>
The resulting type after applying the +
operator.
fn add(self, rhs: &i32) -> AddI32Incomplete<'b>
[src]
impl Add<&'_ i64> for Integer
[src]
type Output = Integer
The resulting type after applying the +
operator.
fn add(self, rhs: &i64) -> Integer
[src]
impl<'b> Add<&'_ i64> for &'b Integer
[src]
type Output = AddI64Incomplete<'b>
The resulting type after applying the +
operator.
fn add(self, rhs: &i64) -> AddI64Incomplete<'b>
[src]
impl Add<&'_ i8> for Integer
[src]
type Output = Integer
The resulting type after applying the +
operator.
fn add(self, rhs: &i8) -> Integer
[src]
impl<'b> Add<&'_ i8> for &'b Integer
[src]
type Output = AddI8Incomplete<'b>
The resulting type after applying the +
operator.
fn add(self, rhs: &i8) -> AddI8Incomplete<'b>
[src]
impl Add<&'_ u128> for Integer
[src]
type Output = Integer
The resulting type after applying the +
operator.
fn add(self, rhs: &u128) -> Integer
[src]
impl<'b> Add<&'_ u128> for &'b Integer
[src]
type Output = AddU128Incomplete<'b>
The resulting type after applying the +
operator.
fn add(self, rhs: &u128) -> AddU128Incomplete<'b>
[src]
impl Add<&'_ u16> for Integer
[src]
type Output = Integer
The resulting type after applying the +
operator.
fn add(self, rhs: &u16) -> Integer
[src]
impl<'b> Add<&'_ u16> for &'b Integer
[src]
type Output = AddU16Incomplete<'b>
The resulting type after applying the +
operator.
fn add(self, rhs: &u16) -> AddU16Incomplete<'b>
[src]
impl Add<&'_ u32> for Integer
[src]
type Output = Integer
The resulting type after applying the +
operator.
fn add(self, rhs: &u32) -> Integer
[src]
impl<'b> Add<&'_ u32> for &'b Integer
[src]
type Output = AddU32Incomplete<'b>
The resulting type after applying the +
operator.
fn add(self, rhs: &u32) -> AddU32Incomplete<'b>
[src]
impl Add<&'_ u64> for Integer
[src]
type Output = Integer
The resulting type after applying the +
operator.
fn add(self, rhs: &u64) -> Integer
[src]
impl<'b> Add<&'_ u64> for &'b Integer
[src]
type Output = AddU64Incomplete<'b>
The resulting type after applying the +
operator.
fn add(self, rhs: &u64) -> AddU64Incomplete<'b>
[src]
impl Add<&'_ u8> for Integer
[src]
type Output = Integer
The resulting type after applying the +
operator.
fn add(self, rhs: &u8) -> Integer
[src]
impl<'b> Add<&'_ u8> for &'b Integer
[src]
type Output = AddU8Incomplete<'b>
The resulting type after applying the +
operator.
fn add(self, rhs: &u8) -> AddU8Incomplete<'b>
[src]
impl<'a> Add<&'a Float> for Integer
[src]
type Output = AddOwnedIntegerIncomplete<'a>
The resulting type after applying the +
operator.
fn add(self, rhs: &Float) -> AddOwnedIntegerIncomplete<'_>
[src]
impl<'a> Add<&'a Float> for &'a Integer
[src]
type Output = AddIntegerIncomplete<'a>
The resulting type after applying the +
operator.
fn add(self, rhs: &'a Float) -> AddIntegerIncomplete<'_>
[src]
impl<'a> Add<&'a Integer> for &'a Integer
[src]
type Output = AddIncomplete<'a>
The resulting type after applying the +
operator.
fn add(self, rhs: &'a Integer) -> AddIncomplete<'_>
[src]
impl<'a> Add<&'a Integer> for &'a Float
[src]
type Output = AddIntegerIncomplete<'a>
The resulting type after applying the +
operator.
fn add(self, rhs: &'a Integer) -> AddIntegerIncomplete<'_>
[src]
impl Add<Float> for Integer
[src]
type Output = Float
The resulting type after applying the +
operator.
fn add(self, rhs: Float) -> Float
[src]
impl Add<Float> for &Integer
[src]
type Output = Float
The resulting type after applying the +
operator.
fn add(self, rhs: Float) -> Float
[src]
impl Add<Integer> for Integer
[src]
type Output = Integer
The resulting type after applying the +
operator.
fn add(self, rhs: Integer) -> Integer
[src]
impl Add<Integer> for &Integer
[src]
type Output = Integer
The resulting type after applying the +
operator.
fn add(self, rhs: Integer) -> Integer
[src]
impl Add<Integer> for Float
[src]
type Output = Float
The resulting type after applying the +
operator.
fn add(self, rhs: Integer) -> Float
[src]
impl<'a> Add<Integer> for &'a Float
[src]
type Output = AddOwnedIntegerIncomplete<'a>
The resulting type after applying the +
operator.
fn add(self, rhs: Integer) -> AddOwnedIntegerIncomplete<'a>
[src]
impl Add<i128> for Integer
[src]
type Output = Integer
The resulting type after applying the +
operator.
fn add(self, rhs: i128) -> Integer
[src]
impl<'b> Add<i128> for &'b Integer
[src]
type Output = AddI128Incomplete<'b>
The resulting type after applying the +
operator.
fn add(self, rhs: i128) -> AddI128Incomplete<'b>
[src]
impl Add<i16> for Integer
[src]
type Output = Integer
The resulting type after applying the +
operator.
fn add(self, rhs: i16) -> Integer
[src]
impl<'b> Add<i16> for &'b Integer
[src]
type Output = AddI16Incomplete<'b>
The resulting type after applying the +
operator.
fn add(self, rhs: i16) -> AddI16Incomplete<'b>
[src]
impl Add<i32> for Integer
[src]
type Output = Integer
The resulting type after applying the +
operator.
fn add(self, rhs: i32) -> Integer
[src]
impl<'b> Add<i32> for &'b Integer
[src]
type Output = AddI32Incomplete<'b>
The resulting type after applying the +
operator.
fn add(self, rhs: i32) -> AddI32Incomplete<'b>
[src]
impl Add<i64> for Integer
[src]
type Output = Integer
The resulting type after applying the +
operator.
fn add(self, rhs: i64) -> Integer
[src]
impl<'b> Add<i64> for &'b Integer
[src]
type Output = AddI64Incomplete<'b>
The resulting type after applying the +
operator.
fn add(self, rhs: i64) -> AddI64Incomplete<'b>
[src]
impl Add<i8> for Integer
[src]
type Output = Integer
The resulting type after applying the +
operator.
fn add(self, rhs: i8) -> Integer
[src]
impl<'b> Add<i8> for &'b Integer
[src]
type Output = AddI8Incomplete<'b>
The resulting type after applying the +
operator.
fn add(self, rhs: i8) -> AddI8Incomplete<'b>
[src]
impl Add<u128> for Integer
[src]
type Output = Integer
The resulting type after applying the +
operator.
fn add(self, rhs: u128) -> Integer
[src]
impl<'b> Add<u128> for &'b Integer
[src]
type Output = AddU128Incomplete<'b>
The resulting type after applying the +
operator.
fn add(self, rhs: u128) -> AddU128Incomplete<'b>
[src]
impl Add<u16> for Integer
[src]
type Output = Integer
The resulting type after applying the +
operator.
fn add(self, rhs: u16) -> Integer
[src]
impl<'b> Add<u16> for &'b Integer
[src]
type Output = AddU16Incomplete<'b>
The resulting type after applying the +
operator.
fn add(self, rhs: u16) -> AddU16Incomplete<'b>
[src]
impl Add<u32> for Integer
[src]
type Output = Integer
The resulting type after applying the +
operator.
fn add(self, rhs: u32) -> Integer
[src]
impl<'b> Add<u32> for &'b Integer
[src]
type Output = AddU32Incomplete<'b>
The resulting type after applying the +
operator.
fn add(self, rhs: u32) -> AddU32Incomplete<'b>
[src]
impl Add<u64> for Integer
[src]
type Output = Integer
The resulting type after applying the +
operator.
fn add(self, rhs: u64) -> Integer
[src]
impl<'b> Add<u64> for &'b Integer
[src]
type Output = AddU64Incomplete<'b>
The resulting type after applying the +
operator.
fn add(self, rhs: u64) -> AddU64Incomplete<'b>
[src]
impl Add<u8> for Integer
[src]
type Output = Integer
The resulting type after applying the +
operator.
fn add(self, rhs: u8) -> Integer
[src]
impl<'b> Add<u8> for &'b Integer
[src]
type Output = AddU8Incomplete<'b>
The resulting type after applying the +
operator.
fn add(self, rhs: u8) -> AddU8Incomplete<'b>
[src]
impl AddAssign<&'_ Integer> for Integer
[src]
fn add_assign(&mut self, rhs: &Integer)
[src]
impl AddAssign<&'_ Integer> for Float
[src]
fn add_assign(&mut self, rhs: &Integer)
[src]
impl AddAssign<&'_ i128> for Integer
[src]
fn add_assign(&mut self, rhs: &i128)
[src]
impl AddAssign<&'_ i16> for Integer
[src]
fn add_assign(&mut self, rhs: &i16)
[src]
impl AddAssign<&'_ i32> for Integer
[src]
fn add_assign(&mut self, rhs: &i32)
[src]
impl AddAssign<&'_ i64> for Integer
[src]
fn add_assign(&mut self, rhs: &i64)
[src]
impl AddAssign<&'_ i8> for Integer
[src]
fn add_assign(&mut self, rhs: &i8)
[src]
impl AddAssign<&'_ u128> for Integer
[src]
fn add_assign(&mut self, rhs: &u128)
[src]
impl AddAssign<&'_ u16> for Integer
[src]
fn add_assign(&mut self, rhs: &u16)
[src]
impl AddAssign<&'_ u32> for Integer
[src]
fn add_assign(&mut self, rhs: &u32)
[src]
impl AddAssign<&'_ u64> for Integer
[src]
fn add_assign(&mut self, rhs: &u64)
[src]
impl AddAssign<&'_ u8> for Integer
[src]
fn add_assign(&mut self, rhs: &u8)
[src]
impl AddAssign<Integer> for Integer
[src]
fn add_assign(&mut self, rhs: Integer)
[src]
impl AddAssign<Integer> for Float
[src]
fn add_assign(&mut self, rhs: Integer)
[src]
impl AddAssign<i128> for Integer
[src]
fn add_assign(&mut self, rhs: i128)
[src]
impl AddAssign<i16> for Integer
[src]
fn add_assign(&mut self, rhs: i16)
[src]
impl AddAssign<i32> for Integer
[src]
fn add_assign(&mut self, rhs: i32)
[src]
impl AddAssign<i64> for Integer
[src]
fn add_assign(&mut self, rhs: i64)
[src]
impl AddAssign<i8> for Integer
[src]
fn add_assign(&mut self, rhs: i8)
[src]
impl AddAssign<u128> for Integer
[src]
fn add_assign(&mut self, rhs: u128)
[src]
impl AddAssign<u16> for Integer
[src]
fn add_assign(&mut self, rhs: u16)
[src]
impl AddAssign<u32> for Integer
[src]
fn add_assign(&mut self, rhs: u32)
[src]
impl AddAssign<u64> for Integer
[src]
fn add_assign(&mut self, rhs: u64)
[src]
impl AddAssign<u8> for Integer
[src]
fn add_assign(&mut self, rhs: u8)
[src]
impl AddAssignRound<&'_ Integer> for Float
[src]
type Round = Round
The rounding method.
type Ordering = Ordering
The direction from rounding.
fn add_assign_round(&mut self, rhs: &Integer, round: Round) -> Ordering
[src]
impl AddAssignRound<Integer> for Float
[src]
type Round = Round
The rounding method.
type Ordering = Ordering
The direction from rounding.
fn add_assign_round(&mut self, rhs: Integer, round: Round) -> Ordering
[src]
impl AddFrom<&'_ Integer> for Integer
[src]
impl AddFrom<&'_ Integer> for Float
[src]
impl AddFrom<&'_ i128> for Integer
[src]
impl AddFrom<&'_ i16> for Integer
[src]
impl AddFrom<&'_ i32> for Integer
[src]
impl AddFrom<&'_ i64> for Integer
[src]
impl AddFrom<&'_ i8> for Integer
[src]
impl AddFrom<&'_ u128> for Integer
[src]
impl AddFrom<&'_ u16> for Integer
[src]
impl AddFrom<&'_ u32> for Integer
[src]
impl AddFrom<&'_ u64> for Integer
[src]
impl AddFrom<&'_ u8> for Integer
[src]
impl AddFrom<Integer> for Integer
[src]
impl AddFrom<Integer> for Float
[src]
impl AddFrom<i128> for Integer
[src]
impl AddFrom<i16> for Integer
[src]
impl AddFrom<i32> for Integer
[src]
impl AddFrom<i64> for Integer
[src]
impl AddFrom<i8> for Integer
[src]
impl AddFrom<u128> for Integer
[src]
impl AddFrom<u16> for Integer
[src]
impl AddFrom<u32> for Integer
[src]
impl AddFrom<u64> for Integer
[src]
impl AddFrom<u8> for Integer
[src]
impl AddFromRound<&'_ Integer> for Float
[src]
type Round = Round
The rounding method.
type Ordering = Ordering
The direction from rounding.
fn add_from_round(&mut self, lhs: &Integer, round: Round) -> Ordering
[src]
impl AddFromRound<Integer> for Float
[src]
type Round = Round
The rounding method.
type Ordering = Ordering
The direction from rounding.
fn add_from_round(&mut self, lhs: Integer, round: Round) -> Ordering
[src]
impl AsRef<[u64]> for Integer
[src]
impl Assign<&'_ Integer> for Integer
[src]
impl Assign<&'_ bool> for Integer
[src]
impl Assign<&'_ i128> for Integer
[src]
impl Assign<&'_ i16> for Integer
[src]
impl Assign<&'_ i32> for Integer
[src]
impl Assign<&'_ i64> for Integer
[src]
impl Assign<&'_ i8> for Integer
[src]
impl Assign<&'_ isize> for Integer
[src]
impl Assign<&'_ u128> for Integer
[src]
impl Assign<&'_ u16> for Integer
[src]
impl Assign<&'_ u32> for Integer
[src]
impl Assign<&'_ u64> for Integer
[src]
impl Assign<&'_ u8> for Integer
[src]
impl Assign<&'_ usize> for Integer
[src]
impl Assign<Integer> for Integer
[src]
impl Assign<bool> for Integer
[src]
impl Assign<i128> for Integer
[src]
impl Assign<i16> for Integer
[src]
impl Assign<i32> for Integer
[src]
impl Assign<i64> for Integer
[src]
impl Assign<i8> for Integer
[src]
impl Assign<isize> for Integer
[src]
impl Assign<u128> for Integer
[src]
impl Assign<u16> for Integer
[src]
impl Assign<u32> for Integer
[src]
impl Assign<u64> for Integer
[src]
impl Assign<u8> for Integer
[src]
impl Assign<usize> for Integer
[src]
impl AssignRound<&'_ Integer> for Float
[src]
type Round = Round
The rounding method.
type Ordering = Ordering
The direction from rounding.
fn assign_round(&mut self, src: &Integer, round: Round) -> Ordering
[src]
impl AssignRound<Integer> for Float
[src]
type Round = Round
The rounding method.
type Ordering = Ordering
The direction from rounding.
fn assign_round(&mut self, src: Integer, round: Round) -> Ordering
[src]
impl Binary for Integer
[src]
impl BitAnd<&'_ Integer> for Integer
[src]
type Output = Integer
The resulting type after applying the &
operator.
fn bitand(self, rhs: &Integer) -> Integer
[src]
impl BitAnd<&'_ i128> for Integer
[src]
type Output = Integer
The resulting type after applying the &
operator.
fn bitand(self, rhs: &i128) -> Integer
[src]
impl<'b> BitAnd<&'_ i128> for &'b Integer
[src]
type Output = BitAndI128Incomplete<'b>
The resulting type after applying the &
operator.
fn bitand(self, rhs: &i128) -> BitAndI128Incomplete<'b>
[src]
impl BitAnd<&'_ i16> for Integer
[src]
type Output = Integer
The resulting type after applying the &
operator.
fn bitand(self, rhs: &i16) -> Integer
[src]
impl<'b> BitAnd<&'_ i16> for &'b Integer
[src]
type Output = BitAndI16Incomplete<'b>
The resulting type after applying the &
operator.
fn bitand(self, rhs: &i16) -> BitAndI16Incomplete<'b>
[src]
impl BitAnd<&'_ i32> for Integer
[src]
type Output = Integer
The resulting type after applying the &
operator.
fn bitand(self, rhs: &i32) -> Integer
[src]
impl<'b> BitAnd<&'_ i32> for &'b Integer
[src]
type Output = BitAndI32Incomplete<'b>
The resulting type after applying the &
operator.
fn bitand(self, rhs: &i32) -> BitAndI32Incomplete<'b>
[src]
impl BitAnd<&'_ i64> for Integer
[src]
type Output = Integer
The resulting type after applying the &
operator.
fn bitand(self, rhs: &i64) -> Integer
[src]
impl<'b> BitAnd<&'_ i64> for &'b Integer
[src]
type Output = BitAndI64Incomplete<'b>
The resulting type after applying the &
operator.
fn bitand(self, rhs: &i64) -> BitAndI64Incomplete<'b>
[src]
impl BitAnd<&'_ i8> for Integer
[src]
type Output = Integer
The resulting type after applying the &
operator.
fn bitand(self, rhs: &i8) -> Integer
[src]
impl<'b> BitAnd<&'_ i8> for &'b Integer
[src]
type Output = BitAndI8Incomplete<'b>
The resulting type after applying the &
operator.
fn bitand(self, rhs: &i8) -> BitAndI8Incomplete<'b>
[src]
impl BitAnd<&'_ u128> for Integer
[src]
type Output = Integer
The resulting type after applying the &
operator.
fn bitand(self, rhs: &u128) -> Integer
[src]
impl<'b> BitAnd<&'_ u128> for &'b Integer
[src]
type Output = BitAndU128Incomplete<'b>
The resulting type after applying the &
operator.
fn bitand(self, rhs: &u128) -> BitAndU128Incomplete<'b>
[src]
impl BitAnd<&'_ u16> for Integer
[src]
type Output = Integer
The resulting type after applying the &
operator.
fn bitand(self, rhs: &u16) -> Integer
[src]
impl<'b> BitAnd<&'_ u16> for &'b Integer
[src]
type Output = BitAndU16Incomplete<'b>
The resulting type after applying the &
operator.
fn bitand(self, rhs: &u16) -> BitAndU16Incomplete<'b>
[src]
impl BitAnd<&'_ u32> for Integer
[src]
type Output = Integer
The resulting type after applying the &
operator.
fn bitand(self, rhs: &u32) -> Integer
[src]
impl<'b> BitAnd<&'_ u32> for &'b Integer
[src]
type Output = BitAndU32Incomplete<'b>
The resulting type after applying the &
operator.
fn bitand(self, rhs: &u32) -> BitAndU32Incomplete<'b>
[src]
impl BitAnd<&'_ u64> for Integer
[src]
type Output = Integer
The resulting type after applying the &
operator.
fn bitand(self, rhs: &u64) -> Integer
[src]
impl<'b> BitAnd<&'_ u64> for &'b Integer
[src]
type Output = BitAndU64Incomplete<'b>
The resulting type after applying the &
operator.
fn bitand(self, rhs: &u64) -> BitAndU64Incomplete<'b>
[src]
impl BitAnd<&'_ u8> for Integer
[src]
type Output = Integer
The resulting type after applying the &
operator.
fn bitand(self, rhs: &u8) -> Integer
[src]
impl<'b> BitAnd<&'_ u8> for &'b Integer
[src]
type Output = BitAndU8Incomplete<'b>
The resulting type after applying the &
operator.
fn bitand(self, rhs: &u8) -> BitAndU8Incomplete<'b>
[src]
impl<'a> BitAnd<&'a Integer> for &'a Integer
[src]
type Output = BitAndIncomplete<'a>
The resulting type after applying the &
operator.
fn bitand(self, rhs: &'a Integer) -> BitAndIncomplete<'_>
[src]
impl BitAnd<Integer> for Integer
[src]
type Output = Integer
The resulting type after applying the &
operator.
fn bitand(self, rhs: Integer) -> Integer
[src]
impl BitAnd<Integer> for &Integer
[src]
type Output = Integer
The resulting type after applying the &
operator.
fn bitand(self, rhs: Integer) -> Integer
[src]
impl BitAnd<i128> for Integer
[src]
type Output = Integer
The resulting type after applying the &
operator.
fn bitand(self, rhs: i128) -> Integer
[src]
impl<'b> BitAnd<i128> for &'b Integer
[src]
type Output = BitAndI128Incomplete<'b>
The resulting type after applying the &
operator.
fn bitand(self, rhs: i128) -> BitAndI128Incomplete<'b>
[src]
impl BitAnd<i16> for Integer
[src]
type Output = Integer
The resulting type after applying the &
operator.
fn bitand(self, rhs: i16) -> Integer
[src]
impl<'b> BitAnd<i16> for &'b Integer
[src]
type Output = BitAndI16Incomplete<'b>
The resulting type after applying the &
operator.
fn bitand(self, rhs: i16) -> BitAndI16Incomplete<'b>
[src]
impl BitAnd<i32> for Integer
[src]
type Output = Integer
The resulting type after applying the &
operator.
fn bitand(self, rhs: i32) -> Integer
[src]
impl<'b> BitAnd<i32> for &'b Integer
[src]
type Output = BitAndI32Incomplete<'b>
The resulting type after applying the &
operator.
fn bitand(self, rhs: i32) -> BitAndI32Incomplete<'b>
[src]
impl BitAnd<i64> for Integer
[src]
type Output = Integer
The resulting type after applying the &
operator.
fn bitand(self, rhs: i64) -> Integer
[src]
impl<'b> BitAnd<i64> for &'b Integer
[src]
type Output = BitAndI64Incomplete<'b>
The resulting type after applying the &
operator.
fn bitand(self, rhs: i64) -> BitAndI64Incomplete<'b>
[src]
impl BitAnd<i8> for Integer
[src]
type Output = Integer
The resulting type after applying the &
operator.
fn bitand(self, rhs: i8) -> Integer
[src]
impl<'b> BitAnd<i8> for &'b Integer
[src]
type Output = BitAndI8Incomplete<'b>
The resulting type after applying the &
operator.
fn bitand(self, rhs: i8) -> BitAndI8Incomplete<'b>
[src]
impl BitAnd<u128> for Integer
[src]
type Output = Integer
The resulting type after applying the &
operator.
fn bitand(self, rhs: u128) -> Integer
[src]
impl<'b> BitAnd<u128> for &'b Integer
[src]
type Output = BitAndU128Incomplete<'b>
The resulting type after applying the &
operator.
fn bitand(self, rhs: u128) -> BitAndU128Incomplete<'b>
[src]
impl BitAnd<u16> for Integer
[src]
type Output = Integer
The resulting type after applying the &
operator.
fn bitand(self, rhs: u16) -> Integer
[src]
impl<'b> BitAnd<u16> for &'b Integer
[src]
type Output = BitAndU16Incomplete<'b>
The resulting type after applying the &
operator.
fn bitand(self, rhs: u16) -> BitAndU16Incomplete<'b>
[src]
impl BitAnd<u32> for Integer
[src]
type Output = Integer
The resulting type after applying the &
operator.
fn bitand(self, rhs: u32) -> Integer
[src]
impl<'b> BitAnd<u32> for &'b Integer
[src]
type Output = BitAndU32Incomplete<'b>
The resulting type after applying the &
operator.
fn bitand(self, rhs: u32) -> BitAndU32Incomplete<'b>
[src]
impl BitAnd<u64> for Integer
[src]
type Output = Integer
The resulting type after applying the &
operator.
fn bitand(self, rhs: u64) -> Integer
[src]
impl<'b> BitAnd<u64> for &'b Integer
[src]
type Output = BitAndU64Incomplete<'b>
The resulting type after applying the &
operator.
fn bitand(self, rhs: u64) -> BitAndU64Incomplete<'b>
[src]
impl BitAnd<u8> for Integer
[src]
type Output = Integer
The resulting type after applying the &
operator.
fn bitand(self, rhs: u8) -> Integer
[src]
impl<'b> BitAnd<u8> for &'b Integer
[src]
type Output = BitAndU8Incomplete<'b>
The resulting type after applying the &
operator.
fn bitand(self, rhs: u8) -> BitAndU8Incomplete<'b>
[src]
impl BitAndAssign<&'_ Integer> for Integer
[src]
fn bitand_assign(&mut self, rhs: &Integer)
[src]
impl BitAndAssign<&'_ i128> for Integer
[src]
fn bitand_assign(&mut self, rhs: &i128)
[src]
impl BitAndAssign<&'_ i16> for Integer
[src]
fn bitand_assign(&mut self, rhs: &i16)
[src]
impl BitAndAssign<&'_ i32> for Integer
[src]
fn bitand_assign(&mut self, rhs: &i32)
[src]
impl BitAndAssign<&'_ i64> for Integer
[src]
fn bitand_assign(&mut self, rhs: &i64)
[src]
impl BitAndAssign<&'_ i8> for Integer
[src]
fn bitand_assign(&mut self, rhs: &i8)
[src]
impl BitAndAssign<&'_ u128> for Integer
[src]
fn bitand_assign(&mut self, rhs: &u128)
[src]
impl BitAndAssign<&'_ u16> for Integer
[src]
fn bitand_assign(&mut self, rhs: &u16)
[src]
impl BitAndAssign<&'_ u32> for Integer
[src]
fn bitand_assign(&mut self, rhs: &u32)
[src]
impl BitAndAssign<&'_ u64> for Integer
[src]
fn bitand_assign(&mut self, rhs: &u64)
[src]
impl BitAndAssign<&'_ u8> for Integer
[src]
fn bitand_assign(&mut self, rhs: &u8)
[src]
impl BitAndAssign<Integer> for Integer
[src]
fn bitand_assign(&mut self, rhs: Integer)
[src]
impl BitAndAssign<i128> for Integer
[src]
fn bitand_assign(&mut self, rhs: i128)
[src]
impl BitAndAssign<i16> for Integer
[src]
fn bitand_assign(&mut self, rhs: i16)
[src]
impl BitAndAssign<i32> for Integer
[src]
fn bitand_assign(&mut self, rhs: i32)
[src]
impl BitAndAssign<i64> for Integer
[src]
fn bitand_assign(&mut self, rhs: i64)
[src]
impl BitAndAssign<i8> for Integer
[src]
fn bitand_assign(&mut self, rhs: i8)
[src]
impl BitAndAssign<u128> for Integer
[src]
fn bitand_assign(&mut self, rhs: u128)
[src]
impl BitAndAssign<u16> for Integer
[src]
fn bitand_assign(&mut self, rhs: u16)
[src]
impl BitAndAssign<u32> for Integer
[src]
fn bitand_assign(&mut self, rhs: u32)
[src]
impl BitAndAssign<u64> for Integer
[src]
fn bitand_assign(&mut self, rhs: u64)
[src]
impl BitAndAssign<u8> for Integer
[src]
fn bitand_assign(&mut self, rhs: u8)
[src]
impl BitAndFrom<&'_ Integer> for Integer
[src]
fn bitand_from(&mut self, lhs: &Integer)
[src]
impl BitAndFrom<&'_ i128> for Integer
[src]
fn bitand_from(&mut self, lhs: &i128)
[src]
impl BitAndFrom<&'_ i16> for Integer
[src]
fn bitand_from(&mut self, lhs: &i16)
[src]
impl BitAndFrom<&'_ i32> for Integer
[src]
fn bitand_from(&mut self, lhs: &i32)
[src]
impl BitAndFrom<&'_ i64> for Integer
[src]
fn bitand_from(&mut self, lhs: &i64)
[src]
impl BitAndFrom<&'_ i8> for Integer
[src]
fn bitand_from(&mut self, lhs: &i8)
[src]
impl BitAndFrom<&'_ u128> for Integer
[src]
fn bitand_from(&mut self, lhs: &u128)
[src]
impl BitAndFrom<&'_ u16> for Integer
[src]
fn bitand_from(&mut self, lhs: &u16)
[src]
impl BitAndFrom<&'_ u32> for Integer
[src]
fn bitand_from(&mut self, lhs: &u32)
[src]
impl BitAndFrom<&'_ u64> for Integer
[src]
fn bitand_from(&mut self, lhs: &u64)
[src]
impl BitAndFrom<&'_ u8> for Integer
[src]
fn bitand_from(&mut self, lhs: &u8)
[src]
impl BitAndFrom<Integer> for Integer
[src]
fn bitand_from(&mut self, lhs: Integer)
[src]
impl BitAndFrom<i128> for Integer
[src]
fn bitand_from(&mut self, lhs: i128)
[src]
impl BitAndFrom<i16> for Integer
[src]
fn bitand_from(&mut self, lhs: i16)
[src]
impl BitAndFrom<i32> for Integer
[src]
fn bitand_from(&mut self, lhs: i32)
[src]
impl BitAndFrom<i64> for Integer
[src]
fn bitand_from(&mut self, lhs: i64)
[src]
impl BitAndFrom<i8> for Integer
[src]
fn bitand_from(&mut self, lhs: i8)
[src]
impl BitAndFrom<u128> for Integer
[src]
fn bitand_from(&mut self, lhs: u128)
[src]
impl BitAndFrom<u16> for Integer
[src]
fn bitand_from(&mut self, lhs: u16)
[src]
impl BitAndFrom<u32> for Integer
[src]
fn bitand_from(&mut self, lhs: u32)
[src]
impl BitAndFrom<u64> for Integer
[src]
fn bitand_from(&mut self, lhs: u64)
[src]
impl BitAndFrom<u8> for Integer
[src]
fn bitand_from(&mut self, lhs: u8)
[src]
impl BitOr<&'_ Integer> for Integer
[src]
type Output = Integer
The resulting type after applying the |
operator.
fn bitor(self, rhs: &Integer) -> Integer
[src]
impl BitOr<&'_ i128> for Integer
[src]
type Output = Integer
The resulting type after applying the |
operator.
fn bitor(self, rhs: &i128) -> Integer
[src]
impl<'b> BitOr<&'_ i128> for &'b Integer
[src]
type Output = BitOrI128Incomplete<'b>
The resulting type after applying the |
operator.
fn bitor(self, rhs: &i128) -> BitOrI128Incomplete<'b>
[src]
impl BitOr<&'_ i16> for Integer
[src]
type Output = Integer
The resulting type after applying the |
operator.
fn bitor(self, rhs: &i16) -> Integer
[src]
impl<'b> BitOr<&'_ i16> for &'b Integer
[src]
type Output = BitOrI16Incomplete<'b>
The resulting type after applying the |
operator.
fn bitor(self, rhs: &i16) -> BitOrI16Incomplete<'b>
[src]
impl BitOr<&'_ i32> for Integer
[src]
type Output = Integer
The resulting type after applying the |
operator.
fn bitor(self, rhs: &i32) -> Integer
[src]
impl<'b> BitOr<&'_ i32> for &'b Integer
[src]
type Output = BitOrI32Incomplete<'b>
The resulting type after applying the |
operator.
fn bitor(self, rhs: &i32) -> BitOrI32Incomplete<'b>
[src]
impl BitOr<&'_ i64> for Integer
[src]
type Output = Integer
The resulting type after applying the |
operator.
fn bitor(self, rhs: &i64) -> Integer
[src]
impl<'b> BitOr<&'_ i64> for &'b Integer
[src]
type Output = BitOrI64Incomplete<'b>
The resulting type after applying the |
operator.
fn bitor(self, rhs: &i64) -> BitOrI64Incomplete<'b>
[src]
impl BitOr<&'_ i8> for Integer
[src]
type Output = Integer
The resulting type after applying the |
operator.
fn bitor(self, rhs: &i8) -> Integer
[src]
impl<'b> BitOr<&'_ i8> for &'b Integer
[src]
type Output = BitOrI8Incomplete<'b>
The resulting type after applying the |
operator.
fn bitor(self, rhs: &i8) -> BitOrI8Incomplete<'b>
[src]
impl BitOr<&'_ u128> for Integer
[src]
type Output = Integer
The resulting type after applying the |
operator.
fn bitor(self, rhs: &u128) -> Integer
[src]
impl<'b> BitOr<&'_ u128> for &'b Integer
[src]
type Output = BitOrU128Incomplete<'b>
The resulting type after applying the |
operator.
fn bitor(self, rhs: &u128) -> BitOrU128Incomplete<'b>
[src]
impl BitOr<&'_ u16> for Integer
[src]
type Output = Integer
The resulting type after applying the |
operator.
fn bitor(self, rhs: &u16) -> Integer
[src]
impl<'b> BitOr<&'_ u16> for &'b Integer
[src]
type Output = BitOrU16Incomplete<'b>
The resulting type after applying the |
operator.
fn bitor(self, rhs: &u16) -> BitOrU16Incomplete<'b>
[src]
impl BitOr<&'_ u32> for Integer
[src]
type Output = Integer
The resulting type after applying the |
operator.
fn bitor(self, rhs: &u32) -> Integer
[src]
impl<'b> BitOr<&'_ u32> for &'b Integer
[src]
type Output = BitOrU32Incomplete<'b>
The resulting type after applying the |
operator.
fn bitor(self, rhs: &u32) -> BitOrU32Incomplete<'b>
[src]
impl BitOr<&'_ u64> for Integer
[src]
type Output = Integer
The resulting type after applying the |
operator.
fn bitor(self, rhs: &u64) -> Integer
[src]
impl<'b> BitOr<&'_ u64> for &'b Integer
[src]
type Output = BitOrU64Incomplete<'b>
The resulting type after applying the |
operator.
fn bitor(self, rhs: &u64) -> BitOrU64Incomplete<'b>
[src]
impl BitOr<&'_ u8> for Integer
[src]
type Output = Integer
The resulting type after applying the |
operator.
fn bitor(self, rhs: &u8) -> Integer
[src]
impl<'b> BitOr<&'_ u8> for &'b Integer
[src]
type Output = BitOrU8Incomplete<'b>
The resulting type after applying the |
operator.
fn bitor(self, rhs: &u8) -> BitOrU8Incomplete<'b>
[src]
impl<'a> BitOr<&'a Integer> for &'a Integer
[src]
type Output = BitOrIncomplete<'a>
The resulting type after applying the |
operator.
fn bitor(self, rhs: &'a Integer) -> BitOrIncomplete<'_>
[src]
impl BitOr<Integer> for Integer
[src]
type Output = Integer
The resulting type after applying the |
operator.
fn bitor(self, rhs: Integer) -> Integer
[src]
impl BitOr<Integer> for &Integer
[src]
type Output = Integer
The resulting type after applying the |
operator.
fn bitor(self, rhs: Integer) -> Integer
[src]
impl BitOr<i128> for Integer
[src]
type Output = Integer
The resulting type after applying the |
operator.
fn bitor(self, rhs: i128) -> Integer
[src]
impl<'b> BitOr<i128> for &'b Integer
[src]
type Output = BitOrI128Incomplete<'b>
The resulting type after applying the |
operator.
fn bitor(self, rhs: i128) -> BitOrI128Incomplete<'b>
[src]
impl BitOr<i16> for Integer
[src]
type Output = Integer
The resulting type after applying the |
operator.
fn bitor(self, rhs: i16) -> Integer
[src]
impl<'b> BitOr<i16> for &'b Integer
[src]
type Output = BitOrI16Incomplete<'b>
The resulting type after applying the |
operator.
fn bitor(self, rhs: i16) -> BitOrI16Incomplete<'b>
[src]
impl BitOr<i32> for Integer
[src]
type Output = Integer
The resulting type after applying the |
operator.
fn bitor(self, rhs: i32) -> Integer
[src]
impl<'b> BitOr<i32> for &'b Integer
[src]
type Output = BitOrI32Incomplete<'b>
The resulting type after applying the |
operator.
fn bitor(self, rhs: i32) -> BitOrI32Incomplete<'b>
[src]
impl BitOr<i64> for Integer
[src]
type Output = Integer
The resulting type after applying the |
operator.
fn bitor(self, rhs: i64) -> Integer
[src]
impl<'b> BitOr<i64> for &'b Integer
[src]
type Output = BitOrI64Incomplete<'b>
The resulting type after applying the |
operator.
fn bitor(self, rhs: i64) -> BitOrI64Incomplete<'b>
[src]
impl BitOr<i8> for Integer
[src]
type Output = Integer
The resulting type after applying the |
operator.
fn bitor(self, rhs: i8) -> Integer
[src]
impl<'b> BitOr<i8> for &'b Integer
[src]
type Output = BitOrI8Incomplete<'b>
The resulting type after applying the |
operator.
fn bitor(self, rhs: i8) -> BitOrI8Incomplete<'b>
[src]
impl BitOr<u128> for Integer
[src]
type Output = Integer
The resulting type after applying the |
operator.
fn bitor(self, rhs: u128) -> Integer
[src]
impl<'b> BitOr<u128> for &'b Integer
[src]
type Output = BitOrU128Incomplete<'b>
The resulting type after applying the |
operator.
fn bitor(self, rhs: u128) -> BitOrU128Incomplete<'b>
[src]
impl BitOr<u16> for Integer
[src]
type Output = Integer
The resulting type after applying the |
operator.
fn bitor(self, rhs: u16) -> Integer
[src]
impl<'b> BitOr<u16> for &'b Integer
[src]
type Output = BitOrU16Incomplete<'b>
The resulting type after applying the |
operator.
fn bitor(self, rhs: u16) -> BitOrU16Incomplete<'b>
[src]
impl BitOr<u32> for Integer
[src]
type Output = Integer
The resulting type after applying the |
operator.
fn bitor(self, rhs: u32) -> Integer
[src]
impl<'b> BitOr<u32> for &'b Integer
[src]
type Output = BitOrU32Incomplete<'b>
The resulting type after applying the |
operator.
fn bitor(self, rhs: u32) -> BitOrU32Incomplete<'b>
[src]
impl BitOr<u64> for Integer
[src]
type Output = Integer
The resulting type after applying the |
operator.
fn bitor(self, rhs: u64) -> Integer
[src]
impl<'b> BitOr<u64> for &'b Integer
[src]
type Output = BitOrU64Incomplete<'b>
The resulting type after applying the |
operator.
fn bitor(self, rhs: u64) -> BitOrU64Incomplete<'b>
[src]
impl BitOr<u8> for Integer
[src]
type Output = Integer
The resulting type after applying the |
operator.
fn bitor(self, rhs: u8) -> Integer
[src]
impl<'b> BitOr<u8> for &'b Integer
[src]
type Output = BitOrU8Incomplete<'b>
The resulting type after applying the |
operator.
fn bitor(self, rhs: u8) -> BitOrU8Incomplete<'b>
[src]
impl BitOrAssign<&'_ Integer> for Integer
[src]
fn bitor_assign(&mut self, rhs: &Integer)
[src]
impl BitOrAssign<&'_ i128> for Integer
[src]
fn bitor_assign(&mut self, rhs: &i128)
[src]
impl BitOrAssign<&'_ i16> for Integer
[src]
fn bitor_assign(&mut self, rhs: &i16)
[src]
impl BitOrAssign<&'_ i32> for Integer
[src]
fn bitor_assign(&mut self, rhs: &i32)
[src]
impl BitOrAssign<&'_ i64> for Integer
[src]
fn bitor_assign(&mut self, rhs: &i64)
[src]
impl BitOrAssign<&'_ i8> for Integer
[src]
fn bitor_assign(&mut self, rhs: &i8)
[src]
impl BitOrAssign<&'_ u128> for Integer
[src]
fn bitor_assign(&mut self, rhs: &u128)
[src]
impl BitOrAssign<&'_ u16> for Integer
[src]
fn bitor_assign(&mut self, rhs: &u16)
[src]
impl BitOrAssign<&'_ u32> for Integer
[src]
fn bitor_assign(&mut self, rhs: &u32)
[src]
impl BitOrAssign<&'_ u64> for Integer
[src]
fn bitor_assign(&mut self, rhs: &u64)
[src]
impl BitOrAssign<&'_ u8> for Integer
[src]
fn bitor_assign(&mut self, rhs: &u8)
[src]
impl BitOrAssign<Integer> for Integer
[src]
fn bitor_assign(&mut self, rhs: Integer)
[src]
impl BitOrAssign<i128> for Integer
[src]
fn bitor_assign(&mut self, rhs: i128)
[src]
impl BitOrAssign<i16> for Integer
[src]
fn bitor_assign(&mut self, rhs: i16)
[src]
impl BitOrAssign<i32> for Integer
[src]
fn bitor_assign(&mut self, rhs: i32)
[src]
impl BitOrAssign<i64> for Integer
[src]
fn bitor_assign(&mut self, rhs: i64)
[src]
impl BitOrAssign<i8> for Integer
[src]
fn bitor_assign(&mut self, rhs: i8)
[src]
impl BitOrAssign<u128> for Integer
[src]
fn bitor_assign(&mut self, rhs: u128)
[src]
impl BitOrAssign<u16> for Integer
[src]
fn bitor_assign(&mut self, rhs: u16)
[src]
impl BitOrAssign<u32> for Integer
[src]
fn bitor_assign(&mut self, rhs: u32)
[src]
impl BitOrAssign<u64> for Integer
[src]
fn bitor_assign(&mut self, rhs: u64)
[src]
impl BitOrAssign<u8> for Integer
[src]
fn bitor_assign(&mut self, rhs: u8)
[src]
impl BitOrFrom<&'_ Integer> for Integer
[src]
fn bitor_from(&mut self, lhs: &Integer)
[src]
impl BitOrFrom<&'_ i128> for Integer
[src]
fn bitor_from(&mut self, lhs: &i128)
[src]
impl BitOrFrom<&'_ i16> for Integer
[src]
fn bitor_from(&mut self, lhs: &i16)
[src]
impl BitOrFrom<&'_ i32> for Integer
[src]
fn bitor_from(&mut self, lhs: &i32)
[src]
impl BitOrFrom<&'_ i64> for Integer
[src]
fn bitor_from(&mut self, lhs: &i64)
[src]
impl BitOrFrom<&'_ i8> for Integer
[src]
fn bitor_from(&mut self, lhs: &i8)
[src]
impl BitOrFrom<&'_ u128> for Integer
[src]
fn bitor_from(&mut self, lhs: &u128)
[src]
impl BitOrFrom<&'_ u16> for Integer
[src]
fn bitor_from(&mut self, lhs: &u16)
[src]
impl BitOrFrom<&'_ u32> for Integer
[src]
fn bitor_from(&mut self, lhs: &u32)
[src]
impl BitOrFrom<&'_ u64> for Integer
[src]
fn bitor_from(&mut self, lhs: &u64)
[src]
impl BitOrFrom<&'_ u8> for Integer
[src]
fn bitor_from(&mut self, lhs: &u8)
[src]
impl BitOrFrom<Integer> for Integer
[src]
fn bitor_from(&mut self, lhs: Integer)
[src]
impl BitOrFrom<i128> for Integer
[src]
fn bitor_from(&mut self, lhs: i128)
[src]
impl BitOrFrom<i16> for Integer
[src]
fn bitor_from(&mut self, lhs: i16)
[src]
impl BitOrFrom<i32> for Integer
[src]
fn bitor_from(&mut self, lhs: i32)
[src]
impl BitOrFrom<i64> for Integer
[src]
fn bitor_from(&mut self, lhs: i64)
[src]
impl BitOrFrom<i8> for Integer
[src]
fn bitor_from(&mut self, lhs: i8)
[src]
impl BitOrFrom<u128> for Integer
[src]
fn bitor_from(&mut self, lhs: u128)
[src]
impl BitOrFrom<u16> for Integer
[src]
fn bitor_from(&mut self, lhs: u16)
[src]
impl BitOrFrom<u32> for Integer
[src]
fn bitor_from(&mut self, lhs: u32)
[src]
impl BitOrFrom<u64> for Integer
[src]
fn bitor_from(&mut self, lhs: u64)
[src]
impl BitOrFrom<u8> for Integer
[src]
fn bitor_from(&mut self, lhs: u8)
[src]
impl BitXor<&'_ Integer> for Integer
[src]
type Output = Integer
The resulting type after applying the ^
operator.
fn bitxor(self, rhs: &Integer) -> Integer
[src]
impl BitXor<&'_ i128> for Integer
[src]
type Output = Integer
The resulting type after applying the ^
operator.
fn bitxor(self, rhs: &i128) -> Integer
[src]
impl<'b> BitXor<&'_ i128> for &'b Integer
[src]
type Output = BitXorI128Incomplete<'b>
The resulting type after applying the ^
operator.
fn bitxor(self, rhs: &i128) -> BitXorI128Incomplete<'b>
[src]
impl BitXor<&'_ i16> for Integer
[src]
type Output = Integer
The resulting type after applying the ^
operator.
fn bitxor(self, rhs: &i16) -> Integer
[src]
impl<'b> BitXor<&'_ i16> for &'b Integer
[src]
type Output = BitXorI16Incomplete<'b>
The resulting type after applying the ^
operator.
fn bitxor(self, rhs: &i16) -> BitXorI16Incomplete<'b>
[src]
impl BitXor<&'_ i32> for Integer
[src]
type Output = Integer
The resulting type after applying the ^
operator.
fn bitxor(self, rhs: &i32) -> Integer
[src]
impl<'b> BitXor<&'_ i32> for &'b Integer
[src]
type Output = BitXorI32Incomplete<'b>
The resulting type after applying the ^
operator.
fn bitxor(self, rhs: &i32) -> BitXorI32Incomplete<'b>
[src]
impl BitXor<&'_ i64> for Integer
[src]
type Output = Integer
The resulting type after applying the ^
operator.
fn bitxor(self, rhs: &i64) -> Integer
[src]
impl<'b> BitXor<&'_ i64> for &'b Integer
[src]
type Output = BitXorI64Incomplete<'b>
The resulting type after applying the ^
operator.
fn bitxor(self, rhs: &i64) -> BitXorI64Incomplete<'b>
[src]
impl BitXor<&'_ i8> for Integer
[src]
type Output = Integer
The resulting type after applying the ^
operator.
fn bitxor(self, rhs: &i8) -> Integer
[src]
impl<'b> BitXor<&'_ i8> for &'b Integer
[src]
type Output = BitXorI8Incomplete<'b>
The resulting type after applying the ^
operator.
fn bitxor(self, rhs: &i8) -> BitXorI8Incomplete<'b>
[src]
impl BitXor<&'_ u128> for Integer
[src]
type Output = Integer
The resulting type after applying the ^
operator.
fn bitxor(self, rhs: &u128) -> Integer
[src]
impl<'b> BitXor<&'_ u128> for &'b Integer
[src]
type Output = BitXorU128Incomplete<'b>
The resulting type after applying the ^
operator.
fn bitxor(self, rhs: &u128) -> BitXorU128Incomplete<'b>
[src]
impl BitXor<&'_ u16> for Integer
[src]
type Output = Integer
The resulting type after applying the ^
operator.
fn bitxor(self, rhs: &u16) -> Integer
[src]
impl<'b> BitXor<&'_ u16> for &'b Integer
[src]
type Output = BitXorU16Incomplete<'b>
The resulting type after applying the ^
operator.
fn bitxor(self, rhs: &u16) -> BitXorU16Incomplete<'b>
[src]
impl BitXor<&'_ u32> for Integer
[src]
type Output = Integer
The resulting type after applying the ^
operator.
fn bitxor(self, rhs: &u32) -> Integer
[src]
impl<'b> BitXor<&'_ u32> for &'b Integer
[src]
type Output = BitXorU32Incomplete<'b>
The resulting type after applying the ^
operator.
fn bitxor(self, rhs: &u32) -> BitXorU32Incomplete<'b>
[src]
impl BitXor<&'_ u64> for Integer
[src]
type Output = Integer
The resulting type after applying the ^
operator.
fn bitxor(self, rhs: &u64) -> Integer
[src]
impl<'b> BitXor<&'_ u64> for &'b Integer
[src]
type Output = BitXorU64Incomplete<'b>
The resulting type after applying the ^
operator.
fn bitxor(self, rhs: &u64) -> BitXorU64Incomplete<'b>
[src]
impl BitXor<&'_ u8> for Integer
[src]
type Output = Integer
The resulting type after applying the ^
operator.
fn bitxor(self, rhs: &u8) -> Integer
[src]
impl<'b> BitXor<&'_ u8> for &'b Integer
[src]
type Output = BitXorU8Incomplete<'b>
The resulting type after applying the ^
operator.
fn bitxor(self, rhs: &u8) -> BitXorU8Incomplete<'b>
[src]
impl<'a> BitXor<&'a Integer> for &'a Integer
[src]
type Output = BitXorIncomplete<'a>
The resulting type after applying the ^
operator.
fn bitxor(self, rhs: &'a Integer) -> BitXorIncomplete<'_>
[src]
impl BitXor<Integer> for Integer
[src]
type Output = Integer
The resulting type after applying the ^
operator.
fn bitxor(self, rhs: Integer) -> Integer
[src]
impl BitXor<Integer> for &Integer
[src]
type Output = Integer
The resulting type after applying the ^
operator.
fn bitxor(self, rhs: Integer) -> Integer
[src]
impl BitXor<i128> for Integer
[src]
type Output = Integer
The resulting type after applying the ^
operator.
fn bitxor(self, rhs: i128) -> Integer
[src]
impl<'b> BitXor<i128> for &'b Integer
[src]
type Output = BitXorI128Incomplete<'b>
The resulting type after applying the ^
operator.
fn bitxor(self, rhs: i128) -> BitXorI128Incomplete<'b>
[src]
impl BitXor<i16> for Integer
[src]
type Output = Integer
The resulting type after applying the ^
operator.
fn bitxor(self, rhs: i16) -> Integer
[src]
impl<'b> BitXor<i16> for &'b Integer
[src]
type Output = BitXorI16Incomplete<'b>
The resulting type after applying the ^
operator.
fn bitxor(self, rhs: i16) -> BitXorI16Incomplete<'b>
[src]
impl BitXor<i32> for Integer
[src]
type Output = Integer
The resulting type after applying the ^
operator.
fn bitxor(self, rhs: i32) -> Integer
[src]
impl<'b> BitXor<i32> for &'b Integer
[src]
type Output = BitXorI32Incomplete<'b>
The resulting type after applying the ^
operator.
fn bitxor(self, rhs: i32) -> BitXorI32Incomplete<'b>
[src]
impl BitXor<i64> for Integer
[src]
type Output = Integer
The resulting type after applying the ^
operator.
fn bitxor(self, rhs: i64) -> Integer
[src]
impl<'b> BitXor<i64> for &'b Integer
[src]
type Output = BitXorI64Incomplete<'b>
The resulting type after applying the ^
operator.
fn bitxor(self, rhs: i64) -> BitXorI64Incomplete<'b>
[src]
impl BitXor<i8> for Integer
[src]
type Output = Integer
The resulting type after applying the ^
operator.
fn bitxor(self, rhs: i8) -> Integer
[src]
impl<'b> BitXor<i8> for &'b Integer
[src]
type Output = BitXorI8Incomplete<'b>
The resulting type after applying the ^
operator.
fn bitxor(self, rhs: i8) -> BitXorI8Incomplete<'b>
[src]
impl BitXor<u128> for Integer
[src]
type Output = Integer
The resulting type after applying the ^
operator.
fn bitxor(self, rhs: u128) -> Integer
[src]
impl<'b> BitXor<u128> for &'b Integer
[src]
type Output = BitXorU128Incomplete<'b>
The resulting type after applying the ^
operator.
fn bitxor(self, rhs: u128) -> BitXorU128Incomplete<'b>
[src]
impl BitXor<u16> for Integer
[src]
type Output = Integer
The resulting type after applying the ^
operator.
fn bitxor(self, rhs: u16) -> Integer
[src]
impl<'b> BitXor<u16> for &'b Integer
[src]
type Output = BitXorU16Incomplete<'b>
The resulting type after applying the ^
operator.
fn bitxor(self, rhs: u16) -> BitXorU16Incomplete<'b>
[src]
impl BitXor<u32> for Integer
[src]
type Output = Integer
The resulting type after applying the ^
operator.
fn bitxor(self, rhs: u32) -> Integer
[src]
impl<'b> BitXor<u32> for &'b Integer
[src]
type Output = BitXorU32Incomplete<'b>
The resulting type after applying the ^
operator.
fn bitxor(self, rhs: u32) -> BitXorU32Incomplete<'b>
[src]
impl BitXor<u64> for Integer
[src]
type Output = Integer
The resulting type after applying the ^
operator.
fn bitxor(self, rhs: u64) -> Integer
[src]
impl<'b> BitXor<u64> for &'b Integer
[src]
type Output = BitXorU64Incomplete<'b>
The resulting type after applying the ^
operator.
fn bitxor(self, rhs: u64) -> BitXorU64Incomplete<'b>
[src]
impl BitXor<u8> for Integer
[src]
type Output = Integer
The resulting type after applying the ^
operator.
fn bitxor(self, rhs: u8) -> Integer
[src]
impl<'b> BitXor<u8> for &'b Integer
[src]
type Output = BitXorU8Incomplete<'b>
The resulting type after applying the ^
operator.
fn bitxor(self, rhs: u8) -> BitXorU8Incomplete<'b>
[src]
impl BitXorAssign<&'_ Integer> for Integer
[src]
fn bitxor_assign(&mut self, rhs: &Integer)
[src]
impl BitXorAssign<&'_ i128> for Integer
[src]
fn bitxor_assign(&mut self, rhs: &i128)
[src]
impl BitXorAssign<&'_ i16> for Integer
[src]
fn bitxor_assign(&mut self, rhs: &i16)
[src]
impl BitXorAssign<&'_ i32> for Integer
[src]
fn bitxor_assign(&mut self, rhs: &i32)
[src]
impl BitXorAssign<&'_ i64> for Integer
[src]
fn bitxor_assign(&mut self, rhs: &i64)
[src]
impl BitXorAssign<&'_ i8> for Integer
[src]
fn bitxor_assign(&mut self, rhs: &i8)
[src]
impl BitXorAssign<&'_ u128> for Integer
[src]
fn bitxor_assign(&mut self, rhs: &u128)
[src]
impl BitXorAssign<&'_ u16> for Integer
[src]
fn bitxor_assign(&mut self, rhs: &u16)
[src]
impl BitXorAssign<&'_ u32> for Integer
[src]
fn bitxor_assign(&mut self, rhs: &u32)
[src]
impl BitXorAssign<&'_ u64> for Integer
[src]
fn bitxor_assign(&mut self, rhs: &u64)
[src]
impl BitXorAssign<&'_ u8> for Integer
[src]
fn bitxor_assign(&mut self, rhs: &u8)
[src]
impl BitXorAssign<Integer> for Integer
[src]
fn bitxor_assign(&mut self, rhs: Integer)
[src]
impl BitXorAssign<i128> for Integer
[src]
fn bitxor_assign(&mut self, rhs: i128)
[src]
impl BitXorAssign<i16> for Integer
[src]
fn bitxor_assign(&mut self, rhs: i16)
[src]
impl BitXorAssign<i32> for Integer
[src]
fn bitxor_assign(&mut self, rhs: i32)
[src]
impl BitXorAssign<i64> for Integer
[src]
fn bitxor_assign(&mut self, rhs: i64)
[src]
impl BitXorAssign<i8> for Integer
[src]
fn bitxor_assign(&mut self, rhs: i8)
[src]
impl BitXorAssign<u128> for Integer
[src]
fn bitxor_assign(&mut self, rhs: u128)
[src]
impl BitXorAssign<u16> for Integer
[src]
fn bitxor_assign(&mut self, rhs: u16)
[src]
impl BitXorAssign<u32> for Integer
[src]
fn bitxor_assign(&mut self, rhs: u32)
[src]
impl BitXorAssign<u64> for Integer
[src]
fn bitxor_assign(&mut self, rhs: u64)
[src]
impl BitXorAssign<u8> for Integer
[src]
fn bitxor_assign(&mut self, rhs: u8)
[src]
impl BitXorFrom<&'_ Integer> for Integer
[src]
fn bitxor_from(&mut self, lhs: &Integer)
[src]
impl BitXorFrom<&'_ i128> for Integer
[src]
fn bitxor_from(&mut self, lhs: &i128)
[src]
impl BitXorFrom<&'_ i16> for Integer
[src]
fn bitxor_from(&mut self, lhs: &i16)
[src]
impl BitXorFrom<&'_ i32> for Integer
[src]
fn bitxor_from(&mut self, lhs: &i32)
[src]
impl BitXorFrom<&'_ i64> for Integer
[src]
fn bitxor_from(&mut self, lhs: &i64)
[src]
impl BitXorFrom<&'_ i8> for Integer
[src]
fn bitxor_from(&mut self, lhs: &i8)
[src]
impl BitXorFrom<&'_ u128> for Integer
[src]
fn bitxor_from(&mut self, lhs: &u128)
[src]
impl BitXorFrom<&'_ u16> for Integer
[src]
fn bitxor_from(&mut self, lhs: &u16)
[src]
impl BitXorFrom<&'_ u32> for Integer
[src]
fn bitxor_from(&mut self, lhs: &u32)
[src]
impl BitXorFrom<&'_ u64> for Integer
[src]
fn bitxor_from(&mut self, lhs: &u64)
[src]
impl BitXorFrom<&'_ u8> for Integer
[src]
fn bitxor_from(&mut self, lhs: &u8)
[src]
impl BitXorFrom<Integer> for Integer
[src]
fn bitxor_from(&mut self, lhs: Integer)
[src]
impl BitXorFrom<i128> for Integer
[src]
fn bitxor_from(&mut self, lhs: i128)
[src]
impl BitXorFrom<i16> for Integer
[src]
fn bitxor_from(&mut self, lhs: i16)
[src]
impl BitXorFrom<i32> for Integer
[src]
fn bitxor_from(&mut self, lhs: i32)
[src]
impl BitXorFrom<i64> for Integer
[src]
fn bitxor_from(&mut self, lhs: i64)
[src]
impl BitXorFrom<i8> for Integer
[src]
fn bitxor_from(&mut self, lhs: i8)
[src]
impl BitXorFrom<u128> for Integer
[src]
fn bitxor_from(&mut self, lhs: u128)
[src]
impl BitXorFrom<u16> for Integer
[src]
fn bitxor_from(&mut self, lhs: u16)
[src]
impl BitXorFrom<u32> for Integer
[src]
fn bitxor_from(&mut self, lhs: u32)
[src]
impl BitXorFrom<u64> for Integer
[src]
fn bitxor_from(&mut self, lhs: u64)
[src]
impl BitXorFrom<u8> for Integer
[src]
fn bitxor_from(&mut self, lhs: u8)
[src]
impl Cast<Integer> for Float
[src]
impl Cast<Integer> for &Float
[src]
impl Cast<f32> for Integer
[src]
impl Cast<f32> for &Integer
[src]
impl Cast<f64> for Integer
[src]
impl Cast<f64> for &Integer
[src]
impl Cast<i128> for Integer
[src]
impl Cast<i128> for &Integer
[src]
impl Cast<i16> for Integer
[src]
impl Cast<i16> for &Integer
[src]
impl Cast<i32> for Integer
[src]
impl Cast<i32> for &Integer
[src]
impl Cast<i64> for Integer
[src]
impl Cast<i64> for &Integer
[src]
impl Cast<i8> for Integer
[src]
impl Cast<i8> for &Integer
[src]
impl Cast<isize> for Integer
[src]
impl Cast<isize> for &Integer
[src]
impl Cast<u128> for Integer
[src]
impl Cast<u128> for &Integer
[src]
impl Cast<u16> for Integer
[src]
impl Cast<u16> for &Integer
[src]
impl Cast<u32> for Integer
[src]
impl Cast<u32> for &Integer
[src]
impl Cast<u64> for Integer
[src]
impl Cast<u64> for &Integer
[src]
impl Cast<u8> for Integer
[src]
impl Cast<u8> for &Integer
[src]
impl Cast<usize> for Integer
[src]
impl Cast<usize> for &Integer
[src]
impl CheckedCast<Integer> for Float
[src]
fn checked_cast(self) -> Option<Integer>
[src]
impl CheckedCast<Integer> for &Float
[src]
fn checked_cast(self) -> Option<Integer>
[src]
impl CheckedCast<i128> for Integer
[src]
fn checked_cast(self) -> Option<i128>
[src]
impl CheckedCast<i128> for &Integer
[src]
fn checked_cast(self) -> Option<i128>
[src]
impl CheckedCast<i16> for Integer
[src]
fn checked_cast(self) -> Option<i16>
[src]
impl CheckedCast<i16> for &Integer
[src]
fn checked_cast(self) -> Option<i16>
[src]
impl CheckedCast<i32> for Integer
[src]
fn checked_cast(self) -> Option<i32>
[src]
impl CheckedCast<i32> for &Integer
[src]
fn checked_cast(self) -> Option<i32>
[src]
impl CheckedCast<i64> for Integer
[src]
fn checked_cast(self) -> Option<i64>
[src]
impl CheckedCast<i64> for &Integer
[src]
fn checked_cast(self) -> Option<i64>
[src]
impl CheckedCast<i8> for Integer
[src]
fn checked_cast(self) -> Option<i8>
[src]
impl CheckedCast<i8> for &Integer
[src]
fn checked_cast(self) -> Option<i8>
[src]
impl CheckedCast<isize> for Integer
[src]
fn checked_cast(self) -> Option<isize>
[src]
impl CheckedCast<isize> for &Integer
[src]
fn checked_cast(self) -> Option<isize>
[src]
impl CheckedCast<u128> for Integer
[src]
fn checked_cast(self) -> Option<u128>
[src]
impl CheckedCast<u128> for &Integer
[src]
fn checked_cast(self) -> Option<u128>
[src]
impl CheckedCast<u16> for Integer
[src]
fn checked_cast(self) -> Option<u16>
[src]
impl CheckedCast<u16> for &Integer
[src]
fn checked_cast(self) -> Option<u16>
[src]
impl CheckedCast<u32> for Integer
[src]
fn checked_cast(self) -> Option<u32>
[src]
impl CheckedCast<u32> for &Integer
[src]
fn checked_cast(self) -> Option<u32>
[src]
impl CheckedCast<u64> for Integer
[src]
fn checked_cast(self) -> Option<u64>
[src]
impl CheckedCast<u64> for &Integer
[src]
fn checked_cast(self) -> Option<u64>
[src]
impl CheckedCast<u8> for Integer
[src]
fn checked_cast(self) -> Option<u8>
[src]
impl CheckedCast<u8> for &Integer
[src]
fn checked_cast(self) -> Option<u8>
[src]
impl CheckedCast<usize> for Integer
[src]
fn checked_cast(self) -> Option<usize>
[src]
impl CheckedCast<usize> for &Integer
[src]
fn checked_cast(self) -> Option<usize>
[src]
impl Clone for Integer
[src]
impl Debug for Integer
[src]
impl Default for Integer
[src]
impl Display for Integer
[src]
impl Div<&'_ Integer> for Integer
[src]
type Output = Integer
The resulting type after applying the /
operator.
fn div(self, rhs: &Integer) -> Integer
[src]
impl Div<&'_ Integer> for Float
[src]
type Output = Float
The resulting type after applying the /
operator.
fn div(self, rhs: &Integer) -> Float
[src]
impl Div<&'_ i128> for Integer
[src]
type Output = Integer
The resulting type after applying the /
operator.
fn div(self, rhs: &i128) -> Integer
[src]
impl<'b> Div<&'_ i128> for &'b Integer
[src]
type Output = DivI128Incomplete<'b>
The resulting type after applying the /
operator.
fn div(self, rhs: &i128) -> DivI128Incomplete<'b>
[src]
impl Div<&'_ i16> for Integer
[src]
type Output = Integer
The resulting type after applying the /
operator.
fn div(self, rhs: &i16) -> Integer
[src]
impl<'b> Div<&'_ i16> for &'b Integer
[src]
type Output = DivI16Incomplete<'b>
The resulting type after applying the /
operator.
fn div(self, rhs: &i16) -> DivI16Incomplete<'b>
[src]
impl Div<&'_ i32> for Integer
[src]
type Output = Integer
The resulting type after applying the /
operator.
fn div(self, rhs: &i32) -> Integer
[src]
impl<'b> Div<&'_ i32> for &'b Integer
[src]
type Output = DivI32Incomplete<'b>
The resulting type after applying the /
operator.
fn div(self, rhs: &i32) -> DivI32Incomplete<'b>
[src]
impl Div<&'_ i64> for Integer
[src]
type Output = Integer
The resulting type after applying the /
operator.
fn div(self, rhs: &i64) -> Integer
[src]
impl<'b> Div<&'_ i64> for &'b Integer
[src]
type Output = DivI64Incomplete<'b>
The resulting type after applying the /
operator.
fn div(self, rhs: &i64) -> DivI64Incomplete<'b>
[src]
impl Div<&'_ i8> for Integer
[src]
type Output = Integer
The resulting type after applying the /
operator.
fn div(self, rhs: &i8) -> Integer
[src]
impl<'b> Div<&'_ i8> for &'b Integer
[src]
type Output = DivI8Incomplete<'b>
The resulting type after applying the /
operator.
fn div(self, rhs: &i8) -> DivI8Incomplete<'b>
[src]
impl Div<&'_ u128> for Integer
[src]
type Output = Integer
The resulting type after applying the /
operator.
fn div(self, rhs: &u128) -> Integer
[src]
impl<'b> Div<&'_ u128> for &'b Integer
[src]
type Output = DivU128Incomplete<'b>
The resulting type after applying the /
operator.
fn div(self, rhs: &u128) -> DivU128Incomplete<'b>
[src]
impl Div<&'_ u16> for Integer
[src]
type Output = Integer
The resulting type after applying the /
operator.
fn div(self, rhs: &u16) -> Integer
[src]
impl<'b> Div<&'_ u16> for &'b Integer
[src]
type Output = DivU16Incomplete<'b>
The resulting type after applying the /
operator.
fn div(self, rhs: &u16) -> DivU16Incomplete<'b>
[src]
impl Div<&'_ u32> for Integer
[src]
type Output = Integer
The resulting type after applying the /
operator.
fn div(self, rhs: &u32) -> Integer
[src]
impl<'b> Div<&'_ u32> for &'b Integer
[src]
type Output = DivU32Incomplete<'b>
The resulting type after applying the /
operator.
fn div(self, rhs: &u32) -> DivU32Incomplete<'b>
[src]
impl Div<&'_ u64> for Integer
[src]
type Output = Integer
The resulting type after applying the /
operator.
fn div(self, rhs: &u64) -> Integer
[src]
impl<'b> Div<&'_ u64> for &'b Integer
[src]
type Output = DivU64Incomplete<'b>
The resulting type after applying the /
operator.
fn div(self, rhs: &u64) -> DivU64Incomplete<'b>
[src]
impl Div<&'_ u8> for Integer
[src]
type Output = Integer
The resulting type after applying the /
operator.
fn div(self, rhs: &u8) -> Integer
[src]
impl<'b> Div<&'_ u8> for &'b Integer
[src]
type Output = DivU8Incomplete<'b>
The resulting type after applying the /
operator.
fn div(self, rhs: &u8) -> DivU8Incomplete<'b>
[src]
impl<'a> Div<&'a Float> for Integer
[src]
type Output = DivFromOwnedIntegerIncomplete<'a>
The resulting type after applying the /
operator.
fn div(self, rhs: &Float) -> DivFromOwnedIntegerIncomplete<'_>
[src]
impl<'a> Div<&'a Float> for &'a Integer
[src]
type Output = DivFromIntegerIncomplete<'a>
The resulting type after applying the /
operator.
fn div(self, rhs: &'a Float) -> DivFromIntegerIncomplete<'_>
[src]
impl<'a> Div<&'a Integer> for &'a Integer
[src]
type Output = DivIncomplete<'a>
The resulting type after applying the /
operator.
fn div(self, rhs: &'a Integer) -> DivIncomplete<'_>
[src]
impl<'a> Div<&'a Integer> for &'a Float
[src]
type Output = DivIntegerIncomplete<'a>
The resulting type after applying the /
operator.
fn div(self, rhs: &'a Integer) -> DivIntegerIncomplete<'_>
[src]
impl Div<Float> for Integer
[src]
type Output = Float
The resulting type after applying the /
operator.
fn div(self, rhs: Float) -> Float
[src]
impl Div<Float> for &Integer
[src]
type Output = Float
The resulting type after applying the /
operator.
fn div(self, rhs: Float) -> Float
[src]
impl Div<Integer> for Integer
[src]
type Output = Integer
The resulting type after applying the /
operator.
fn div(self, rhs: Integer) -> Integer
[src]
impl Div<Integer> for &Integer
[src]
type Output = Integer
The resulting type after applying the /
operator.
fn div(self, rhs: Integer) -> Integer
[src]
impl Div<Integer> for Float
[src]
type Output = Float
The resulting type after applying the /
operator.
fn div(self, rhs: Integer) -> Float
[src]
impl<'a> Div<Integer> for &'a Float
[src]
type Output = DivOwnedIntegerIncomplete<'a>
The resulting type after applying the /
operator.
fn div(self, rhs: Integer) -> DivOwnedIntegerIncomplete<'a>
[src]
impl Div<i128> for Integer
[src]
type Output = Integer
The resulting type after applying the /
operator.
fn div(self, rhs: i128) -> Integer
[src]
impl<'b> Div<i128> for &'b Integer
[src]
type Output = DivI128Incomplete<'b>
The resulting type after applying the /
operator.
fn div(self, rhs: i128) -> DivI128Incomplete<'b>
[src]
impl Div<i16> for Integer
[src]
type Output = Integer
The resulting type after applying the /
operator.
fn div(self, rhs: i16) -> Integer
[src]
impl<'b> Div<i16> for &'b Integer
[src]
type Output = DivI16Incomplete<'b>
The resulting type after applying the /
operator.
fn div(self, rhs: i16) -> DivI16Incomplete<'b>
[src]
impl Div<i32> for Integer
[src]
type Output = Integer
The resulting type after applying the /
operator.
fn div(self, rhs: i32) -> Integer
[src]
impl<'b> Div<i32> for &'b Integer
[src]
type Output = DivI32Incomplete<'b>
The resulting type after applying the /
operator.
fn div(self, rhs: i32) -> DivI32Incomplete<'b>
[src]
impl Div<i64> for Integer
[src]
type Output = Integer
The resulting type after applying the /
operator.
fn div(self, rhs: i64) -> Integer
[src]
impl<'b> Div<i64> for &'b Integer
[src]
type Output = DivI64Incomplete<'b>
The resulting type after applying the /
operator.
fn div(self, rhs: i64) -> DivI64Incomplete<'b>
[src]
impl Div<i8> for Integer
[src]
type Output = Integer
The resulting type after applying the /
operator.
fn div(self, rhs: i8) -> Integer
[src]
impl<'b> Div<i8> for &'b Integer
[src]
type Output = DivI8Incomplete<'b>
The resulting type after applying the /
operator.
fn div(self, rhs: i8) -> DivI8Incomplete<'b>
[src]
impl Div<u128> for Integer
[src]
type Output = Integer
The resulting type after applying the /
operator.
fn div(self, rhs: u128) -> Integer
[src]
impl<'b> Div<u128> for &'b Integer
[src]
type Output = DivU128Incomplete<'b>
The resulting type after applying the /
operator.
fn div(self, rhs: u128) -> DivU128Incomplete<'b>
[src]
impl Div<u16> for Integer
[src]
type Output = Integer
The resulting type after applying the /
operator.
fn div(self, rhs: u16) -> Integer
[src]
impl<'b> Div<u16> for &'b Integer
[src]
type Output = DivU16Incomplete<'b>
The resulting type after applying the /
operator.
fn div(self, rhs: u16) -> DivU16Incomplete<'b>
[src]
impl Div<u32> for Integer
[src]
type Output = Integer
The resulting type after applying the /
operator.
fn div(self, rhs: u32) -> Integer
[src]
impl<'b> Div<u32> for &'b Integer
[src]
type Output = DivU32Incomplete<'b>
The resulting type after applying the /
operator.
fn div(self, rhs: u32) -> DivU32Incomplete<'b>
[src]
impl Div<u64> for Integer
[src]
type Output = Integer
The resulting type after applying the /
operator.
fn div(self, rhs: u64) -> Integer
[src]
impl<'b> Div<u64> for &'b Integer
[src]
type Output = DivU64Incomplete<'b>
The resulting type after applying the /
operator.
fn div(self, rhs: u64) -> DivU64Incomplete<'b>
[src]
impl Div<u8> for Integer
[src]
type Output = Integer
The resulting type after applying the /
operator.
fn div(self, rhs: u8) -> Integer
[src]
impl<'b> Div<u8> for &'b Integer
[src]
type Output = DivU8Incomplete<'b>
The resulting type after applying the /
operator.
fn div(self, rhs: u8) -> DivU8Incomplete<'b>
[src]
impl DivAssign<&'_ Integer> for Integer
[src]
fn div_assign(&mut self, rhs: &Integer)
[src]
impl DivAssign<&'_ Integer> for Float
[src]
fn div_assign(&mut self, rhs: &Integer)
[src]
impl DivAssign<&'_ i128> for Integer
[src]
fn div_assign(&mut self, rhs: &i128)
[src]
impl DivAssign<&'_ i16> for Integer
[src]
fn div_assign(&mut self, rhs: &i16)
[src]
impl DivAssign<&'_ i32> for Integer
[src]
fn div_assign(&mut self, rhs: &i32)
[src]
impl DivAssign<&'_ i64> for Integer
[src]
fn div_assign(&mut self, rhs: &i64)
[src]
impl DivAssign<&'_ i8> for Integer
[src]
fn div_assign(&mut self, rhs: &i8)
[src]
impl DivAssign<&'_ u128> for Integer
[src]
fn div_assign(&mut self, rhs: &u128)
[src]
impl DivAssign<&'_ u16> for Integer
[src]
fn div_assign(&mut self, rhs: &u16)
[src]
impl DivAssign<&'_ u32> for Integer
[src]
fn div_assign(&mut self, rhs: &u32)
[src]
impl DivAssign<&'_ u64> for Integer
[src]
fn div_assign(&mut self, rhs: &u64)
[src]
impl DivAssign<&'_ u8> for Integer
[src]
fn div_assign(&mut self, rhs: &u8)
[src]
impl DivAssign<Integer> for Integer
[src]
fn div_assign(&mut self, rhs: Integer)
[src]
impl DivAssign<Integer> for Float
[src]
fn div_assign(&mut self, rhs: Integer)
[src]
impl DivAssign<i128> for Integer
[src]
fn div_assign(&mut self, rhs: i128)
[src]
impl DivAssign<i16> for Integer
[src]
fn div_assign(&mut self, rhs: i16)
[src]
impl DivAssign<i32> for Integer
[src]
fn div_assign(&mut self, rhs: i32)
[src]
impl DivAssign<i64> for Integer
[src]
fn div_assign(&mut self, rhs: i64)
[src]
impl DivAssign<i8> for Integer
[src]
fn div_assign(&mut self, rhs: i8)
[src]
impl DivAssign<u128> for Integer
[src]
fn div_assign(&mut self, rhs: u128)
[src]
impl DivAssign<u16> for Integer
[src]
fn div_assign(&mut self, rhs: u16)
[src]
impl DivAssign<u32> for Integer
[src]
fn div_assign(&mut self, rhs: u32)
[src]
impl DivAssign<u64> for Integer
[src]
fn div_assign(&mut self, rhs: u64)
[src]
impl DivAssign<u8> for Integer
[src]
fn div_assign(&mut self, rhs: u8)
[src]
impl DivAssignRound<&'_ Integer> for Float
[src]
type Round = Round
The rounding method.
type Ordering = Ordering
The direction from rounding.
fn div_assign_round(&mut self, rhs: &Integer, round: Round) -> Ordering
[src]
impl DivAssignRound<Integer> for Float
[src]
type Round = Round
The rounding method.
type Ordering = Ordering
The direction from rounding.
fn div_assign_round(&mut self, rhs: Integer, round: Round) -> Ordering
[src]
impl DivFrom<&'_ Integer> for Integer
[src]
impl DivFrom<&'_ Integer> for Float
[src]
impl DivFrom<&'_ i128> for Integer
[src]
impl DivFrom<&'_ i16> for Integer
[src]
impl DivFrom<&'_ i32> for Integer
[src]
impl DivFrom<&'_ i64> for Integer
[src]
impl DivFrom<&'_ i8> for Integer
[src]
impl DivFrom<&'_ u128> for Integer
[src]
impl DivFrom<&'_ u16> for Integer
[src]
impl DivFrom<&'_ u32> for Integer
[src]
impl DivFrom<&'_ u64> for Integer
[src]
impl DivFrom<&'_ u8> for Integer
[src]
impl DivFrom<Integer> for Integer
[src]
impl DivFrom<Integer> for Float
[src]
impl DivFrom<i128> for Integer
[src]
impl DivFrom<i16> for Integer
[src]
impl DivFrom<i32> for Integer
[src]
impl DivFrom<i64> for Integer
[src]
impl DivFrom<i8> for Integer
[src]
impl DivFrom<u128> for Integer
[src]
impl DivFrom<u16> for Integer
[src]
impl DivFrom<u32> for Integer
[src]
impl DivFrom<u64> for Integer
[src]
impl DivFrom<u8> for Integer
[src]
impl DivFromRound<&'_ Integer> for Float
[src]
type Round = Round
The rounding method.
type Ordering = Ordering
The direction from rounding.
fn div_from_round(&mut self, lhs: &Integer, round: Round) -> Ordering
[src]
impl DivFromRound<Integer> for Float
[src]
type Round = Round
The rounding method.
type Ordering = Ordering
The direction from rounding.
fn div_from_round(&mut self, lhs: Integer, round: Round) -> Ordering
[src]
impl DivRounding<&'_ Integer> for Integer
[src]
type Output = Integer
The resulting type from the division operation.
fn div_trunc(self, rhs: &Integer) -> Integer
[src]
fn div_ceil(self, rhs: &Integer) -> Integer
[src]
fn div_floor(self, rhs: &Integer) -> Integer
[src]
fn div_euc(self, rhs: &Integer) -> Integer
[src]
impl DivRounding<&'_ i128> for Integer
[src]
type Output = Integer
The resulting type from the division operation.
fn div_trunc(self, rhs: &i128) -> Integer
[src]
fn div_ceil(self, rhs: &i128) -> Integer
[src]
fn div_floor(self, rhs: &i128) -> Integer
[src]
fn div_euc(self, rhs: &i128) -> Integer
[src]
impl DivRounding<&'_ i16> for Integer
[src]
type Output = Integer
The resulting type from the division operation.
fn div_trunc(self, rhs: &i16) -> Integer
[src]
fn div_ceil(self, rhs: &i16) -> Integer
[src]
fn div_floor(self, rhs: &i16) -> Integer
[src]
fn div_euc(self, rhs: &i16) -> Integer
[src]
impl DivRounding<&'_ i32> for Integer
[src]
type Output = Integer
The resulting type from the division operation.
fn div_trunc(self, rhs: &i32) -> Integer
[src]
fn div_ceil(self, rhs: &i32) -> Integer
[src]
fn div_floor(self, rhs: &i32) -> Integer
[src]
fn div_euc(self, rhs: &i32) -> Integer
[src]
impl DivRounding<&'_ i64> for Integer
[src]
type Output = Integer
The resulting type from the division operation.
fn div_trunc(self, rhs: &i64) -> Integer
[src]
fn div_ceil(self, rhs: &i64) -> Integer
[src]
fn div_floor(self, rhs: &i64) -> Integer
[src]
fn div_euc(self, rhs: &i64) -> Integer
[src]
impl DivRounding<&'_ i8> for Integer
[src]
type Output = Integer
The resulting type from the division operation.
fn div_trunc(self, rhs: &i8) -> Integer
[src]
fn div_ceil(self, rhs: &i8) -> Integer
[src]
fn div_floor(self, rhs: &i8) -> Integer
[src]
fn div_euc(self, rhs: &i8) -> Integer
[src]
impl DivRounding<&'_ u128> for Integer
[src]
type Output = Integer
The resulting type from the division operation.
fn div_trunc(self, rhs: &u128) -> Integer
[src]
fn div_ceil(self, rhs: &u128) -> Integer
[src]
fn div_floor(self, rhs: &u128) -> Integer
[src]
fn div_euc(self, rhs: &u128) -> Integer
[src]
impl DivRounding<&'_ u16> for Integer
[src]
type Output = Integer
The resulting type from the division operation.
fn div_trunc(self, rhs: &u16) -> Integer
[src]
fn div_ceil(self, rhs: &u16) -> Integer
[src]
fn div_floor(self, rhs: &u16) -> Integer
[src]
fn div_euc(self, rhs: &u16) -> Integer
[src]
impl DivRounding<&'_ u32> for Integer
[src]
type Output = Integer
The resulting type from the division operation.
fn div_trunc(self, rhs: &u32) -> Integer
[src]
fn div_ceil(self, rhs: &u32) -> Integer
[src]
fn div_floor(self, rhs: &u32) -> Integer
[src]
fn div_euc(self, rhs: &u32) -> Integer
[src]
impl DivRounding<&'_ u64> for Integer
[src]
type Output = Integer
The resulting type from the division operation.
fn div_trunc(self, rhs: &u64) -> Integer
[src]
fn div_ceil(self, rhs: &u64) -> Integer
[src]
fn div_floor(self, rhs: &u64) -> Integer
[src]
fn div_euc(self, rhs: &u64) -> Integer
[src]
impl DivRounding<&'_ u8> for Integer
[src]
type Output = Integer
The resulting type from the division operation.
fn div_trunc(self, rhs: &u8) -> Integer
[src]
fn div_ceil(self, rhs: &u8) -> Integer
[src]
fn div_floor(self, rhs: &u8) -> Integer
[src]
fn div_euc(self, rhs: &u8) -> Integer
[src]
impl<'i> DivRounding<&'i Integer> for &'i Integer
[src]
type Output = DivRoundingIncomplete<'i>
The resulting type from the division operation.
fn div_trunc(self, rhs: &'i Integer) -> DivRoundingIncomplete<'_>
[src]
fn div_ceil(self, rhs: &'i Integer) -> DivRoundingIncomplete<'_>
[src]
fn div_floor(self, rhs: &'i Integer) -> DivRoundingIncomplete<'_>
[src]
fn div_euc(self, rhs: &'i Integer) -> DivRoundingIncomplete<'_>
[src]
impl<'i> DivRounding<&'i Integer> for i8
[src]
type Output = DivRoundingFromI8Incomplete<'i>
The resulting type from the division operation.
fn div_trunc(self, rhs: &Integer) -> DivRoundingFromI8Incomplete<'_>
[src]
fn div_ceil(self, rhs: &Integer) -> DivRoundingFromI8Incomplete<'_>
[src]
fn div_floor(self, rhs: &Integer) -> DivRoundingFromI8Incomplete<'_>
[src]
fn div_euc(self, rhs: &Integer) -> DivRoundingFromI8Incomplete<'_>
[src]
impl<'i> DivRounding<&'i Integer> for &i128
[src]
type Output = DivRoundingFromI128Incomplete<'i>
The resulting type from the division operation.
fn div_trunc(self, rhs: &'i Integer) -> DivRoundingFromI128Incomplete<'i>
[src]
fn div_ceil(self, rhs: &'i Integer) -> DivRoundingFromI128Incomplete<'i>
[src]
fn div_floor(self, rhs: &'i Integer) -> DivRoundingFromI128Incomplete<'i>
[src]
fn div_euc(self, rhs: &'i Integer) -> DivRoundingFromI128Incomplete<'i>
[src]
impl<'i> DivRounding<&'i Integer> for u8
[src]
type Output = DivRoundingFromU8Incomplete<'i>
The resulting type from the division operation.
fn div_trunc(self, rhs: &Integer) -> DivRoundingFromU8Incomplete<'_>
[src]
fn div_ceil(self, rhs: &Integer) -> DivRoundingFromU8Incomplete<'_>
[src]
fn div_floor(self, rhs: &Integer) -> DivRoundingFromU8Incomplete<'_>
[src]
fn div_euc(self, rhs: &Integer) -> DivRoundingFromU8Incomplete<'_>
[src]
impl<'i> DivRounding<&'i Integer> for &u8
[src]
type Output = DivRoundingFromU8Incomplete<'i>
The resulting type from the division operation.
fn div_trunc(self, rhs: &'i Integer) -> DivRoundingFromU8Incomplete<'i>
[src]
fn div_ceil(self, rhs: &'i Integer) -> DivRoundingFromU8Incomplete<'i>
[src]
fn div_floor(self, rhs: &'i Integer) -> DivRoundingFromU8Incomplete<'i>
[src]
fn div_euc(self, rhs: &'i Integer) -> DivRoundingFromU8Incomplete<'i>
[src]
impl<'i> DivRounding<&'i Integer> for u16
[src]
type Output = DivRoundingFromU16Incomplete<'i>
The resulting type from the division operation.
fn div_trunc(self, rhs: &Integer) -> DivRoundingFromU16Incomplete<'_>
[src]
fn div_ceil(self, rhs: &Integer) -> DivRoundingFromU16Incomplete<'_>
[src]
fn div_floor(self, rhs: &Integer) -> DivRoundingFromU16Incomplete<'_>
[src]
fn div_euc(self, rhs: &Integer) -> DivRoundingFromU16Incomplete<'_>
[src]
impl<'i> DivRounding<&'i Integer> for &u16
[src]
type Output = DivRoundingFromU16Incomplete<'i>
The resulting type from the division operation.
fn div_trunc(self, rhs: &'i Integer) -> DivRoundingFromU16Incomplete<'i>
[src]
fn div_ceil(self, rhs: &'i Integer) -> DivRoundingFromU16Incomplete<'i>
[src]
fn div_floor(self, rhs: &'i Integer) -> DivRoundingFromU16Incomplete<'i>
[src]
fn div_euc(self, rhs: &'i Integer) -> DivRoundingFromU16Incomplete<'i>
[src]
impl<'i> DivRounding<&'i Integer> for u32
[src]
type Output = DivRoundingFromU32Incomplete<'i>
The resulting type from the division operation.
fn div_trunc(self, rhs: &Integer) -> DivRoundingFromU32Incomplete<'_>
[src]
fn div_ceil(self, rhs: &Integer) -> DivRoundingFromU32Incomplete<'_>
[src]
fn div_floor(self, rhs: &Integer) -> DivRoundingFromU32Incomplete<'_>
[src]
fn div_euc(self, rhs: &Integer) -> DivRoundingFromU32Incomplete<'_>
[src]
impl<'i> DivRounding<&'i Integer> for &u32
[src]
type Output = DivRoundingFromU32Incomplete<'i>
The resulting type from the division operation.
fn div_trunc(self, rhs: &'i Integer) -> DivRoundingFromU32Incomplete<'i>
[src]
fn div_ceil(self, rhs: &'i Integer) -> DivRoundingFromU32Incomplete<'i>
[src]
fn div_floor(self, rhs: &'i Integer) -> DivRoundingFromU32Incomplete<'i>
[src]
fn div_euc(self, rhs: &'i Integer) -> DivRoundingFromU32Incomplete<'i>
[src]
impl<'i> DivRounding<&'i Integer> for u64
[src]
type Output = DivRoundingFromU64Incomplete<'i>
The resulting type from the division operation.
fn div_trunc(self, rhs: &Integer) -> DivRoundingFromU64Incomplete<'_>
[src]
fn div_ceil(self, rhs: &Integer) -> DivRoundingFromU64Incomplete<'_>
[src]
fn div_floor(self, rhs: &Integer) -> DivRoundingFromU64Incomplete<'_>
[src]
fn div_euc(self, rhs: &Integer) -> DivRoundingFromU64Incomplete<'_>
[src]
impl<'i> DivRounding<&'i Integer> for &u64
[src]
type Output = DivRoundingFromU64Incomplete<'i>
The resulting type from the division operation.
fn div_trunc(self, rhs: &'i Integer) -> DivRoundingFromU64Incomplete<'i>
[src]
fn div_ceil(self, rhs: &'i Integer) -> DivRoundingFromU64Incomplete<'i>
[src]
fn div_floor(self, rhs: &'i Integer) -> DivRoundingFromU64Incomplete<'i>
[src]
fn div_euc(self, rhs: &'i Integer) -> DivRoundingFromU64Incomplete<'i>
[src]
impl<'i> DivRounding<&'i Integer> for u128
[src]
type Output = DivRoundingFromU128Incomplete<'i>
The resulting type from the division operation.
fn div_trunc(self, rhs: &Integer) -> DivRoundingFromU128Incomplete<'_>
[src]
fn div_ceil(self, rhs: &Integer) -> DivRoundingFromU128Incomplete<'_>
[src]
fn div_floor(self, rhs: &Integer) -> DivRoundingFromU128Incomplete<'_>
[src]
fn div_euc(self, rhs: &Integer) -> DivRoundingFromU128Incomplete<'_>
[src]
impl<'i> DivRounding<&'i Integer> for &i8
[src]
type Output = DivRoundingFromI8Incomplete<'i>
The resulting type from the division operation.
fn div_trunc(self, rhs: &'i Integer) -> DivRoundingFromI8Incomplete<'i>
[src]
fn div_ceil(self, rhs: &'i Integer) -> DivRoundingFromI8Incomplete<'i>
[src]
fn div_floor(self, rhs: &'i Integer) -> DivRoundingFromI8Incomplete<'i>
[src]
fn div_euc(self, rhs: &'i Integer) -> DivRoundingFromI8Incomplete<'i>
[src]
impl<'i> DivRounding<&'i Integer> for &u128
[src]
type Output = DivRoundingFromU128Incomplete<'i>
The resulting type from the division operation.
fn div_trunc(self, rhs: &'i Integer) -> DivRoundingFromU128Incomplete<'i>
[src]
fn div_ceil(self, rhs: &'i Integer) -> DivRoundingFromU128Incomplete<'i>
[src]
fn div_floor(self, rhs: &'i Integer) -> DivRoundingFromU128Incomplete<'i>
[src]
fn div_euc(self, rhs: &'i Integer) -> DivRoundingFromU128Incomplete<'i>
[src]
impl<'i> DivRounding<&'i Integer> for i16
[src]
type Output = DivRoundingFromI16Incomplete<'i>
The resulting type from the division operation.
fn div_trunc(self, rhs: &Integer) -> DivRoundingFromI16Incomplete<'_>
[src]
fn div_ceil(self, rhs: &Integer) -> DivRoundingFromI16Incomplete<'_>
[src]
fn div_floor(self, rhs: &Integer) -> DivRoundingFromI16Incomplete<'_>
[src]
fn div_euc(self, rhs: &Integer) -> DivRoundingFromI16Incomplete<'_>
[src]
impl<'i> DivRounding<&'i Integer> for &i16
[src]
type Output = DivRoundingFromI16Incomplete<'i>
The resulting type from the division operation.
fn div_trunc(self, rhs: &'i Integer) -> DivRoundingFromI16Incomplete<'i>
[src]
fn div_ceil(self, rhs: &'i Integer) -> DivRoundingFromI16Incomplete<'i>
[src]
fn div_floor(self, rhs: &'i Integer) -> DivRoundingFromI16Incomplete<'i>
[src]
fn div_euc(self, rhs: &'i Integer) -> DivRoundingFromI16Incomplete<'i>
[src]
impl<'i> DivRounding<&'i Integer> for i32
[src]
type Output = DivRoundingFromI32Incomplete<'i>
The resulting type from the division operation.
fn div_trunc(self, rhs: &Integer) -> DivRoundingFromI32Incomplete<'_>
[src]
fn div_ceil(self, rhs: &Integer) -> DivRoundingFromI32Incomplete<'_>
[src]
fn div_floor(self, rhs: &Integer) -> DivRoundingFromI32Incomplete<'_>
[src]
fn div_euc(self, rhs: &Integer) -> DivRoundingFromI32Incomplete<'_>
[src]
impl<'i> DivRounding<&'i Integer> for &i32
[src]
type Output = DivRoundingFromI32Incomplete<'i>
The resulting type from the division operation.
fn div_trunc(self, rhs: &'i Integer) -> DivRoundingFromI32Incomplete<'i>
[src]
fn div_ceil(self, rhs: &'i Integer) -> DivRoundingFromI32Incomplete<'i>
[src]
fn div_floor(self, rhs: &'i Integer) -> DivRoundingFromI32Incomplete<'i>
[src]
fn div_euc(self, rhs: &'i Integer) -> DivRoundingFromI32Incomplete<'i>
[src]
impl<'i> DivRounding<&'i Integer> for i64
[src]
type Output = DivRoundingFromI64Incomplete<'i>
The resulting type from the division operation.
fn div_trunc(self, rhs: &Integer) -> DivRoundingFromI64Incomplete<'_>
[src]
fn div_ceil(self, rhs: &Integer) -> DivRoundingFromI64Incomplete<'_>
[src]
fn div_floor(self, rhs: &Integer) -> DivRoundingFromI64Incomplete<'_>
[src]
fn div_euc(self, rhs: &Integer) -> DivRoundingFromI64Incomplete<'_>
[src]
impl<'i> DivRounding<&'i Integer> for &i64
[src]
type Output = DivRoundingFromI64Incomplete<'i>
The resulting type from the division operation.
fn div_trunc(self, rhs: &'i Integer) -> DivRoundingFromI64Incomplete<'i>
[src]
fn div_ceil(self, rhs: &'i Integer) -> DivRoundingFromI64Incomplete<'i>
[src]
fn div_floor(self, rhs: &'i Integer) -> DivRoundingFromI64Incomplete<'i>
[src]
fn div_euc(self, rhs: &'i Integer) -> DivRoundingFromI64Incomplete<'i>
[src]
impl<'i> DivRounding<&'i Integer> for i128
[src]
type Output = DivRoundingFromI128Incomplete<'i>
The resulting type from the division operation.
fn div_trunc(self, rhs: &Integer) -> DivRoundingFromI128Incomplete<'_>
[src]
fn div_ceil(self, rhs: &Integer) -> DivRoundingFromI128Incomplete<'_>
[src]
fn div_floor(self, rhs: &Integer) -> DivRoundingFromI128Incomplete<'_>
[src]
fn div_euc(self, rhs: &Integer) -> DivRoundingFromI128Incomplete<'_>
[src]
impl<'t, 'i> DivRounding<&'t i128> for &'i Integer
[src]
type Output = DivRoundingI128Incomplete<'i>
The resulting type from the division operation.
fn div_trunc(self, rhs: &i128) -> DivRoundingI128Incomplete<'i>
[src]
fn div_ceil(self, rhs: &i128) -> DivRoundingI128Incomplete<'i>
[src]
fn div_floor(self, rhs: &i128) -> DivRoundingI128Incomplete<'i>
[src]
fn div_euc(self, rhs: &i128) -> DivRoundingI128Incomplete<'i>
[src]
impl<'t, 'i> DivRounding<&'t i16> for &'i Integer
[src]
type Output = DivRoundingI16Incomplete<'i>
The resulting type from the division operation.
fn div_trunc(self, rhs: &i16) -> DivRoundingI16Incomplete<'i>
[src]
fn div_ceil(self, rhs: &i16) -> DivRoundingI16Incomplete<'i>
[src]
fn div_floor(self, rhs: &i16) -> DivRoundingI16Incomplete<'i>
[src]
fn div_euc(self, rhs: &i16) -> DivRoundingI16Incomplete<'i>
[src]
impl<'t, 'i> DivRounding<&'t i32> for &'i Integer
[src]
type Output = DivRoundingI32Incomplete<'i>
The resulting type from the division operation.
fn div_trunc(self, rhs: &i32) -> DivRoundingI32Incomplete<'i>
[src]
fn div_ceil(self, rhs: &i32) -> DivRoundingI32Incomplete<'i>
[src]
fn div_floor(self, rhs: &i32) -> DivRoundingI32Incomplete<'i>
[src]
fn div_euc(self, rhs: &i32) -> DivRoundingI32Incomplete<'i>
[src]
impl<'t, 'i> DivRounding<&'t i64> for &'i Integer
[src]
type Output = DivRoundingI64Incomplete<'i>
The resulting type from the division operation.
fn div_trunc(self, rhs: &i64) -> DivRoundingI64Incomplete<'i>
[src]
fn div_ceil(self, rhs: &i64) -> DivRoundingI64Incomplete<'i>
[src]
fn div_floor(self, rhs: &i64) -> DivRoundingI64Incomplete<'i>
[src]
fn div_euc(self, rhs: &i64) -> DivRoundingI64Incomplete<'i>
[src]
impl<'t, 'i> DivRounding<&'t i8> for &'i Integer
[src]
type Output = DivRoundingI8Incomplete<'i>
The resulting type from the division operation.
fn div_trunc(self, rhs: &i8) -> DivRoundingI8Incomplete<'i>
[src]
fn div_ceil(self, rhs: &i8) -> DivRoundingI8Incomplete<'i>
[src]
fn div_floor(self, rhs: &i8) -> DivRoundingI8Incomplete<'i>
[src]
fn div_euc(self, rhs: &i8) -> DivRoundingI8Incomplete<'i>
[src]
impl<'t, 'i> DivRounding<&'t u128> for &'i Integer
[src]
type Output = DivRoundingU128Incomplete<'i>
The resulting type from the division operation.
fn div_trunc(self, rhs: &u128) -> DivRoundingU128Incomplete<'i>
[src]
fn div_ceil(self, rhs: &u128) -> DivRoundingU128Incomplete<'i>
[src]
fn div_floor(self, rhs: &u128) -> DivRoundingU128Incomplete<'i>
[src]
fn div_euc(self, rhs: &u128) -> DivRoundingU128Incomplete<'i>
[src]
impl<'t, 'i> DivRounding<&'t u16> for &'i Integer
[src]
type Output = DivRoundingU16Incomplete<'i>
The resulting type from the division operation.
fn div_trunc(self, rhs: &u16) -> DivRoundingU16Incomplete<'i>
[src]
fn div_ceil(self, rhs: &u16) -> DivRoundingU16Incomplete<'i>
[src]
fn div_floor(self, rhs: &u16) -> DivRoundingU16Incomplete<'i>
[src]
fn div_euc(self, rhs: &u16) -> DivRoundingU16Incomplete<'i>
[src]
impl<'t, 'i> DivRounding<&'t u32> for &'i Integer
[src]
type Output = DivRoundingU32Incomplete<'i>
The resulting type from the division operation.
fn div_trunc(self, rhs: &u32) -> DivRoundingU32Incomplete<'i>
[src]
fn div_ceil(self, rhs: &u32) -> DivRoundingU32Incomplete<'i>
[src]
fn div_floor(self, rhs: &u32) -> DivRoundingU32Incomplete<'i>
[src]
fn div_euc(self, rhs: &u32) -> DivRoundingU32Incomplete<'i>
[src]
impl<'t, 'i> DivRounding<&'t u64> for &'i Integer
[src]
type Output = DivRoundingU64Incomplete<'i>
The resulting type from the division operation.
fn div_trunc(self, rhs: &u64) -> DivRoundingU64Incomplete<'i>
[src]
fn div_ceil(self, rhs: &u64) -> DivRoundingU64Incomplete<'i>
[src]
fn div_floor(self, rhs: &u64) -> DivRoundingU64Incomplete<'i>
[src]
fn div_euc(self, rhs: &u64) -> DivRoundingU64Incomplete<'i>
[src]
impl<'t, 'i> DivRounding<&'t u8> for &'i Integer
[src]
type Output = DivRoundingU8Incomplete<'i>
The resulting type from the division operation.
fn div_trunc(self, rhs: &u8) -> DivRoundingU8Incomplete<'i>
[src]
fn div_ceil(self, rhs: &u8) -> DivRoundingU8Incomplete<'i>
[src]
fn div_floor(self, rhs: &u8) -> DivRoundingU8Incomplete<'i>
[src]
fn div_euc(self, rhs: &u8) -> DivRoundingU8Incomplete<'i>
[src]
impl DivRounding<Integer> for Integer
[src]
type Output = Integer
The resulting type from the division operation.
fn div_trunc(self, rhs: Integer) -> Integer
[src]
fn div_ceil(self, rhs: Integer) -> Integer
[src]
fn div_floor(self, rhs: Integer) -> Integer
[src]
fn div_euc(self, rhs: Integer) -> Integer
[src]
impl DivRounding<Integer> for &Integer
[src]
type Output = Integer
The resulting type from the division operation.
fn div_trunc(self, rhs: Integer) -> Integer
[src]
fn div_ceil(self, rhs: Integer) -> Integer
[src]
fn div_floor(self, rhs: Integer) -> Integer
[src]
fn div_euc(self, rhs: Integer) -> Integer
[src]
impl DivRounding<Integer> for i128
[src]
type Output = Integer
The resulting type from the division operation.
fn div_trunc(self, rhs: Integer) -> Integer
[src]
fn div_ceil(self, rhs: Integer) -> Integer
[src]
fn div_floor(self, rhs: Integer) -> Integer
[src]
fn div_euc(self, rhs: Integer) -> Integer
[src]
impl DivRounding<Integer> for &i128
[src]
type Output = Integer
The resulting type from the division operation.
fn div_trunc(self, rhs: Integer) -> Integer
[src]
fn div_ceil(self, rhs: Integer) -> Integer
[src]
fn div_floor(self, rhs: Integer) -> Integer
[src]
fn div_euc(self, rhs: Integer) -> Integer
[src]
impl DivRounding<Integer> for u8
[src]
type Output = Integer
The resulting type from the division operation.
fn div_trunc(self, rhs: Integer) -> Integer
[src]
fn div_ceil(self, rhs: Integer) -> Integer
[src]
fn div_floor(self, rhs: Integer) -> Integer
[src]
fn div_euc(self, rhs: Integer) -> Integer
[src]
impl DivRounding<Integer> for &u8
[src]
type Output = Integer
The resulting type from the division operation.
fn div_trunc(self, rhs: Integer) -> Integer
[src]
fn div_ceil(self, rhs: Integer) -> Integer
[src]
fn div_floor(self, rhs: Integer) -> Integer
[src]
fn div_euc(self, rhs: Integer) -> Integer
[src]
impl DivRounding<Integer> for u16
[src]
type Output = Integer
The resulting type from the division operation.
fn div_trunc(self, rhs: Integer) -> Integer
[src]
fn div_ceil(self, rhs: Integer) -> Integer
[src]
fn div_floor(self, rhs: Integer) -> Integer
[src]
fn div_euc(self, rhs: Integer) -> Integer
[src]
impl DivRounding<Integer> for &u16
[src]
type Output = Integer
The resulting type from the division operation.
fn div_trunc(self, rhs: Integer) -> Integer
[src]
fn div_ceil(self, rhs: Integer) -> Integer
[src]
fn div_floor(self, rhs: Integer) -> Integer
[src]
fn div_euc(self, rhs: Integer) -> Integer
[src]
impl DivRounding<Integer> for u32
[src]
type Output = Integer
The resulting type from the division operation.
fn div_trunc(self, rhs: Integer) -> Integer
[src]
fn div_ceil(self, rhs: Integer) -> Integer
[src]
fn div_floor(self, rhs: Integer) -> Integer
[src]
fn div_euc(self, rhs: Integer) -> Integer
[src]
impl DivRounding<Integer> for &u32
[src]
type Output = Integer
The resulting type from the division operation.
fn div_trunc(self, rhs: Integer) -> Integer
[src]
fn div_ceil(self, rhs: Integer) -> Integer
[src]
fn div_floor(self, rhs: Integer) -> Integer
[src]
fn div_euc(self, rhs: Integer) -> Integer
[src]
impl DivRounding<Integer> for u64
[src]
type Output = Integer
The resulting type from the division operation.
fn div_trunc(self, rhs: Integer) -> Integer
[src]
fn div_ceil(self, rhs: Integer) -> Integer
[src]
fn div_floor(self, rhs: Integer) -> Integer
[src]
fn div_euc(self, rhs: Integer) -> Integer
[src]
impl DivRounding<Integer> for &u64
[src]
type Output = Integer
The resulting type from the division operation.
fn div_trunc(self, rhs: Integer) -> Integer
[src]
fn div_ceil(self, rhs: Integer) -> Integer
[src]
fn div_floor(self, rhs: Integer) -> Integer
[src]
fn div_euc(self, rhs: Integer) -> Integer
[src]
impl DivRounding<Integer> for i8
[src]
type Output = Integer
The resulting type from the division operation.
fn div_trunc(self, rhs: Integer) -> Integer
[src]
fn div_ceil(self, rhs: Integer) -> Integer
[src]
fn div_floor(self, rhs: Integer) -> Integer
[src]
fn div_euc(self, rhs: Integer) -> Integer
[src]
impl DivRounding<Integer> for u128
[src]
type Output = Integer
The resulting type from the division operation.
fn div_trunc(self, rhs: Integer) -> Integer
[src]
fn div_ceil(self, rhs: Integer) -> Integer
[src]
fn div_floor(self, rhs: Integer) -> Integer
[src]
fn div_euc(self, rhs: Integer) -> Integer
[src]
impl DivRounding<Integer> for &u128
[src]
type Output = Integer
The resulting type from the division operation.
fn div_trunc(self, rhs: Integer) -> Integer
[src]
fn div_ceil(self, rhs: Integer) -> Integer
[src]
fn div_floor(self, rhs: Integer) -> Integer
[src]
fn div_euc(self, rhs: Integer) -> Integer
[src]
impl DivRounding<Integer> for &i8
[src]
type Output = Integer
The resulting type from the division operation.
fn div_trunc(self, rhs: Integer) -> Integer
[src]
fn div_ceil(self, rhs: Integer) -> Integer
[src]
fn div_floor(self, rhs: Integer) -> Integer
[src]
fn div_euc(self, rhs: Integer) -> Integer
[src]
impl DivRounding<Integer> for i16
[src]
type Output = Integer
The resulting type from the division operation.
fn div_trunc(self, rhs: Integer) -> Integer
[src]
fn div_ceil(self, rhs: Integer) -> Integer
[src]
fn div_floor(self, rhs: Integer) -> Integer
[src]
fn div_euc(self, rhs: Integer) -> Integer
[src]
impl DivRounding<Integer> for &i16
[src]
type Output = Integer
The resulting type from the division operation.
fn div_trunc(self, rhs: Integer) -> Integer
[src]
fn div_ceil(self, rhs: Integer) -> Integer
[src]
fn div_floor(self, rhs: Integer) -> Integer
[src]
fn div_euc(self, rhs: Integer) -> Integer
[src]
impl DivRounding<Integer> for i32
[src]
type Output = Integer
The resulting type from the division operation.
fn div_trunc(self, rhs: Integer) -> Integer
[src]
fn div_ceil(self, rhs: Integer) -> Integer
[src]
fn div_floor(self, rhs: Integer) -> Integer
[src]
fn div_euc(self, rhs: Integer) -> Integer
[src]
impl DivRounding<Integer> for &i32
[src]
type Output = Integer
The resulting type from the division operation.
fn div_trunc(self, rhs: Integer) -> Integer
[src]
fn div_ceil(self, rhs: Integer) -> Integer
[src]
fn div_floor(self, rhs: Integer) -> Integer
[src]
fn div_euc(self, rhs: Integer) -> Integer
[src]
impl DivRounding<Integer> for i64
[src]
type Output = Integer
The resulting type from the division operation.
fn div_trunc(self, rhs: Integer) -> Integer
[src]
fn div_ceil(self, rhs: Integer) -> Integer
[src]
fn div_floor(self, rhs: Integer) -> Integer
[src]
fn div_euc(self, rhs: Integer) -> Integer
[src]
impl DivRounding<Integer> for &i64
[src]
type Output = Integer
The resulting type from the division operation.
fn div_trunc(self, rhs: Integer) -> Integer
[src]
fn div_ceil(self, rhs: Integer) -> Integer
[src]
fn div_floor(self, rhs: Integer) -> Integer
[src]
fn div_euc(self, rhs: Integer) -> Integer
[src]
impl DivRounding<i128> for Integer
[src]
type Output = Integer
The resulting type from the division operation.
fn div_trunc(self, rhs: i128) -> Integer
[src]
fn div_ceil(self, rhs: i128) -> Integer
[src]
fn div_floor(self, rhs: i128) -> Integer
[src]
fn div_euc(self, rhs: i128) -> Integer
[src]
impl<'i> DivRounding<i128> for &'i Integer
[src]
type Output = DivRoundingI128Incomplete<'i>
The resulting type from the division operation.
fn div_trunc(self, rhs: i128) -> DivRoundingI128Incomplete<'i>
[src]
fn div_ceil(self, rhs: i128) -> DivRoundingI128Incomplete<'i>
[src]
fn div_floor(self, rhs: i128) -> DivRoundingI128Incomplete<'i>
[src]
fn div_euc(self, rhs: i128) -> DivRoundingI128Incomplete<'i>
[src]
impl DivRounding<i16> for Integer
[src]
type Output = Integer
The resulting type from the division operation.
fn div_trunc(self, rhs: i16) -> Integer
[src]
fn div_ceil(self, rhs: i16) -> Integer
[src]
fn div_floor(self, rhs: i16) -> Integer
[src]
fn div_euc(self, rhs: i16) -> Integer
[src]
impl<'i> DivRounding<i16> for &'i Integer
[src]
type Output = DivRoundingI16Incomplete<'i>
The resulting type from the division operation.
fn div_trunc(self, rhs: i16) -> DivRoundingI16Incomplete<'i>
[src]
fn div_ceil(self, rhs: i16) -> DivRoundingI16Incomplete<'i>
[src]
fn div_floor(self, rhs: i16) -> DivRoundingI16Incomplete<'i>
[src]
fn div_euc(self, rhs: i16) -> DivRoundingI16Incomplete<'i>
[src]
impl DivRounding<i32> for Integer
[src]
type Output = Integer
The resulting type from the division operation.
fn div_trunc(self, rhs: i32) -> Integer
[src]
fn div_ceil(self, rhs: i32) -> Integer
[src]
fn div_floor(self, rhs: i32) -> Integer
[src]
fn div_euc(self, rhs: i32) -> Integer
[src]
impl<'i> DivRounding<i32> for &'i Integer
[src]
type Output = DivRoundingI32Incomplete<'i>
The resulting type from the division operation.
fn div_trunc(self, rhs: i32) -> DivRoundingI32Incomplete<'i>
[src]
fn div_ceil(self, rhs: i32) -> DivRoundingI32Incomplete<'i>
[src]
fn div_floor(self, rhs: i32) -> DivRoundingI32Incomplete<'i>
[src]
fn div_euc(self, rhs: i32) -> DivRoundingI32Incomplete<'i>
[src]
impl DivRounding<i64> for Integer
[src]
type Output = Integer
The resulting type from the division operation.
fn div_trunc(self, rhs: i64) -> Integer
[src]
fn div_ceil(self, rhs: i64) -> Integer
[src]
fn div_floor(self, rhs: i64) -> Integer
[src]
fn div_euc(self, rhs: i64) -> Integer
[src]
impl<'i> DivRounding<i64> for &'i Integer
[src]
type Output = DivRoundingI64Incomplete<'i>
The resulting type from the division operation.
fn div_trunc(self, rhs: i64) -> DivRoundingI64Incomplete<'i>
[src]
fn div_ceil(self, rhs: i64) -> DivRoundingI64Incomplete<'i>
[src]
fn div_floor(self, rhs: i64) -> DivRoundingI64Incomplete<'i>
[src]
fn div_euc(self, rhs: i64) -> DivRoundingI64Incomplete<'i>
[src]
impl DivRounding<i8> for Integer
[src]
type Output = Integer
The resulting type from the division operation.
fn div_trunc(self, rhs: i8) -> Integer
[src]
fn div_ceil(self, rhs: i8) -> Integer
[src]
fn div_floor(self, rhs: i8) -> Integer
[src]
fn div_euc(self, rhs: i8) -> Integer
[src]
impl<'i> DivRounding<i8> for &'i Integer
[src]
type Output = DivRoundingI8Incomplete<'i>
The resulting type from the division operation.
fn div_trunc(self, rhs: i8) -> DivRoundingI8Incomplete<'i>
[src]
fn div_ceil(self, rhs: i8) -> DivRoundingI8Incomplete<'i>
[src]
fn div_floor(self, rhs: i8) -> DivRoundingI8Incomplete<'i>
[src]
fn div_euc(self, rhs: i8) -> DivRoundingI8Incomplete<'i>
[src]
impl DivRounding<u128> for Integer
[src]
type Output = Integer
The resulting type from the division operation.
fn div_trunc(self, rhs: u128) -> Integer
[src]
fn div_ceil(self, rhs: u128) -> Integer
[src]
fn div_floor(self, rhs: u128) -> Integer
[src]
fn div_euc(self, rhs: u128) -> Integer
[src]
impl<'i> DivRounding<u128> for &'i Integer
[src]
type Output = DivRoundingU128Incomplete<'i>
The resulting type from the division operation.
fn div_trunc(self, rhs: u128) -> DivRoundingU128Incomplete<'i>
[src]
fn div_ceil(self, rhs: u128) -> DivRoundingU128Incomplete<'i>
[src]
fn div_floor(self, rhs: u128) -> DivRoundingU128Incomplete<'i>
[src]
fn div_euc(self, rhs: u128) -> DivRoundingU128Incomplete<'i>
[src]
impl DivRounding<u16> for Integer
[src]
type Output = Integer
The resulting type from the division operation.
fn div_trunc(self, rhs: u16) -> Integer
[src]
fn div_ceil(self, rhs: u16) -> Integer
[src]
fn div_floor(self, rhs: u16) -> Integer
[src]
fn div_euc(self, rhs: u16) -> Integer
[src]
impl<'i> DivRounding<u16> for &'i Integer
[src]
type Output = DivRoundingU16Incomplete<'i>
The resulting type from the division operation.
fn div_trunc(self, rhs: u16) -> DivRoundingU16Incomplete<'i>
[src]
fn div_ceil(self, rhs: u16) -> DivRoundingU16Incomplete<'i>
[src]
fn div_floor(self, rhs: u16) -> DivRoundingU16Incomplete<'i>
[src]
fn div_euc(self, rhs: u16) -> DivRoundingU16Incomplete<'i>
[src]
impl DivRounding<u32> for Integer
[src]
type Output = Integer
The resulting type from the division operation.
fn div_trunc(self, rhs: u32) -> Integer
[src]
fn div_ceil(self, rhs: u32) -> Integer
[src]
fn div_floor(self, rhs: u32) -> Integer
[src]
fn div_euc(self, rhs: u32) -> Integer
[src]
impl<'i> DivRounding<u32> for &'i Integer
[src]
type Output = DivRoundingU32Incomplete<'i>
The resulting type from the division operation.
fn div_trunc(self, rhs: u32) -> DivRoundingU32Incomplete<'i>
[src]
fn div_ceil(self, rhs: u32) -> DivRoundingU32Incomplete<'i>
[src]
fn div_floor(self, rhs: u32) -> DivRoundingU32Incomplete<'i>
[src]
fn div_euc(self, rhs: u32) -> DivRoundingU32Incomplete<'i>
[src]
impl DivRounding<u64> for Integer
[src]
type Output = Integer
The resulting type from the division operation.
fn div_trunc(self, rhs: u64) -> Integer
[src]
fn div_ceil(self, rhs: u64) -> Integer
[src]
fn div_floor(self, rhs: u64) -> Integer
[src]
fn div_euc(self, rhs: u64) -> Integer
[src]
impl<'i> DivRounding<u64> for &'i Integer
[src]
type Output = DivRoundingU64Incomplete<'i>
The resulting type from the division operation.
fn div_trunc(self, rhs: u64) -> DivRoundingU64Incomplete<'i>
[src]
fn div_ceil(self, rhs: u64) -> DivRoundingU64Incomplete<'i>
[src]
fn div_floor(self, rhs: u64) -> DivRoundingU64Incomplete<'i>
[src]
fn div_euc(self, rhs: u64) -> DivRoundingU64Incomplete<'i>
[src]
impl DivRounding<u8> for Integer
[src]
type Output = Integer
The resulting type from the division operation.
fn div_trunc(self, rhs: u8) -> Integer
[src]
fn div_ceil(self, rhs: u8) -> Integer
[src]
fn div_floor(self, rhs: u8) -> Integer
[src]
fn div_euc(self, rhs: u8) -> Integer
[src]
impl<'i> DivRounding<u8> for &'i Integer
[src]
type Output = DivRoundingU8Incomplete<'i>
The resulting type from the division operation.
fn div_trunc(self, rhs: u8) -> DivRoundingU8Incomplete<'i>
[src]
fn div_ceil(self, rhs: u8) -> DivRoundingU8Incomplete<'i>
[src]
fn div_floor(self, rhs: u8) -> DivRoundingU8Incomplete<'i>
[src]
fn div_euc(self, rhs: u8) -> DivRoundingU8Incomplete<'i>
[src]
impl DivRoundingAssign<&'_ Integer> for Integer
[src]
fn div_trunc_assign(&mut self, rhs: &Integer)
[src]
fn div_ceil_assign(&mut self, rhs: &Integer)
[src]
fn div_floor_assign(&mut self, rhs: &Integer)
[src]
fn div_euc_assign(&mut self, rhs: &Integer)
[src]
impl DivRoundingAssign<&'_ i128> for Integer
[src]
fn div_trunc_assign(&mut self, rhs: &i128)
[src]
fn div_ceil_assign(&mut self, rhs: &i128)
[src]
fn div_floor_assign(&mut self, rhs: &i128)
[src]
fn div_euc_assign(&mut self, rhs: &i128)
[src]
impl DivRoundingAssign<&'_ i16> for Integer
[src]
fn div_trunc_assign(&mut self, rhs: &i16)
[src]
fn div_ceil_assign(&mut self, rhs: &i16)
[src]
fn div_floor_assign(&mut self, rhs: &i16)
[src]
fn div_euc_assign(&mut self, rhs: &i16)
[src]
impl DivRoundingAssign<&'_ i32> for Integer
[src]
fn div_trunc_assign(&mut self, rhs: &i32)
[src]
fn div_ceil_assign(&mut self, rhs: &i32)
[src]
fn div_floor_assign(&mut self, rhs: &i32)
[src]
fn div_euc_assign(&mut self, rhs: &i32)
[src]
impl DivRoundingAssign<&'_ i64> for Integer
[src]
fn div_trunc_assign(&mut self, rhs: &i64)
[src]
fn div_ceil_assign(&mut self, rhs: &i64)
[src]
fn div_floor_assign(&mut self, rhs: &i64)
[src]
fn div_euc_assign(&mut self, rhs: &i64)
[src]
impl DivRoundingAssign<&'_ i8> for Integer
[src]
fn div_trunc_assign(&mut self, rhs: &i8)
[src]
fn div_ceil_assign(&mut self, rhs: &i8)
[src]
fn div_floor_assign(&mut self, rhs: &i8)
[src]
fn div_euc_assign(&mut self, rhs: &i8)
[src]
impl DivRoundingAssign<&'_ u128> for Integer
[src]
fn div_trunc_assign(&mut self, rhs: &u128)
[src]
fn div_ceil_assign(&mut self, rhs: &u128)
[src]
fn div_floor_assign(&mut self, rhs: &u128)
[src]
fn div_euc_assign(&mut self, rhs: &u128)
[src]
impl DivRoundingAssign<&'_ u16> for Integer
[src]
fn div_trunc_assign(&mut self, rhs: &u16)
[src]
fn div_ceil_assign(&mut self, rhs: &u16)
[src]
fn div_floor_assign(&mut self, rhs: &u16)
[src]
fn div_euc_assign(&mut self, rhs: &u16)
[src]
impl DivRoundingAssign<&'_ u32> for Integer
[src]
fn div_trunc_assign(&mut self, rhs: &u32)
[src]
fn div_ceil_assign(&mut self, rhs: &u32)
[src]
fn div_floor_assign(&mut self, rhs: &u32)
[src]
fn div_euc_assign(&mut self, rhs: &u32)
[src]
impl DivRoundingAssign<&'_ u64> for Integer
[src]
fn div_trunc_assign(&mut self, rhs: &u64)
[src]
fn div_ceil_assign(&mut self, rhs: &u64)
[src]
fn div_floor_assign(&mut self, rhs: &u64)
[src]
fn div_euc_assign(&mut self, rhs: &u64)
[src]
impl DivRoundingAssign<&'_ u8> for Integer
[src]
fn div_trunc_assign(&mut self, rhs: &u8)
[src]
fn div_ceil_assign(&mut self, rhs: &u8)
[src]
fn div_floor_assign(&mut self, rhs: &u8)
[src]
fn div_euc_assign(&mut self, rhs: &u8)
[src]
impl DivRoundingAssign<Integer> for Integer
[src]
fn div_trunc_assign(&mut self, rhs: Integer)
[src]
fn div_ceil_assign(&mut self, rhs: Integer)
[src]
fn div_floor_assign(&mut self, rhs: Integer)
[src]
fn div_euc_assign(&mut self, rhs: Integer)
[src]
impl DivRoundingAssign<i128> for Integer
[src]
fn div_trunc_assign(&mut self, rhs: i128)
[src]
fn div_ceil_assign(&mut self, rhs: i128)
[src]
fn div_floor_assign(&mut self, rhs: i128)
[src]
fn div_euc_assign(&mut self, rhs: i128)
[src]
impl DivRoundingAssign<i16> for Integer
[src]
fn div_trunc_assign(&mut self, rhs: i16)
[src]
fn div_ceil_assign(&mut self, rhs: i16)
[src]
fn div_floor_assign(&mut self, rhs: i16)
[src]
fn div_euc_assign(&mut self, rhs: i16)
[src]
impl DivRoundingAssign<i32> for Integer
[src]
fn div_trunc_assign(&mut self, rhs: i32)
[src]
fn div_ceil_assign(&mut self, rhs: i32)
[src]
fn div_floor_assign(&mut self, rhs: i32)
[src]
fn div_euc_assign(&mut self, rhs: i32)
[src]
impl DivRoundingAssign<i64> for Integer
[src]
fn div_trunc_assign(&mut self, rhs: i64)
[src]
fn div_ceil_assign(&mut self, rhs: i64)
[src]
fn div_floor_assign(&mut self, rhs: i64)
[src]
fn div_euc_assign(&mut self, rhs: i64)
[src]
impl DivRoundingAssign<i8> for Integer
[src]
fn div_trunc_assign(&mut self, rhs: i8)
[src]
fn div_ceil_assign(&mut self, rhs: i8)
[src]
fn div_floor_assign(&mut self, rhs: i8)
[src]
fn div_euc_assign(&mut self, rhs: i8)
[src]
impl DivRoundingAssign<u128> for Integer
[src]
fn div_trunc_assign(&mut self, rhs: u128)
[src]
fn div_ceil_assign(&mut self, rhs: u128)
[src]
fn div_floor_assign(&mut self, rhs: u128)
[src]
fn div_euc_assign(&mut self, rhs: u128)
[src]
impl DivRoundingAssign<u16> for Integer
[src]
fn div_trunc_assign(&mut self, rhs: u16)
[src]
fn div_ceil_assign(&mut self, rhs: u16)
[src]
fn div_floor_assign(&mut self, rhs: u16)
[src]
fn div_euc_assign(&mut self, rhs: u16)
[src]
impl DivRoundingAssign<u32> for Integer
[src]
fn div_trunc_assign(&mut self, rhs: u32)
[src]
fn div_ceil_assign(&mut self, rhs: u32)
[src]
fn div_floor_assign(&mut self, rhs: u32)
[src]
fn div_euc_assign(&mut self, rhs: u32)
[src]
impl DivRoundingAssign<u64> for Integer
[src]
fn div_trunc_assign(&mut self, rhs: u64)
[src]
fn div_ceil_assign(&mut self, rhs: u64)
[src]
fn div_floor_assign(&mut self, rhs: u64)
[src]
fn div_euc_assign(&mut self, rhs: u64)
[src]
impl DivRoundingAssign<u8> for Integer
[src]
fn div_trunc_assign(&mut self, rhs: u8)
[src]
fn div_ceil_assign(&mut self, rhs: u8)
[src]
fn div_floor_assign(&mut self, rhs: u8)
[src]
fn div_euc_assign(&mut self, rhs: u8)
[src]
impl DivRoundingFrom<&'_ Integer> for Integer
[src]
fn div_trunc_from(&mut self, lhs: &Integer)
[src]
fn div_ceil_from(&mut self, lhs: &Integer)
[src]
fn div_floor_from(&mut self, lhs: &Integer)
[src]
fn div_euc_from(&mut self, lhs: &Integer)
[src]
impl DivRoundingFrom<&'_ i128> for Integer
[src]
fn div_trunc_from(&mut self, lhs: &i128)
[src]
fn div_ceil_from(&mut self, lhs: &i128)
[src]
fn div_floor_from(&mut self, lhs: &i128)
[src]
fn div_euc_from(&mut self, lhs: &i128)
[src]
impl DivRoundingFrom<&'_ i16> for Integer
[src]
fn div_trunc_from(&mut self, lhs: &i16)
[src]
fn div_ceil_from(&mut self, lhs: &i16)
[src]
fn div_floor_from(&mut self, lhs: &i16)
[src]
fn div_euc_from(&mut self, lhs: &i16)
[src]
impl DivRoundingFrom<&'_ i32> for Integer
[src]
fn div_trunc_from(&mut self, lhs: &i32)
[src]
fn div_ceil_from(&mut self, lhs: &i32)
[src]
fn div_floor_from(&mut self, lhs: &i32)
[src]
fn div_euc_from(&mut self, lhs: &i32)
[src]
impl DivRoundingFrom<&'_ i64> for Integer
[src]
fn div_trunc_from(&mut self, lhs: &i64)
[src]
fn div_ceil_from(&mut self, lhs: &i64)
[src]
fn div_floor_from(&mut self, lhs: &i64)
[src]
fn div_euc_from(&mut self, lhs: &i64)
[src]
impl DivRoundingFrom<&'_ i8> for Integer
[src]
fn div_trunc_from(&mut self, lhs: &i8)
[src]
fn div_ceil_from(&mut self, lhs: &i8)
[src]
fn div_floor_from(&mut self, lhs: &i8)
[src]
fn div_euc_from(&mut self, lhs: &i8)
[src]
impl DivRoundingFrom<&'_ u128> for Integer
[src]
fn div_trunc_from(&mut self, lhs: &u128)
[src]
fn div_ceil_from(&mut self, lhs: &u128)
[src]
fn div_floor_from(&mut self, lhs: &u128)
[src]
fn div_euc_from(&mut self, lhs: &u128)
[src]
impl DivRoundingFrom<&'_ u16> for Integer
[src]
fn div_trunc_from(&mut self, lhs: &u16)
[src]
fn div_ceil_from(&mut self, lhs: &u16)
[src]
fn div_floor_from(&mut self, lhs: &u16)
[src]
fn div_euc_from(&mut self, lhs: &u16)
[src]
impl DivRoundingFrom<&'_ u32> for Integer
[src]
fn div_trunc_from(&mut self, lhs: &u32)
[src]
fn div_ceil_from(&mut self, lhs: &u32)
[src]
fn div_floor_from(&mut self, lhs: &u32)
[src]
fn div_euc_from(&mut self, lhs: &u32)
[src]
impl DivRoundingFrom<&'_ u64> for Integer
[src]
fn div_trunc_from(&mut self, lhs: &u64)
[src]
fn div_ceil_from(&mut self, lhs: &u64)
[src]
fn div_floor_from(&mut self, lhs: &u64)
[src]
fn div_euc_from(&mut self, lhs: &u64)
[src]
impl DivRoundingFrom<&'_ u8> for Integer
[src]
fn div_trunc_from(&mut self, lhs: &u8)
[src]
fn div_ceil_from(&mut self, lhs: &u8)
[src]
fn div_floor_from(&mut self, lhs: &u8)
[src]
fn div_euc_from(&mut self, lhs: &u8)
[src]
impl DivRoundingFrom<Integer> for Integer
[src]
fn div_trunc_from(&mut self, lhs: Integer)
[src]
fn div_ceil_from(&mut self, lhs: Integer)
[src]
fn div_floor_from(&mut self, lhs: Integer)
[src]
fn div_euc_from(&mut self, lhs: Integer)
[src]
impl DivRoundingFrom<i128> for Integer
[src]
fn div_trunc_from(&mut self, lhs: i128)
[src]
fn div_ceil_from(&mut self, lhs: i128)
[src]
fn div_floor_from(&mut self, lhs: i128)
[src]
fn div_euc_from(&mut self, lhs: i128)
[src]
impl DivRoundingFrom<i16> for Integer
[src]
fn div_trunc_from(&mut self, lhs: i16)
[src]
fn div_ceil_from(&mut self, lhs: i16)
[src]
fn div_floor_from(&mut self, lhs: i16)
[src]
fn div_euc_from(&mut self, lhs: i16)
[src]
impl DivRoundingFrom<i32> for Integer
[src]
fn div_trunc_from(&mut self, lhs: i32)
[src]
fn div_ceil_from(&mut self, lhs: i32)
[src]
fn div_floor_from(&mut self, lhs: i32)
[src]
fn div_euc_from(&mut self, lhs: i32)
[src]
impl DivRoundingFrom<i64> for Integer
[src]
fn div_trunc_from(&mut self, lhs: i64)
[src]
fn div_ceil_from(&mut self, lhs: i64)
[src]
fn div_floor_from(&mut self, lhs: i64)
[src]
fn div_euc_from(&mut self, lhs: i64)
[src]
impl DivRoundingFrom<i8> for Integer
[src]
fn div_trunc_from(&mut self, lhs: i8)
[src]
fn div_ceil_from(&mut self, lhs: i8)
[src]
fn div_floor_from(&mut self, lhs: i8)
[src]
fn div_euc_from(&mut self, lhs: i8)
[src]
impl DivRoundingFrom<u128> for Integer
[src]
fn div_trunc_from(&mut self, lhs: u128)
[src]
fn div_ceil_from(&mut self, lhs: u128)
[src]
fn div_floor_from(&mut self, lhs: u128)
[src]
fn div_euc_from(&mut self, lhs: u128)
[src]
impl DivRoundingFrom<u16> for Integer
[src]
fn div_trunc_from(&mut self, lhs: u16)
[src]
fn div_ceil_from(&mut self, lhs: u16)
[src]
fn div_floor_from(&mut self, lhs: u16)
[src]
fn div_euc_from(&mut self, lhs: u16)
[src]
impl DivRoundingFrom<u32> for Integer
[src]
fn div_trunc_from(&mut self, lhs: u32)
[src]
fn div_ceil_from(&mut self, lhs: u32)
[src]
fn div_floor_from(&mut self, lhs: u32)
[src]
fn div_euc_from(&mut self, lhs: u32)
[src]
impl DivRoundingFrom<u64> for Integer
[src]
fn div_trunc_from(&mut self, lhs: u64)
[src]
fn div_ceil_from(&mut self, lhs: u64)
[src]
fn div_floor_from(&mut self, lhs: u64)
[src]
fn div_euc_from(&mut self, lhs: u64)
[src]
impl DivRoundingFrom<u8> for Integer
[src]
fn div_trunc_from(&mut self, lhs: u8)
[src]
fn div_ceil_from(&mut self, lhs: u8)
[src]
fn div_floor_from(&mut self, lhs: u8)
[src]
fn div_euc_from(&mut self, lhs: u8)
[src]
impl Drop for Integer
[src]
impl Eq for Integer
[src]
impl From<&'_ Integer> for Integer
[src]
impl From<bool> for Integer
[src]
impl From<i128> for Integer
[src]
impl From<i16> for Integer
[src]
impl From<i32> for Integer
[src]
impl From<i64> for Integer
[src]
impl From<i8> for Integer
[src]
impl From<isize> for Integer
[src]
impl From<u128> for Integer
[src]
impl From<u16> for Integer
[src]
impl From<u32> for Integer
[src]
impl From<u64> for Integer
[src]
impl From<u8> for Integer
[src]
impl From<usize> for Integer
[src]
impl FromStr for Integer
[src]
type Err = ParseIntegerError
The associated error which can be returned from parsing.
fn from_str(src: &str) -> Result<Integer, ParseIntegerError>
[src]
impl Hash for Integer
[src]
fn hash<H: Hasher>(&self, state: &mut H)
[src]
pub fn hash_slice<H>(data: &[Self], state: &mut H) where
H: Hasher,
1.3.0[src]
H: Hasher,
impl LowerHex for Integer
[src]
impl Mul<&'_ Integer> for Integer
[src]
type Output = Integer
The resulting type after applying the *
operator.
fn mul(self, rhs: &Integer) -> Integer
[src]
impl Mul<&'_ Integer> for Float
[src]
type Output = Float
The resulting type after applying the *
operator.
fn mul(self, rhs: &Integer) -> Float
[src]
impl Mul<&'_ i128> for Integer
[src]
type Output = Integer
The resulting type after applying the *
operator.
fn mul(self, rhs: &i128) -> Integer
[src]
impl<'b> Mul<&'_ i128> for &'b Integer
[src]
type Output = MulI128Incomplete<'b>
The resulting type after applying the *
operator.
fn mul(self, rhs: &i128) -> MulI128Incomplete<'b>
[src]
impl Mul<&'_ i16> for Integer
[src]
type Output = Integer
The resulting type after applying the *
operator.
fn mul(self, rhs: &i16) -> Integer
[src]
impl<'b> Mul<&'_ i16> for &'b Integer
[src]
type Output = MulI16Incomplete<'b>
The resulting type after applying the *
operator.
fn mul(self, rhs: &i16) -> MulI16Incomplete<'b>
[src]
impl Mul<&'_ i32> for Integer
[src]
type Output = Integer
The resulting type after applying the *
operator.
fn mul(self, rhs: &i32) -> Integer
[src]
impl<'b> Mul<&'_ i32> for &'b Integer
[src]
type Output = MulI32Incomplete<'b>
The resulting type after applying the *
operator.
fn mul(self, rhs: &i32) -> MulI32Incomplete<'b>
[src]
impl Mul<&'_ i64> for Integer
[src]
type Output = Integer
The resulting type after applying the *
operator.
fn mul(self, rhs: &i64) -> Integer
[src]
impl<'b> Mul<&'_ i64> for &'b Integer
[src]
type Output = MulI64Incomplete<'b>
The resulting type after applying the *
operator.
fn mul(self, rhs: &i64) -> MulI64Incomplete<'b>
[src]
impl Mul<&'_ i8> for Integer
[src]
type Output = Integer
The resulting type after applying the *
operator.
fn mul(self, rhs: &i8) -> Integer
[src]
impl<'b> Mul<&'_ i8> for &'b Integer
[src]
type Output = MulI8Incomplete<'b>
The resulting type after applying the *
operator.
fn mul(self, rhs: &i8) -> MulI8Incomplete<'b>
[src]
impl Mul<&'_ u128> for Integer
[src]
type Output = Integer
The resulting type after applying the *
operator.
fn mul(self, rhs: &u128) -> Integer
[src]
impl<'b> Mul<&'_ u128> for &'b Integer
[src]
type Output = MulU128Incomplete<'b>
The resulting type after applying the *
operator.
fn mul(self, rhs: &u128) -> MulU128Incomplete<'b>
[src]
impl Mul<&'_ u16> for Integer
[src]
type Output = Integer
The resulting type after applying the *
operator.
fn mul(self, rhs: &u16) -> Integer
[src]
impl<'b> Mul<&'_ u16> for &'b Integer
[src]
type Output = MulU16Incomplete<'b>
The resulting type after applying the *
operator.
fn mul(self, rhs: &u16) -> MulU16Incomplete<'b>
[src]
impl Mul<&'_ u32> for Integer
[src]
type Output = Integer
The resulting type after applying the *
operator.
fn mul(self, rhs: &u32) -> Integer
[src]
impl<'b> Mul<&'_ u32> for &'b Integer
[src]
type Output = MulU32Incomplete<'b>
The resulting type after applying the *
operator.
fn mul(self, rhs: &u32) -> MulU32Incomplete<'b>
[src]
impl Mul<&'_ u64> for Integer
[src]
type Output = Integer
The resulting type after applying the *
operator.
fn mul(self, rhs: &u64) -> Integer
[src]
impl<'b> Mul<&'_ u64> for &'b Integer
[src]
type Output = MulU64Incomplete<'b>
The resulting type after applying the *
operator.
fn mul(self, rhs: &u64) -> MulU64Incomplete<'b>
[src]
impl Mul<&'_ u8> for Integer
[src]
type Output = Integer
The resulting type after applying the *
operator.
fn mul(self, rhs: &u8) -> Integer
[src]
impl<'b> Mul<&'_ u8> for &'b Integer
[src]
type Output = MulU8Incomplete<'b>
The resulting type after applying the *
operator.
fn mul(self, rhs: &u8) -> MulU8Incomplete<'b>
[src]
impl<'a> Mul<&'a Float> for Integer
[src]
type Output = MulOwnedIntegerIncomplete<'a>
The resulting type after applying the *
operator.
fn mul(self, rhs: &Float) -> MulOwnedIntegerIncomplete<'_>
[src]
impl<'a> Mul<&'a Float> for &'a Integer
[src]
type Output = MulIntegerIncomplete<'a>
The resulting type after applying the *
operator.
fn mul(self, rhs: &'a Float) -> MulIntegerIncomplete<'_>
[src]
impl<'a> Mul<&'a Integer> for &'a Integer
[src]
type Output = MulIncomplete<'a>
The resulting type after applying the *
operator.
fn mul(self, rhs: &'a Integer) -> MulIncomplete<'_>
[src]
impl<'a> Mul<&'a Integer> for &'a Float
[src]
type Output = MulIntegerIncomplete<'a>
The resulting type after applying the *
operator.
fn mul(self, rhs: &'a Integer) -> MulIntegerIncomplete<'_>
[src]
impl Mul<Float> for Integer
[src]
type Output = Float
The resulting type after applying the *
operator.
fn mul(self, rhs: Float) -> Float
[src]
impl Mul<Float> for &Integer
[src]
type Output = Float
The resulting type after applying the *
operator.
fn mul(self, rhs: Float) -> Float
[src]
impl Mul<Integer> for Integer
[src]
type Output = Integer
The resulting type after applying the *
operator.
fn mul(self, rhs: Integer) -> Integer
[src]
impl Mul<Integer> for &Integer
[src]
type Output = Integer
The resulting type after applying the *
operator.
fn mul(self, rhs: Integer) -> Integer
[src]
impl Mul<Integer> for Float
[src]
type Output = Float
The resulting type after applying the *
operator.
fn mul(self, rhs: Integer) -> Float
[src]
impl<'a> Mul<Integer> for &'a Float
[src]
type Output = MulOwnedIntegerIncomplete<'a>
The resulting type after applying the *
operator.
fn mul(self, rhs: Integer) -> MulOwnedIntegerIncomplete<'a>
[src]
impl Mul<i128> for Integer
[src]
type Output = Integer
The resulting type after applying the *
operator.
fn mul(self, rhs: i128) -> Integer
[src]
impl<'b> Mul<i128> for &'b Integer
[src]
type Output = MulI128Incomplete<'b>
The resulting type after applying the *
operator.
fn mul(self, rhs: i128) -> MulI128Incomplete<'b>
[src]
impl Mul<i16> for Integer
[src]
type Output = Integer
The resulting type after applying the *
operator.
fn mul(self, rhs: i16) -> Integer
[src]
impl<'b> Mul<i16> for &'b Integer
[src]
type Output = MulI16Incomplete<'b>
The resulting type after applying the *
operator.
fn mul(self, rhs: i16) -> MulI16Incomplete<'b>
[src]
impl Mul<i32> for Integer
[src]
type Output = Integer
The resulting type after applying the *
operator.
fn mul(self, rhs: i32) -> Integer
[src]
impl<'b> Mul<i32> for &'b Integer
[src]
type Output = MulI32Incomplete<'b>
The resulting type after applying the *
operator.
fn mul(self, rhs: i32) -> MulI32Incomplete<'b>
[src]
impl Mul<i64> for Integer
[src]
type Output = Integer
The resulting type after applying the *
operator.
fn mul(self, rhs: i64) -> Integer
[src]
impl<'b> Mul<i64> for &'b Integer
[src]
type Output = MulI64Incomplete<'b>
The resulting type after applying the *
operator.
fn mul(self, rhs: i64) -> MulI64Incomplete<'b>
[src]
impl Mul<i8> for Integer
[src]
type Output = Integer
The resulting type after applying the *
operator.
fn mul(self, rhs: i8) -> Integer
[src]
impl<'b> Mul<i8> for &'b Integer
[src]
type Output = MulI8Incomplete<'b>
The resulting type after applying the *
operator.
fn mul(self, rhs: i8) -> MulI8Incomplete<'b>
[src]
impl Mul<u128> for Integer
[src]
type Output = Integer
The resulting type after applying the *
operator.
fn mul(self, rhs: u128) -> Integer
[src]
impl<'b> Mul<u128> for &'b Integer
[src]
type Output = MulU128Incomplete<'b>
The resulting type after applying the *
operator.
fn mul(self, rhs: u128) -> MulU128Incomplete<'b>
[src]
impl Mul<u16> for Integer
[src]
type Output = Integer
The resulting type after applying the *
operator.
fn mul(self, rhs: u16) -> Integer
[src]
impl<'b> Mul<u16> for &'b Integer
[src]
type Output = MulU16Incomplete<'b>
The resulting type after applying the *
operator.
fn mul(self, rhs: u16) -> MulU16Incomplete<'b>
[src]
impl Mul<u32> for Integer
[src]
type Output = Integer
The resulting type after applying the *
operator.
fn mul(self, rhs: u32) -> Integer
[src]
impl<'b> Mul<u32> for &'b Integer
[src]
type Output = MulU32Incomplete<'b>
The resulting type after applying the *
operator.
fn mul(self, rhs: u32) -> MulU32Incomplete<'b>
[src]
impl Mul<u64> for Integer
[src]
type Output = Integer
The resulting type after applying the *
operator.
fn mul(self, rhs: u64) -> Integer
[src]
impl<'b> Mul<u64> for &'b Integer
[src]
type Output = MulU64Incomplete<'b>
The resulting type after applying the *
operator.
fn mul(self, rhs: u64) -> MulU64Incomplete<'b>
[src]
impl Mul<u8> for Integer
[src]
type Output = Integer
The resulting type after applying the *
operator.
fn mul(self, rhs: u8) -> Integer
[src]
impl<'b> Mul<u8> for &'b Integer
[src]
type Output = MulU8Incomplete<'b>
The resulting type after applying the *
operator.
fn mul(self, rhs: u8) -> MulU8Incomplete<'b>
[src]
impl MulAssign<&'_ Integer> for Integer
[src]
fn mul_assign(&mut self, rhs: &Integer)
[src]
impl MulAssign<&'_ Integer> for Float
[src]
fn mul_assign(&mut self, rhs: &Integer)
[src]
impl MulAssign<&'_ i128> for Integer
[src]
fn mul_assign(&mut self, rhs: &i128)
[src]
impl MulAssign<&'_ i16> for Integer
[src]
fn mul_assign(&mut self, rhs: &i16)
[src]
impl MulAssign<&'_ i32> for Integer
[src]
fn mul_assign(&mut self, rhs: &i32)
[src]
impl MulAssign<&'_ i64> for Integer
[src]
fn mul_assign(&mut self, rhs: &i64)
[src]
impl MulAssign<&'_ i8> for Integer
[src]
fn mul_assign(&mut self, rhs: &i8)
[src]
impl MulAssign<&'_ u128> for Integer
[src]
fn mul_assign(&mut self, rhs: &u128)
[src]
impl MulAssign<&'_ u16> for Integer
[src]
fn mul_assign(&mut self, rhs: &u16)
[src]
impl MulAssign<&'_ u32> for Integer
[src]
fn mul_assign(&mut self, rhs: &u32)
[src]
impl MulAssign<&'_ u64> for Integer
[src]
fn mul_assign(&mut self, rhs: &u64)
[src]
impl MulAssign<&'_ u8> for Integer
[src]
fn mul_assign(&mut self, rhs: &u8)
[src]
impl MulAssign<Integer> for Integer
[src]
fn mul_assign(&mut self, rhs: Integer)
[src]
impl MulAssign<Integer> for Float
[src]
fn mul_assign(&mut self, rhs: Integer)
[src]
impl MulAssign<i128> for Integer
[src]
fn mul_assign(&mut self, rhs: i128)
[src]
impl MulAssign<i16> for Integer
[src]
fn mul_assign(&mut self, rhs: i16)
[src]
impl MulAssign<i32> for Integer
[src]
fn mul_assign(&mut self, rhs: i32)
[src]
impl MulAssign<i64> for Integer
[src]
fn mul_assign(&mut self, rhs: i64)
[src]
impl MulAssign<i8> for Integer
[src]
fn mul_assign(&mut self, rhs: i8)
[src]
impl MulAssign<u128> for Integer
[src]
fn mul_assign(&mut self, rhs: u128)
[src]
impl MulAssign<u16> for Integer
[src]
fn mul_assign(&mut self, rhs: u16)
[src]
impl MulAssign<u32> for Integer
[src]
fn mul_assign(&mut self, rhs: u32)
[src]
impl MulAssign<u64> for Integer
[src]
fn mul_assign(&mut self, rhs: u64)
[src]
impl MulAssign<u8> for Integer
[src]
fn mul_assign(&mut self, rhs: u8)
[src]
impl MulAssignRound<&'_ Integer> for Float
[src]
type Round = Round
The rounding method.
type Ordering = Ordering
The direction from rounding.
fn mul_assign_round(&mut self, rhs: &Integer, round: Round) -> Ordering
[src]
impl MulAssignRound<Integer> for Float
[src]
type Round = Round
The rounding method.
type Ordering = Ordering
The direction from rounding.
fn mul_assign_round(&mut self, rhs: Integer, round: Round) -> Ordering
[src]
impl MulFrom<&'_ Integer> for Integer
[src]
impl MulFrom<&'_ Integer> for Float
[src]
impl MulFrom<&'_ i128> for Integer
[src]
impl MulFrom<&'_ i16> for Integer
[src]
impl MulFrom<&'_ i32> for Integer
[src]
impl MulFrom<&'_ i64> for Integer
[src]
impl MulFrom<&'_ i8> for Integer
[src]
impl MulFrom<&'_ u128> for Integer
[src]
impl MulFrom<&'_ u16> for Integer
[src]
impl MulFrom<&'_ u32> for Integer
[src]
impl MulFrom<&'_ u64> for Integer
[src]
impl MulFrom<&'_ u8> for Integer
[src]
impl MulFrom<Integer> for Integer
[src]
impl MulFrom<Integer> for Float
[src]
impl MulFrom<i128> for Integer
[src]
impl MulFrom<i16> for Integer
[src]
impl MulFrom<i32> for Integer
[src]
impl MulFrom<i64> for Integer
[src]
impl MulFrom<i8> for Integer
[src]
impl MulFrom<u128> for Integer
[src]
impl MulFrom<u16> for Integer
[src]
impl MulFrom<u32> for Integer
[src]
impl MulFrom<u64> for Integer
[src]
impl MulFrom<u8> for Integer
[src]
impl MulFromRound<&'_ Integer> for Float
[src]
type Round = Round
The rounding method.
type Ordering = Ordering
The direction from rounding.
fn mul_from_round(&mut self, lhs: &Integer, round: Round) -> Ordering
[src]
impl MulFromRound<Integer> for Float
[src]
type Round = Round
The rounding method.
type Ordering = Ordering
The direction from rounding.
fn mul_from_round(&mut self, lhs: Integer, round: Round) -> Ordering
[src]
impl Neg for Integer
[src]
impl<'a> Neg for &'a Integer
[src]
type Output = NegIncomplete<'a>
The resulting type after applying the -
operator.
fn neg(self) -> NegIncomplete<'a>
[src]
impl NegAssign for Integer
[src]
fn neg_assign(&mut self)
[src]
impl Not for Integer
[src]
impl<'a> Not for &'a Integer
[src]
type Output = NotIncomplete<'a>
The resulting type after applying the !
operator.
fn not(self) -> NotIncomplete<'a>
[src]
impl NotAssign for Integer
[src]
fn not_assign(&mut self)
[src]
impl Octal for Integer
[src]
impl Ord for Integer
[src]
fn cmp(&self, other: &Integer) -> Ordering
[src]
#[must_use]pub fn max(self, other: Self) -> Self
1.21.0[src]
#[must_use]pub fn min(self, other: Self) -> Self
1.21.0[src]
#[must_use]pub fn clamp(self, min: Self, max: Self) -> Self
1.50.0[src]
impl OverflowingCast<i128> for Integer
[src]
impl OverflowingCast<i128> for &Integer
[src]
impl OverflowingCast<i16> for Integer
[src]
impl OverflowingCast<i16> for &Integer
[src]
impl OverflowingCast<i32> for Integer
[src]
impl OverflowingCast<i32> for &Integer
[src]
impl OverflowingCast<i64> for Integer
[src]
impl OverflowingCast<i64> for &Integer
[src]
impl OverflowingCast<i8> for Integer
[src]
impl OverflowingCast<i8> for &Integer
[src]
impl OverflowingCast<isize> for Integer
[src]
impl OverflowingCast<isize> for &Integer
[src]
impl OverflowingCast<u128> for Integer
[src]
impl OverflowingCast<u128> for &Integer
[src]
impl OverflowingCast<u16> for Integer
[src]
impl OverflowingCast<u16> for &Integer
[src]
impl OverflowingCast<u32> for Integer
[src]
impl OverflowingCast<u32> for &Integer
[src]
impl OverflowingCast<u64> for Integer
[src]
impl OverflowingCast<u64> for &Integer
[src]
impl OverflowingCast<u8> for Integer
[src]
impl OverflowingCast<u8> for &Integer
[src]
impl OverflowingCast<usize> for Integer
[src]
impl OverflowingCast<usize> for &Integer
[src]
impl PartialEq<Float> for Integer
[src]
impl PartialEq<Integer> for Integer
[src]
fn eq(&self, other: &Integer) -> bool
[src]
#[must_use]pub fn ne(&self, other: &Rhs) -> bool
1.0.0[src]
impl PartialEq<Integer> for Float
[src]
fn eq(&self, other: &Integer) -> bool
[src]
#[must_use]pub fn ne(&self, other: &Rhs) -> bool
1.0.0[src]
impl PartialEq<f32> for Integer
[src]
impl PartialEq<f64> for Integer
[src]
impl PartialEq<i128> for Integer
[src]
impl PartialEq<i16> for Integer
[src]
impl PartialEq<i32> for Integer
[src]
impl PartialEq<i64> for Integer
[src]
impl PartialEq<i8> for Integer
[src]
impl PartialEq<isize> for Integer
[src]
impl PartialEq<u128> for Integer
[src]
impl PartialEq<u16> for Integer
[src]
impl PartialEq<u32> for Integer
[src]
impl PartialEq<u64> for Integer
[src]
impl PartialEq<u8> for Integer
[src]
impl PartialEq<usize> for Integer
[src]
impl PartialOrd<Float> for Integer
[src]
fn partial_cmp(&self, other: &Float) -> Option<Ordering>
[src]
#[must_use]pub fn lt(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]pub fn le(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]pub fn gt(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]pub fn ge(&self, other: &Rhs) -> bool
1.0.0[src]
impl PartialOrd<Integer> for Integer
[src]
fn partial_cmp(&self, other: &Integer) -> Option<Ordering>
[src]
#[must_use]pub fn lt(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]pub fn le(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]pub fn gt(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]pub fn ge(&self, other: &Rhs) -> bool
1.0.0[src]
impl PartialOrd<Integer> for Float
[src]
fn partial_cmp(&self, z: &Integer) -> Option<Ordering>
[src]
#[must_use]pub fn lt(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]pub fn le(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]pub fn gt(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]pub fn ge(&self, other: &Rhs) -> bool
1.0.0[src]
impl PartialOrd<f32> for Integer
[src]
fn partial_cmp(&self, other: &f32) -> Option<Ordering>
[src]
#[must_use]pub fn lt(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]pub fn le(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]pub fn gt(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]pub fn ge(&self, other: &Rhs) -> bool
1.0.0[src]
impl PartialOrd<f64> for Integer
[src]
fn partial_cmp(&self, other: &f64) -> Option<Ordering>
[src]
#[must_use]pub fn lt(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]pub fn le(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]pub fn gt(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]pub fn ge(&self, other: &Rhs) -> bool
1.0.0[src]
impl PartialOrd<i128> for Integer
[src]
fn partial_cmp(&self, other: &i128) -> Option<Ordering>
[src]
#[must_use]pub fn lt(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]pub fn le(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]pub fn gt(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]pub fn ge(&self, other: &Rhs) -> bool
1.0.0[src]
impl PartialOrd<i16> for Integer
[src]
fn partial_cmp(&self, other: &i16) -> Option<Ordering>
[src]
#[must_use]pub fn lt(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]pub fn le(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]pub fn gt(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]pub fn ge(&self, other: &Rhs) -> bool
1.0.0[src]
impl PartialOrd<i32> for Integer
[src]
fn partial_cmp(&self, other: &i32) -> Option<Ordering>
[src]
#[must_use]pub fn lt(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]pub fn le(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]pub fn gt(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]pub fn ge(&self, other: &Rhs) -> bool
1.0.0[src]
impl PartialOrd<i64> for Integer
[src]
fn partial_cmp(&self, other: &i64) -> Option<Ordering>
[src]
#[must_use]pub fn lt(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]pub fn le(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]pub fn gt(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]pub fn ge(&self, other: &Rhs) -> bool
1.0.0[src]
impl PartialOrd<i8> for Integer
[src]
fn partial_cmp(&self, other: &i8) -> Option<Ordering>
[src]
#[must_use]pub fn lt(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]pub fn le(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]pub fn gt(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]pub fn ge(&self, other: &Rhs) -> bool
1.0.0[src]
impl PartialOrd<isize> for Integer
[src]
fn partial_cmp(&self, other: &isize) -> Option<Ordering>
[src]
#[must_use]pub fn lt(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]pub fn le(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]pub fn gt(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]pub fn ge(&self, other: &Rhs) -> bool
1.0.0[src]
impl PartialOrd<u128> for Integer
[src]
fn partial_cmp(&self, other: &u128) -> Option<Ordering>
[src]
#[must_use]pub fn lt(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]pub fn le(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]pub fn gt(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]pub fn ge(&self, other: &Rhs) -> bool
1.0.0[src]
impl PartialOrd<u16> for Integer
[src]
fn partial_cmp(&self, other: &u16) -> Option<Ordering>
[src]
#[must_use]pub fn lt(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]pub fn le(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]pub fn gt(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]pub fn ge(&self, other: &Rhs) -> bool
1.0.0[src]
impl PartialOrd<u32> for Integer
[src]
fn partial_cmp(&self, other: &u32) -> Option<Ordering>
[src]
#[must_use]pub fn lt(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]pub fn le(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]pub fn gt(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]pub fn ge(&self, other: &Rhs) -> bool
1.0.0[src]
impl PartialOrd<u64> for Integer
[src]
fn partial_cmp(&self, other: &u64) -> Option<Ordering>
[src]
#[must_use]pub fn lt(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]pub fn le(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]pub fn gt(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]pub fn ge(&self, other: &Rhs) -> bool
1.0.0[src]
impl PartialOrd<u8> for Integer
[src]
fn partial_cmp(&self, other: &u8) -> Option<Ordering>
[src]
#[must_use]pub fn lt(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]pub fn le(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]pub fn gt(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]pub fn ge(&self, other: &Rhs) -> bool
1.0.0[src]
impl PartialOrd<usize> for Integer
[src]
fn partial_cmp(&self, other: &usize) -> Option<Ordering>
[src]
#[must_use]pub fn lt(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]pub fn le(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]pub fn gt(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]pub fn ge(&self, other: &Rhs) -> bool
1.0.0[src]
impl Pow<&'_ Integer> for Float
[src]
type Output = Float
The resulting type after the power operation.
fn pow(self, rhs: &Integer) -> Float
[src]
impl Pow<&'_ u32> for Integer
[src]
type Output = Integer
The resulting type after the power operation.
fn pow(self, rhs: &u32) -> Integer
[src]
impl<'b> Pow<&'_ u32> for &'b Integer
[src]
type Output = PowU32Incomplete<'b>
The resulting type after the power operation.
fn pow(self, rhs: &u32) -> PowU32Incomplete<'b>
[src]
impl<'a> Pow<&'a Integer> for &'a Float
[src]
type Output = PowIntegerIncomplete<'a>
The resulting type after the power operation.
fn pow(self, rhs: &'a Integer) -> PowIntegerIncomplete<'_>
[src]
impl Pow<Integer> for Float
[src]
type Output = Float
The resulting type after the power operation.
fn pow(self, rhs: Integer) -> Float
[src]
impl<'a> Pow<Integer> for &'a Float
[src]
type Output = PowOwnedIntegerIncomplete<'a>
The resulting type after the power operation.
fn pow(self, rhs: Integer) -> PowOwnedIntegerIncomplete<'a>
[src]
impl Pow<u32> for Integer
[src]
type Output = Integer
The resulting type after the power operation.
fn pow(self, rhs: u32) -> Integer
[src]
impl<'b> Pow<u32> for &'b Integer
[src]
type Output = PowU32Incomplete<'b>
The resulting type after the power operation.
fn pow(self, rhs: u32) -> PowU32Incomplete<'b>
[src]
impl PowAssign<&'_ Integer> for Float
[src]
fn pow_assign(&mut self, rhs: &Integer)
[src]
impl PowAssign<&'_ u32> for Integer
[src]
fn pow_assign(&mut self, rhs: &u32)
[src]
impl PowAssign<Integer> for Float
[src]
fn pow_assign(&mut self, rhs: Integer)
[src]
impl PowAssign<u32> for Integer
[src]
fn pow_assign(&mut self, rhs: u32)
[src]
impl PowAssignRound<&'_ Integer> for Float
[src]
type Round = Round
The rounding method.
type Ordering = Ordering
The direction from rounding.
fn pow_assign_round(&mut self, rhs: &Integer, round: Round) -> Ordering
[src]
impl PowAssignRound<Integer> for Float
[src]
type Round = Round
The rounding method.
type Ordering = Ordering
The direction from rounding.
fn pow_assign_round(&mut self, rhs: Integer, round: Round) -> Ordering
[src]
impl<T> Product<T> for Integer where
Integer: MulAssign<T>,
[src]
Integer: MulAssign<T>,
impl Rem<&'_ Integer> for Integer
[src]
type Output = Integer
The resulting type after applying the %
operator.
fn rem(self, rhs: &Integer) -> Integer
[src]
impl Rem<&'_ i128> for Integer
[src]
type Output = Integer
The resulting type after applying the %
operator.
fn rem(self, rhs: &i128) -> Integer
[src]
impl<'b> Rem<&'_ i128> for &'b Integer
[src]
type Output = RemI128Incomplete<'b>
The resulting type after applying the %
operator.
fn rem(self, rhs: &i128) -> RemI128Incomplete<'b>
[src]
impl Rem<&'_ i16> for Integer
[src]
type Output = Integer
The resulting type after applying the %
operator.
fn rem(self, rhs: &i16) -> Integer
[src]
impl<'b> Rem<&'_ i16> for &'b Integer
[src]
type Output = RemI16Incomplete<'b>
The resulting type after applying the %
operator.
fn rem(self, rhs: &i16) -> RemI16Incomplete<'b>
[src]
impl Rem<&'_ i32> for Integer
[src]
type Output = Integer
The resulting type after applying the %
operator.
fn rem(self, rhs: &i32) -> Integer
[src]
impl<'b> Rem<&'_ i32> for &'b Integer
[src]
type Output = RemI32Incomplete<'b>
The resulting type after applying the %
operator.
fn rem(self, rhs: &i32) -> RemI32Incomplete<'b>
[src]
impl Rem<&'_ i64> for Integer
[src]
type Output = Integer
The resulting type after applying the %
operator.
fn rem(self, rhs: &i64) -> Integer
[src]
impl<'b> Rem<&'_ i64> for &'b Integer
[src]
type Output = RemI64Incomplete<'b>
The resulting type after applying the %
operator.
fn rem(self, rhs: &i64) -> RemI64Incomplete<'b>
[src]
impl Rem<&'_ i8> for Integer
[src]
type Output = Integer
The resulting type after applying the %
operator.
fn rem(self, rhs: &i8) -> Integer
[src]
impl<'b> Rem<&'_ i8> for &'b Integer
[src]
type Output = RemI8Incomplete<'b>
The resulting type after applying the %
operator.
fn rem(self, rhs: &i8) -> RemI8Incomplete<'b>
[src]
impl Rem<&'_ u128> for Integer
[src]
type Output = Integer
The resulting type after applying the %
operator.
fn rem(self, rhs: &u128) -> Integer
[src]
impl<'b> Rem<&'_ u128> for &'b Integer
[src]
type Output = RemU128Incomplete<'b>
The resulting type after applying the %
operator.
fn rem(self, rhs: &u128) -> RemU128Incomplete<'b>
[src]
impl Rem<&'_ u16> for Integer
[src]
type Output = Integer
The resulting type after applying the %
operator.
fn rem(self, rhs: &u16) -> Integer
[src]
impl<'b> Rem<&'_ u16> for &'b Integer
[src]
type Output = RemU16Incomplete<'b>
The resulting type after applying the %
operator.
fn rem(self, rhs: &u16) -> RemU16Incomplete<'b>
[src]
impl Rem<&'_ u32> for Integer
[src]
type Output = Integer
The resulting type after applying the %
operator.
fn rem(self, rhs: &u32) -> Integer
[src]
impl<'b> Rem<&'_ u32> for &'b Integer
[src]
type Output = RemU32Incomplete<'b>
The resulting type after applying the %
operator.
fn rem(self, rhs: &u32) -> RemU32Incomplete<'b>
[src]
impl Rem<&'_ u64> for Integer
[src]
type Output = Integer
The resulting type after applying the %
operator.
fn rem(self, rhs: &u64) -> Integer
[src]
impl<'b> Rem<&'_ u64> for &'b Integer
[src]
type Output = RemU64Incomplete<'b>
The resulting type after applying the %
operator.
fn rem(self, rhs: &u64) -> RemU64Incomplete<'b>
[src]
impl Rem<&'_ u8> for Integer
[src]
type Output = Integer
The resulting type after applying the %
operator.
fn rem(self, rhs: &u8) -> Integer
[src]
impl<'b> Rem<&'_ u8> for &'b Integer
[src]
type Output = RemU8Incomplete<'b>
The resulting type after applying the %
operator.
fn rem(self, rhs: &u8) -> RemU8Incomplete<'b>
[src]
impl<'a> Rem<&'a Integer> for &'a Integer
[src]
type Output = RemIncomplete<'a>
The resulting type after applying the %
operator.
fn rem(self, rhs: &'a Integer) -> RemIncomplete<'_>
[src]
impl Rem<Integer> for Integer
[src]
type Output = Integer
The resulting type after applying the %
operator.
fn rem(self, rhs: Integer) -> Integer
[src]
impl Rem<Integer> for &Integer
[src]
type Output = Integer
The resulting type after applying the %
operator.
fn rem(self, rhs: Integer) -> Integer
[src]
impl Rem<i128> for Integer
[src]
type Output = Integer
The resulting type after applying the %
operator.
fn rem(self, rhs: i128) -> Integer
[src]
impl<'b> Rem<i128> for &'b Integer
[src]
type Output = RemI128Incomplete<'b>
The resulting type after applying the %
operator.
fn rem(self, rhs: i128) -> RemI128Incomplete<'b>
[src]
impl Rem<i16> for Integer
[src]
type Output = Integer
The resulting type after applying the %
operator.
fn rem(self, rhs: i16) -> Integer
[src]
impl<'b> Rem<i16> for &'b Integer
[src]
type Output = RemI16Incomplete<'b>
The resulting type after applying the %
operator.
fn rem(self, rhs: i16) -> RemI16Incomplete<'b>
[src]
impl Rem<i32> for Integer
[src]
type Output = Integer
The resulting type after applying the %
operator.
fn rem(self, rhs: i32) -> Integer
[src]
impl<'b> Rem<i32> for &'b Integer
[src]
type Output = RemI32Incomplete<'b>
The resulting type after applying the %
operator.
fn rem(self, rhs: i32) -> RemI32Incomplete<'b>
[src]
impl Rem<i64> for Integer
[src]
type Output = Integer
The resulting type after applying the %
operator.
fn rem(self, rhs: i64) -> Integer
[src]
impl<'b> Rem<i64> for &'b Integer
[src]
type Output = RemI64Incomplete<'b>
The resulting type after applying the %
operator.
fn rem(self, rhs: i64) -> RemI64Incomplete<'b>
[src]
impl Rem<i8> for Integer
[src]
type Output = Integer
The resulting type after applying the %
operator.
fn rem(self, rhs: i8) -> Integer
[src]
impl<'b> Rem<i8> for &'b Integer
[src]
type Output = RemI8Incomplete<'b>
The resulting type after applying the %
operator.
fn rem(self, rhs: i8) -> RemI8Incomplete<'b>
[src]
impl Rem<u128> for Integer
[src]
type Output = Integer
The resulting type after applying the %
operator.
fn rem(self, rhs: u128) -> Integer
[src]
impl<'b> Rem<u128> for &'b Integer
[src]
type Output = RemU128Incomplete<'b>
The resulting type after applying the %
operator.
fn rem(self, rhs: u128) -> RemU128Incomplete<'b>
[src]
impl Rem<u16> for Integer
[src]
type Output = Integer
The resulting type after applying the %
operator.
fn rem(self, rhs: u16) -> Integer
[src]
impl<'b> Rem<u16> for &'b Integer
[src]
type Output = RemU16Incomplete<'b>
The resulting type after applying the %
operator.
fn rem(self, rhs: u16) -> RemU16Incomplete<'b>
[src]
impl Rem<u32> for Integer
[src]
type Output = Integer
The resulting type after applying the %
operator.
fn rem(self, rhs: u32) -> Integer
[src]
impl<'b> Rem<u32> for &'b Integer
[src]
type Output = RemU32Incomplete<'b>
The resulting type after applying the %
operator.
fn rem(self, rhs: u32) -> RemU32Incomplete<'b>
[src]
impl Rem<u64> for Integer
[src]
type Output = Integer
The resulting type after applying the %
operator.
fn rem(self, rhs: u64) -> Integer
[src]
impl<'b> Rem<u64> for &'b Integer
[src]
type Output = RemU64Incomplete<'b>
The resulting type after applying the %
operator.
fn rem(self, rhs: u64) -> RemU64Incomplete<'b>
[src]
impl Rem<u8> for Integer
[src]
type Output = Integer
The resulting type after applying the %
operator.
fn rem(self, rhs: u8) -> Integer
[src]
impl<'b> Rem<u8> for &'b Integer
[src]
type Output = RemU8Incomplete<'b>
The resulting type after applying the %
operator.
fn rem(self, rhs: u8) -> RemU8Incomplete<'b>
[src]
impl RemAssign<&'_ Integer> for Integer
[src]
fn rem_assign(&mut self, rhs: &Integer)
[src]
impl RemAssign<&'_ i128> for Integer
[src]
fn rem_assign(&mut self, rhs: &i128)
[src]
impl RemAssign<&'_ i16> for Integer
[src]
fn rem_assign(&mut self, rhs: &i16)
[src]
impl RemAssign<&'_ i32> for Integer
[src]
fn rem_assign(&mut self, rhs: &i32)
[src]
impl RemAssign<&'_ i64> for Integer
[src]
fn rem_assign(&mut self, rhs: &i64)
[src]
impl RemAssign<&'_ i8> for Integer
[src]
fn rem_assign(&mut self, rhs: &i8)
[src]
impl RemAssign<&'_ u128> for Integer
[src]
fn rem_assign(&mut self, rhs: &u128)
[src]
impl RemAssign<&'_ u16> for Integer
[src]
fn rem_assign(&mut self, rhs: &u16)
[src]
impl RemAssign<&'_ u32> for Integer
[src]
fn rem_assign(&mut self, rhs: &u32)
[src]
impl RemAssign<&'_ u64> for Integer
[src]
fn rem_assign(&mut self, rhs: &u64)
[src]
impl RemAssign<&'_ u8> for Integer
[src]
fn rem_assign(&mut self, rhs: &u8)
[src]
impl RemAssign<Integer> for Integer
[src]
fn rem_assign(&mut self, rhs: Integer)
[src]
impl RemAssign<i128> for Integer
[src]
fn rem_assign(&mut self, rhs: i128)
[src]
impl RemAssign<i16> for Integer
[src]
fn rem_assign(&mut self, rhs: i16)
[src]
impl RemAssign<i32> for Integer
[src]
fn rem_assign(&mut self, rhs: i32)
[src]
impl RemAssign<i64> for Integer
[src]
fn rem_assign(&mut self, rhs: i64)
[src]
impl RemAssign<i8> for Integer
[src]
fn rem_assign(&mut self, rhs: i8)
[src]
impl RemAssign<u128> for Integer
[src]
fn rem_assign(&mut self, rhs: u128)
[src]
impl RemAssign<u16> for Integer
[src]
fn rem_assign(&mut self, rhs: u16)
[src]
impl RemAssign<u32> for Integer
[src]
fn rem_assign(&mut self, rhs: u32)
[src]
impl RemAssign<u64> for Integer
[src]
fn rem_assign(&mut self, rhs: u64)
[src]
impl RemAssign<u8> for Integer
[src]
fn rem_assign(&mut self, rhs: u8)
[src]
impl RemFrom<&'_ Integer> for Integer
[src]
impl RemFrom<&'_ i128> for Integer
[src]
impl RemFrom<&'_ i16> for Integer
[src]
impl RemFrom<&'_ i32> for Integer
[src]
impl RemFrom<&'_ i64> for Integer
[src]
impl RemFrom<&'_ i8> for Integer
[src]
impl RemFrom<&'_ u128> for Integer
[src]
impl RemFrom<&'_ u16> for Integer
[src]
impl RemFrom<&'_ u32> for Integer
[src]
impl RemFrom<&'_ u64> for Integer
[src]
impl RemFrom<&'_ u8> for Integer
[src]
impl RemFrom<Integer> for Integer
[src]
impl RemFrom<i128> for Integer
[src]
impl RemFrom<i16> for Integer
[src]
impl RemFrom<i32> for Integer
[src]
impl RemFrom<i64> for Integer
[src]
impl RemFrom<i8> for Integer
[src]
impl RemFrom<u128> for Integer
[src]
impl RemFrom<u16> for Integer
[src]
impl RemFrom<u32> for Integer
[src]
impl RemFrom<u64> for Integer
[src]
impl RemFrom<u8> for Integer
[src]
impl RemRounding<&'_ Integer> for Integer
[src]
type Output = Integer
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: &Integer) -> Integer
[src]
fn rem_ceil(self, rhs: &Integer) -> Integer
[src]
fn rem_floor(self, rhs: &Integer) -> Integer
[src]
fn rem_euc(self, rhs: &Integer) -> Integer
[src]
impl RemRounding<&'_ i128> for Integer
[src]
type Output = Integer
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: &i128) -> Integer
[src]
fn rem_ceil(self, rhs: &i128) -> Integer
[src]
fn rem_floor(self, rhs: &i128) -> Integer
[src]
fn rem_euc(self, rhs: &i128) -> Integer
[src]
impl RemRounding<&'_ i16> for Integer
[src]
type Output = Integer
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: &i16) -> Integer
[src]
fn rem_ceil(self, rhs: &i16) -> Integer
[src]
fn rem_floor(self, rhs: &i16) -> Integer
[src]
fn rem_euc(self, rhs: &i16) -> Integer
[src]
impl RemRounding<&'_ i32> for Integer
[src]
type Output = Integer
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: &i32) -> Integer
[src]
fn rem_ceil(self, rhs: &i32) -> Integer
[src]
fn rem_floor(self, rhs: &i32) -> Integer
[src]
fn rem_euc(self, rhs: &i32) -> Integer
[src]
impl RemRounding<&'_ i64> for Integer
[src]
type Output = Integer
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: &i64) -> Integer
[src]
fn rem_ceil(self, rhs: &i64) -> Integer
[src]
fn rem_floor(self, rhs: &i64) -> Integer
[src]
fn rem_euc(self, rhs: &i64) -> Integer
[src]
impl RemRounding<&'_ i8> for Integer
[src]
type Output = Integer
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: &i8) -> Integer
[src]
fn rem_ceil(self, rhs: &i8) -> Integer
[src]
fn rem_floor(self, rhs: &i8) -> Integer
[src]
fn rem_euc(self, rhs: &i8) -> Integer
[src]
impl RemRounding<&'_ u128> for Integer
[src]
type Output = Integer
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: &u128) -> Integer
[src]
fn rem_ceil(self, rhs: &u128) -> Integer
[src]
fn rem_floor(self, rhs: &u128) -> Integer
[src]
fn rem_euc(self, rhs: &u128) -> Integer
[src]
impl RemRounding<&'_ u16> for Integer
[src]
type Output = Integer
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: &u16) -> Integer
[src]
fn rem_ceil(self, rhs: &u16) -> Integer
[src]
fn rem_floor(self, rhs: &u16) -> Integer
[src]
fn rem_euc(self, rhs: &u16) -> Integer
[src]
impl RemRounding<&'_ u32> for Integer
[src]
type Output = Integer
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: &u32) -> Integer
[src]
fn rem_ceil(self, rhs: &u32) -> Integer
[src]
fn rem_floor(self, rhs: &u32) -> Integer
[src]
fn rem_euc(self, rhs: &u32) -> Integer
[src]
impl RemRounding<&'_ u64> for Integer
[src]
type Output = Integer
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: &u64) -> Integer
[src]
fn rem_ceil(self, rhs: &u64) -> Integer
[src]
fn rem_floor(self, rhs: &u64) -> Integer
[src]
fn rem_euc(self, rhs: &u64) -> Integer
[src]
impl RemRounding<&'_ u8> for Integer
[src]
type Output = Integer
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: &u8) -> Integer
[src]
fn rem_ceil(self, rhs: &u8) -> Integer
[src]
fn rem_floor(self, rhs: &u8) -> Integer
[src]
fn rem_euc(self, rhs: &u8) -> Integer
[src]
impl<'i> RemRounding<&'i Integer> for &'i Integer
[src]
type Output = RemRoundingIncomplete<'i>
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: &'i Integer) -> RemRoundingIncomplete<'_>
[src]
fn rem_ceil(self, rhs: &'i Integer) -> RemRoundingIncomplete<'_>
[src]
fn rem_floor(self, rhs: &'i Integer) -> RemRoundingIncomplete<'_>
[src]
fn rem_euc(self, rhs: &'i Integer) -> RemRoundingIncomplete<'_>
[src]
impl<'i> RemRounding<&'i Integer> for i8
[src]
type Output = RemRoundingFromI8Incomplete<'i>
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: &Integer) -> RemRoundingFromI8Incomplete<'_>
[src]
fn rem_ceil(self, rhs: &Integer) -> RemRoundingFromI8Incomplete<'_>
[src]
fn rem_floor(self, rhs: &Integer) -> RemRoundingFromI8Incomplete<'_>
[src]
fn rem_euc(self, rhs: &Integer) -> RemRoundingFromI8Incomplete<'_>
[src]
impl<'i> RemRounding<&'i Integer> for &i128
[src]
type Output = RemRoundingFromI128Incomplete<'i>
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: &'i Integer) -> RemRoundingFromI128Incomplete<'i>
[src]
fn rem_ceil(self, rhs: &'i Integer) -> RemRoundingFromI128Incomplete<'i>
[src]
fn rem_floor(self, rhs: &'i Integer) -> RemRoundingFromI128Incomplete<'i>
[src]
fn rem_euc(self, rhs: &'i Integer) -> RemRoundingFromI128Incomplete<'i>
[src]
impl<'i> RemRounding<&'i Integer> for u8
[src]
type Output = RemRoundingFromU8Incomplete<'i>
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: &Integer) -> RemRoundingFromU8Incomplete<'_>
[src]
fn rem_ceil(self, rhs: &Integer) -> RemRoundingFromU8Incomplete<'_>
[src]
fn rem_floor(self, rhs: &Integer) -> RemRoundingFromU8Incomplete<'_>
[src]
fn rem_euc(self, rhs: &Integer) -> RemRoundingFromU8Incomplete<'_>
[src]
impl<'i> RemRounding<&'i Integer> for &u8
[src]
type Output = RemRoundingFromU8Incomplete<'i>
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: &'i Integer) -> RemRoundingFromU8Incomplete<'i>
[src]
fn rem_ceil(self, rhs: &'i Integer) -> RemRoundingFromU8Incomplete<'i>
[src]
fn rem_floor(self, rhs: &'i Integer) -> RemRoundingFromU8Incomplete<'i>
[src]
fn rem_euc(self, rhs: &'i Integer) -> RemRoundingFromU8Incomplete<'i>
[src]
impl<'i> RemRounding<&'i Integer> for u16
[src]
type Output = RemRoundingFromU16Incomplete<'i>
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: &Integer) -> RemRoundingFromU16Incomplete<'_>
[src]
fn rem_ceil(self, rhs: &Integer) -> RemRoundingFromU16Incomplete<'_>
[src]
fn rem_floor(self, rhs: &Integer) -> RemRoundingFromU16Incomplete<'_>
[src]
fn rem_euc(self, rhs: &Integer) -> RemRoundingFromU16Incomplete<'_>
[src]
impl<'i> RemRounding<&'i Integer> for &u16
[src]
type Output = RemRoundingFromU16Incomplete<'i>
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: &'i Integer) -> RemRoundingFromU16Incomplete<'i>
[src]
fn rem_ceil(self, rhs: &'i Integer) -> RemRoundingFromU16Incomplete<'i>
[src]
fn rem_floor(self, rhs: &'i Integer) -> RemRoundingFromU16Incomplete<'i>
[src]
fn rem_euc(self, rhs: &'i Integer) -> RemRoundingFromU16Incomplete<'i>
[src]
impl<'i> RemRounding<&'i Integer> for u32
[src]
type Output = RemRoundingFromU32Incomplete<'i>
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: &Integer) -> RemRoundingFromU32Incomplete<'_>
[src]
fn rem_ceil(self, rhs: &Integer) -> RemRoundingFromU32Incomplete<'_>
[src]
fn rem_floor(self, rhs: &Integer) -> RemRoundingFromU32Incomplete<'_>
[src]
fn rem_euc(self, rhs: &Integer) -> RemRoundingFromU32Incomplete<'_>
[src]
impl<'i> RemRounding<&'i Integer> for &u32
[src]
type Output = RemRoundingFromU32Incomplete<'i>
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: &'i Integer) -> RemRoundingFromU32Incomplete<'i>
[src]
fn rem_ceil(self, rhs: &'i Integer) -> RemRoundingFromU32Incomplete<'i>
[src]
fn rem_floor(self, rhs: &'i Integer) -> RemRoundingFromU32Incomplete<'i>
[src]
fn rem_euc(self, rhs: &'i Integer) -> RemRoundingFromU32Incomplete<'i>
[src]
impl<'i> RemRounding<&'i Integer> for u64
[src]
type Output = RemRoundingFromU64Incomplete<'i>
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: &Integer) -> RemRoundingFromU64Incomplete<'_>
[src]
fn rem_ceil(self, rhs: &Integer) -> RemRoundingFromU64Incomplete<'_>
[src]
fn rem_floor(self, rhs: &Integer) -> RemRoundingFromU64Incomplete<'_>
[src]
fn rem_euc(self, rhs: &Integer) -> RemRoundingFromU64Incomplete<'_>
[src]
impl<'i> RemRounding<&'i Integer> for &u64
[src]
type Output = RemRoundingFromU64Incomplete<'i>
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: &'i Integer) -> RemRoundingFromU64Incomplete<'i>
[src]
fn rem_ceil(self, rhs: &'i Integer) -> RemRoundingFromU64Incomplete<'i>
[src]
fn rem_floor(self, rhs: &'i Integer) -> RemRoundingFromU64Incomplete<'i>
[src]
fn rem_euc(self, rhs: &'i Integer) -> RemRoundingFromU64Incomplete<'i>
[src]
impl<'i> RemRounding<&'i Integer> for u128
[src]
type Output = RemRoundingFromU128Incomplete<'i>
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: &Integer) -> RemRoundingFromU128Incomplete<'_>
[src]
fn rem_ceil(self, rhs: &Integer) -> RemRoundingFromU128Incomplete<'_>
[src]
fn rem_floor(self, rhs: &Integer) -> RemRoundingFromU128Incomplete<'_>
[src]
fn rem_euc(self, rhs: &Integer) -> RemRoundingFromU128Incomplete<'_>
[src]
impl<'i> RemRounding<&'i Integer> for &i8
[src]
type Output = RemRoundingFromI8Incomplete<'i>
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: &'i Integer) -> RemRoundingFromI8Incomplete<'i>
[src]
fn rem_ceil(self, rhs: &'i Integer) -> RemRoundingFromI8Incomplete<'i>
[src]
fn rem_floor(self, rhs: &'i Integer) -> RemRoundingFromI8Incomplete<'i>
[src]
fn rem_euc(self, rhs: &'i Integer) -> RemRoundingFromI8Incomplete<'i>
[src]
impl<'i> RemRounding<&'i Integer> for &u128
[src]
type Output = RemRoundingFromU128Incomplete<'i>
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: &'i Integer) -> RemRoundingFromU128Incomplete<'i>
[src]
fn rem_ceil(self, rhs: &'i Integer) -> RemRoundingFromU128Incomplete<'i>
[src]
fn rem_floor(self, rhs: &'i Integer) -> RemRoundingFromU128Incomplete<'i>
[src]
fn rem_euc(self, rhs: &'i Integer) -> RemRoundingFromU128Incomplete<'i>
[src]
impl<'i> RemRounding<&'i Integer> for i16
[src]
type Output = RemRoundingFromI16Incomplete<'i>
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: &Integer) -> RemRoundingFromI16Incomplete<'_>
[src]
fn rem_ceil(self, rhs: &Integer) -> RemRoundingFromI16Incomplete<'_>
[src]
fn rem_floor(self, rhs: &Integer) -> RemRoundingFromI16Incomplete<'_>
[src]
fn rem_euc(self, rhs: &Integer) -> RemRoundingFromI16Incomplete<'_>
[src]
impl<'i> RemRounding<&'i Integer> for &i16
[src]
type Output = RemRoundingFromI16Incomplete<'i>
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: &'i Integer) -> RemRoundingFromI16Incomplete<'i>
[src]
fn rem_ceil(self, rhs: &'i Integer) -> RemRoundingFromI16Incomplete<'i>
[src]
fn rem_floor(self, rhs: &'i Integer) -> RemRoundingFromI16Incomplete<'i>
[src]
fn rem_euc(self, rhs: &'i Integer) -> RemRoundingFromI16Incomplete<'i>
[src]
impl<'i> RemRounding<&'i Integer> for i32
[src]
type Output = RemRoundingFromI32Incomplete<'i>
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: &Integer) -> RemRoundingFromI32Incomplete<'_>
[src]
fn rem_ceil(self, rhs: &Integer) -> RemRoundingFromI32Incomplete<'_>
[src]
fn rem_floor(self, rhs: &Integer) -> RemRoundingFromI32Incomplete<'_>
[src]
fn rem_euc(self, rhs: &Integer) -> RemRoundingFromI32Incomplete<'_>
[src]
impl<'i> RemRounding<&'i Integer> for &i32
[src]
type Output = RemRoundingFromI32Incomplete<'i>
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: &'i Integer) -> RemRoundingFromI32Incomplete<'i>
[src]
fn rem_ceil(self, rhs: &'i Integer) -> RemRoundingFromI32Incomplete<'i>
[src]
fn rem_floor(self, rhs: &'i Integer) -> RemRoundingFromI32Incomplete<'i>
[src]
fn rem_euc(self, rhs: &'i Integer) -> RemRoundingFromI32Incomplete<'i>
[src]
impl<'i> RemRounding<&'i Integer> for i64
[src]
type Output = RemRoundingFromI64Incomplete<'i>
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: &Integer) -> RemRoundingFromI64Incomplete<'_>
[src]
fn rem_ceil(self, rhs: &Integer) -> RemRoundingFromI64Incomplete<'_>
[src]
fn rem_floor(self, rhs: &Integer) -> RemRoundingFromI64Incomplete<'_>
[src]
fn rem_euc(self, rhs: &Integer) -> RemRoundingFromI64Incomplete<'_>
[src]
impl<'i> RemRounding<&'i Integer> for &i64
[src]
type Output = RemRoundingFromI64Incomplete<'i>
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: &'i Integer) -> RemRoundingFromI64Incomplete<'i>
[src]
fn rem_ceil(self, rhs: &'i Integer) -> RemRoundingFromI64Incomplete<'i>
[src]
fn rem_floor(self, rhs: &'i Integer) -> RemRoundingFromI64Incomplete<'i>
[src]
fn rem_euc(self, rhs: &'i Integer) -> RemRoundingFromI64Incomplete<'i>
[src]
impl<'i> RemRounding<&'i Integer> for i128
[src]
type Output = RemRoundingFromI128Incomplete<'i>
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: &Integer) -> RemRoundingFromI128Incomplete<'_>
[src]
fn rem_ceil(self, rhs: &Integer) -> RemRoundingFromI128Incomplete<'_>
[src]
fn rem_floor(self, rhs: &Integer) -> RemRoundingFromI128Incomplete<'_>
[src]
fn rem_euc(self, rhs: &Integer) -> RemRoundingFromI128Incomplete<'_>
[src]
impl<'t, 'i> RemRounding<&'t i128> for &'i Integer
[src]
type Output = RemRoundingI128Incomplete<'i>
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: &i128) -> RemRoundingI128Incomplete<'i>
[src]
fn rem_ceil(self, rhs: &i128) -> RemRoundingI128Incomplete<'i>
[src]
fn rem_floor(self, rhs: &i128) -> RemRoundingI128Incomplete<'i>
[src]
fn rem_euc(self, rhs: &i128) -> RemRoundingI128Incomplete<'i>
[src]
impl<'t, 'i> RemRounding<&'t i16> for &'i Integer
[src]
type Output = RemRoundingI16Incomplete<'i>
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: &i16) -> RemRoundingI16Incomplete<'i>
[src]
fn rem_ceil(self, rhs: &i16) -> RemRoundingI16Incomplete<'i>
[src]
fn rem_floor(self, rhs: &i16) -> RemRoundingI16Incomplete<'i>
[src]
fn rem_euc(self, rhs: &i16) -> RemRoundingI16Incomplete<'i>
[src]
impl<'t, 'i> RemRounding<&'t i32> for &'i Integer
[src]
type Output = RemRoundingI32Incomplete<'i>
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: &i32) -> RemRoundingI32Incomplete<'i>
[src]
fn rem_ceil(self, rhs: &i32) -> RemRoundingI32Incomplete<'i>
[src]
fn rem_floor(self, rhs: &i32) -> RemRoundingI32Incomplete<'i>
[src]
fn rem_euc(self, rhs: &i32) -> RemRoundingI32Incomplete<'i>
[src]
impl<'t, 'i> RemRounding<&'t i64> for &'i Integer
[src]
type Output = RemRoundingI64Incomplete<'i>
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: &i64) -> RemRoundingI64Incomplete<'i>
[src]
fn rem_ceil(self, rhs: &i64) -> RemRoundingI64Incomplete<'i>
[src]
fn rem_floor(self, rhs: &i64) -> RemRoundingI64Incomplete<'i>
[src]
fn rem_euc(self, rhs: &i64) -> RemRoundingI64Incomplete<'i>
[src]
impl<'t, 'i> RemRounding<&'t i8> for &'i Integer
[src]
type Output = RemRoundingI8Incomplete<'i>
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: &i8) -> RemRoundingI8Incomplete<'i>
[src]
fn rem_ceil(self, rhs: &i8) -> RemRoundingI8Incomplete<'i>
[src]
fn rem_floor(self, rhs: &i8) -> RemRoundingI8Incomplete<'i>
[src]
fn rem_euc(self, rhs: &i8) -> RemRoundingI8Incomplete<'i>
[src]
impl<'t, 'i> RemRounding<&'t u128> for &'i Integer
[src]
type Output = RemRoundingU128Incomplete<'i>
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: &u128) -> RemRoundingU128Incomplete<'i>
[src]
fn rem_ceil(self, rhs: &u128) -> RemRoundingU128Incomplete<'i>
[src]
fn rem_floor(self, rhs: &u128) -> RemRoundingU128Incomplete<'i>
[src]
fn rem_euc(self, rhs: &u128) -> RemRoundingU128Incomplete<'i>
[src]
impl<'t, 'i> RemRounding<&'t u16> for &'i Integer
[src]
type Output = RemRoundingU16Incomplete<'i>
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: &u16) -> RemRoundingU16Incomplete<'i>
[src]
fn rem_ceil(self, rhs: &u16) -> RemRoundingU16Incomplete<'i>
[src]
fn rem_floor(self, rhs: &u16) -> RemRoundingU16Incomplete<'i>
[src]
fn rem_euc(self, rhs: &u16) -> RemRoundingU16Incomplete<'i>
[src]
impl<'t, 'i> RemRounding<&'t u32> for &'i Integer
[src]
type Output = RemRoundingU32Incomplete<'i>
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: &u32) -> RemRoundingU32Incomplete<'i>
[src]
fn rem_ceil(self, rhs: &u32) -> RemRoundingU32Incomplete<'i>
[src]
fn rem_floor(self, rhs: &u32) -> RemRoundingU32Incomplete<'i>
[src]
fn rem_euc(self, rhs: &u32) -> RemRoundingU32Incomplete<'i>
[src]
impl<'t, 'i> RemRounding<&'t u64> for &'i Integer
[src]
type Output = RemRoundingU64Incomplete<'i>
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: &u64) -> RemRoundingU64Incomplete<'i>
[src]
fn rem_ceil(self, rhs: &u64) -> RemRoundingU64Incomplete<'i>
[src]
fn rem_floor(self, rhs: &u64) -> RemRoundingU64Incomplete<'i>
[src]
fn rem_euc(self, rhs: &u64) -> RemRoundingU64Incomplete<'i>
[src]
impl<'t, 'i> RemRounding<&'t u8> for &'i Integer
[src]
type Output = RemRoundingU8Incomplete<'i>
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: &u8) -> RemRoundingU8Incomplete<'i>
[src]
fn rem_ceil(self, rhs: &u8) -> RemRoundingU8Incomplete<'i>
[src]
fn rem_floor(self, rhs: &u8) -> RemRoundingU8Incomplete<'i>
[src]
fn rem_euc(self, rhs: &u8) -> RemRoundingU8Incomplete<'i>
[src]
impl RemRounding<Integer> for Integer
[src]
type Output = Integer
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: Integer) -> Integer
[src]
fn rem_ceil(self, rhs: Integer) -> Integer
[src]
fn rem_floor(self, rhs: Integer) -> Integer
[src]
fn rem_euc(self, rhs: Integer) -> Integer
[src]
impl RemRounding<Integer> for &Integer
[src]
type Output = Integer
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: Integer) -> Integer
[src]
fn rem_ceil(self, rhs: Integer) -> Integer
[src]
fn rem_floor(self, rhs: Integer) -> Integer
[src]
fn rem_euc(self, rhs: Integer) -> Integer
[src]
impl RemRounding<Integer> for i128
[src]
type Output = Integer
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: Integer) -> Integer
[src]
fn rem_ceil(self, rhs: Integer) -> Integer
[src]
fn rem_floor(self, rhs: Integer) -> Integer
[src]
fn rem_euc(self, rhs: Integer) -> Integer
[src]
impl RemRounding<Integer> for &i128
[src]
type Output = Integer
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: Integer) -> Integer
[src]
fn rem_ceil(self, rhs: Integer) -> Integer
[src]
fn rem_floor(self, rhs: Integer) -> Integer
[src]
fn rem_euc(self, rhs: Integer) -> Integer
[src]
impl RemRounding<Integer> for u8
[src]
type Output = Integer
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: Integer) -> Integer
[src]
fn rem_ceil(self, rhs: Integer) -> Integer
[src]
fn rem_floor(self, rhs: Integer) -> Integer
[src]
fn rem_euc(self, rhs: Integer) -> Integer
[src]
impl RemRounding<Integer> for &u8
[src]
type Output = Integer
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: Integer) -> Integer
[src]
fn rem_ceil(self, rhs: Integer) -> Integer
[src]
fn rem_floor(self, rhs: Integer) -> Integer
[src]
fn rem_euc(self, rhs: Integer) -> Integer
[src]
impl RemRounding<Integer> for u16
[src]
type Output = Integer
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: Integer) -> Integer
[src]
fn rem_ceil(self, rhs: Integer) -> Integer
[src]
fn rem_floor(self, rhs: Integer) -> Integer
[src]
fn rem_euc(self, rhs: Integer) -> Integer
[src]
impl RemRounding<Integer> for &u16
[src]
type Output = Integer
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: Integer) -> Integer
[src]
fn rem_ceil(self, rhs: Integer) -> Integer
[src]
fn rem_floor(self, rhs: Integer) -> Integer
[src]
fn rem_euc(self, rhs: Integer) -> Integer
[src]
impl RemRounding<Integer> for u32
[src]
type Output = Integer
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: Integer) -> Integer
[src]
fn rem_ceil(self, rhs: Integer) -> Integer
[src]
fn rem_floor(self, rhs: Integer) -> Integer
[src]
fn rem_euc(self, rhs: Integer) -> Integer
[src]
impl RemRounding<Integer> for &u32
[src]
type Output = Integer
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: Integer) -> Integer
[src]
fn rem_ceil(self, rhs: Integer) -> Integer
[src]
fn rem_floor(self, rhs: Integer) -> Integer
[src]
fn rem_euc(self, rhs: Integer) -> Integer
[src]
impl RemRounding<Integer> for u64
[src]
type Output = Integer
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: Integer) -> Integer
[src]
fn rem_ceil(self, rhs: Integer) -> Integer
[src]
fn rem_floor(self, rhs: Integer) -> Integer
[src]
fn rem_euc(self, rhs: Integer) -> Integer
[src]
impl RemRounding<Integer> for &u64
[src]
type Output = Integer
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: Integer) -> Integer
[src]
fn rem_ceil(self, rhs: Integer) -> Integer
[src]
fn rem_floor(self, rhs: Integer) -> Integer
[src]
fn rem_euc(self, rhs: Integer) -> Integer
[src]
impl RemRounding<Integer> for i8
[src]
type Output = Integer
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: Integer) -> Integer
[src]
fn rem_ceil(self, rhs: Integer) -> Integer
[src]
fn rem_floor(self, rhs: Integer) -> Integer
[src]
fn rem_euc(self, rhs: Integer) -> Integer
[src]
impl RemRounding<Integer> for u128
[src]
type Output = Integer
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: Integer) -> Integer
[src]
fn rem_ceil(self, rhs: Integer) -> Integer
[src]
fn rem_floor(self, rhs: Integer) -> Integer
[src]
fn rem_euc(self, rhs: Integer) -> Integer
[src]
impl RemRounding<Integer> for &u128
[src]
type Output = Integer
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: Integer) -> Integer
[src]
fn rem_ceil(self, rhs: Integer) -> Integer
[src]
fn rem_floor(self, rhs: Integer) -> Integer
[src]
fn rem_euc(self, rhs: Integer) -> Integer
[src]
impl RemRounding<Integer> for &i8
[src]
type Output = Integer
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: Integer) -> Integer
[src]
fn rem_ceil(self, rhs: Integer) -> Integer
[src]
fn rem_floor(self, rhs: Integer) -> Integer
[src]
fn rem_euc(self, rhs: Integer) -> Integer
[src]
impl RemRounding<Integer> for i16
[src]
type Output = Integer
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: Integer) -> Integer
[src]
fn rem_ceil(self, rhs: Integer) -> Integer
[src]
fn rem_floor(self, rhs: Integer) -> Integer
[src]
fn rem_euc(self, rhs: Integer) -> Integer
[src]
impl RemRounding<Integer> for &i16
[src]
type Output = Integer
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: Integer) -> Integer
[src]
fn rem_ceil(self, rhs: Integer) -> Integer
[src]
fn rem_floor(self, rhs: Integer) -> Integer
[src]
fn rem_euc(self, rhs: Integer) -> Integer
[src]
impl RemRounding<Integer> for i32
[src]
type Output = Integer
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: Integer) -> Integer
[src]
fn rem_ceil(self, rhs: Integer) -> Integer
[src]
fn rem_floor(self, rhs: Integer) -> Integer
[src]
fn rem_euc(self, rhs: Integer) -> Integer
[src]
impl RemRounding<Integer> for &i32
[src]
type Output = Integer
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: Integer) -> Integer
[src]
fn rem_ceil(self, rhs: Integer) -> Integer
[src]
fn rem_floor(self, rhs: Integer) -> Integer
[src]
fn rem_euc(self, rhs: Integer) -> Integer
[src]
impl RemRounding<Integer> for i64
[src]
type Output = Integer
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: Integer) -> Integer
[src]
fn rem_ceil(self, rhs: Integer) -> Integer
[src]
fn rem_floor(self, rhs: Integer) -> Integer
[src]
fn rem_euc(self, rhs: Integer) -> Integer
[src]
impl RemRounding<Integer> for &i64
[src]
type Output = Integer
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: Integer) -> Integer
[src]
fn rem_ceil(self, rhs: Integer) -> Integer
[src]
fn rem_floor(self, rhs: Integer) -> Integer
[src]
fn rem_euc(self, rhs: Integer) -> Integer
[src]
impl RemRounding<i128> for Integer
[src]
type Output = Integer
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: i128) -> Integer
[src]
fn rem_ceil(self, rhs: i128) -> Integer
[src]
fn rem_floor(self, rhs: i128) -> Integer
[src]
fn rem_euc(self, rhs: i128) -> Integer
[src]
impl<'i> RemRounding<i128> for &'i Integer
[src]
type Output = RemRoundingI128Incomplete<'i>
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: i128) -> RemRoundingI128Incomplete<'i>
[src]
fn rem_ceil(self, rhs: i128) -> RemRoundingI128Incomplete<'i>
[src]
fn rem_floor(self, rhs: i128) -> RemRoundingI128Incomplete<'i>
[src]
fn rem_euc(self, rhs: i128) -> RemRoundingI128Incomplete<'i>
[src]
impl RemRounding<i16> for Integer
[src]
type Output = Integer
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: i16) -> Integer
[src]
fn rem_ceil(self, rhs: i16) -> Integer
[src]
fn rem_floor(self, rhs: i16) -> Integer
[src]
fn rem_euc(self, rhs: i16) -> Integer
[src]
impl<'i> RemRounding<i16> for &'i Integer
[src]
type Output = RemRoundingI16Incomplete<'i>
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: i16) -> RemRoundingI16Incomplete<'i>
[src]
fn rem_ceil(self, rhs: i16) -> RemRoundingI16Incomplete<'i>
[src]
fn rem_floor(self, rhs: i16) -> RemRoundingI16Incomplete<'i>
[src]
fn rem_euc(self, rhs: i16) -> RemRoundingI16Incomplete<'i>
[src]
impl RemRounding<i32> for Integer
[src]
type Output = Integer
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: i32) -> Integer
[src]
fn rem_ceil(self, rhs: i32) -> Integer
[src]
fn rem_floor(self, rhs: i32) -> Integer
[src]
fn rem_euc(self, rhs: i32) -> Integer
[src]
impl<'i> RemRounding<i32> for &'i Integer
[src]
type Output = RemRoundingI32Incomplete<'i>
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: i32) -> RemRoundingI32Incomplete<'i>
[src]
fn rem_ceil(self, rhs: i32) -> RemRoundingI32Incomplete<'i>
[src]
fn rem_floor(self, rhs: i32) -> RemRoundingI32Incomplete<'i>
[src]
fn rem_euc(self, rhs: i32) -> RemRoundingI32Incomplete<'i>
[src]
impl RemRounding<i64> for Integer
[src]
type Output = Integer
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: i64) -> Integer
[src]
fn rem_ceil(self, rhs: i64) -> Integer
[src]
fn rem_floor(self, rhs: i64) -> Integer
[src]
fn rem_euc(self, rhs: i64) -> Integer
[src]
impl<'i> RemRounding<i64> for &'i Integer
[src]
type Output = RemRoundingI64Incomplete<'i>
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: i64) -> RemRoundingI64Incomplete<'i>
[src]
fn rem_ceil(self, rhs: i64) -> RemRoundingI64Incomplete<'i>
[src]
fn rem_floor(self, rhs: i64) -> RemRoundingI64Incomplete<'i>
[src]
fn rem_euc(self, rhs: i64) -> RemRoundingI64Incomplete<'i>
[src]
impl RemRounding<i8> for Integer
[src]
type Output = Integer
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: i8) -> Integer
[src]
fn rem_ceil(self, rhs: i8) -> Integer
[src]
fn rem_floor(self, rhs: i8) -> Integer
[src]
fn rem_euc(self, rhs: i8) -> Integer
[src]
impl<'i> RemRounding<i8> for &'i Integer
[src]
type Output = RemRoundingI8Incomplete<'i>
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: i8) -> RemRoundingI8Incomplete<'i>
[src]
fn rem_ceil(self, rhs: i8) -> RemRoundingI8Incomplete<'i>
[src]
fn rem_floor(self, rhs: i8) -> RemRoundingI8Incomplete<'i>
[src]
fn rem_euc(self, rhs: i8) -> RemRoundingI8Incomplete<'i>
[src]
impl RemRounding<u128> for Integer
[src]
type Output = Integer
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: u128) -> Integer
[src]
fn rem_ceil(self, rhs: u128) -> Integer
[src]
fn rem_floor(self, rhs: u128) -> Integer
[src]
fn rem_euc(self, rhs: u128) -> Integer
[src]
impl<'i> RemRounding<u128> for &'i Integer
[src]
type Output = RemRoundingU128Incomplete<'i>
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: u128) -> RemRoundingU128Incomplete<'i>
[src]
fn rem_ceil(self, rhs: u128) -> RemRoundingU128Incomplete<'i>
[src]
fn rem_floor(self, rhs: u128) -> RemRoundingU128Incomplete<'i>
[src]
fn rem_euc(self, rhs: u128) -> RemRoundingU128Incomplete<'i>
[src]
impl RemRounding<u16> for Integer
[src]
type Output = Integer
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: u16) -> Integer
[src]
fn rem_ceil(self, rhs: u16) -> Integer
[src]
fn rem_floor(self, rhs: u16) -> Integer
[src]
fn rem_euc(self, rhs: u16) -> Integer
[src]
impl<'i> RemRounding<u16> for &'i Integer
[src]
type Output = RemRoundingU16Incomplete<'i>
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: u16) -> RemRoundingU16Incomplete<'i>
[src]
fn rem_ceil(self, rhs: u16) -> RemRoundingU16Incomplete<'i>
[src]
fn rem_floor(self, rhs: u16) -> RemRoundingU16Incomplete<'i>
[src]
fn rem_euc(self, rhs: u16) -> RemRoundingU16Incomplete<'i>
[src]
impl RemRounding<u32> for Integer
[src]
type Output = Integer
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: u32) -> Integer
[src]
fn rem_ceil(self, rhs: u32) -> Integer
[src]
fn rem_floor(self, rhs: u32) -> Integer
[src]
fn rem_euc(self, rhs: u32) -> Integer
[src]
impl<'i> RemRounding<u32> for &'i Integer
[src]
type Output = RemRoundingU32Incomplete<'i>
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: u32) -> RemRoundingU32Incomplete<'i>
[src]
fn rem_ceil(self, rhs: u32) -> RemRoundingU32Incomplete<'i>
[src]
fn rem_floor(self, rhs: u32) -> RemRoundingU32Incomplete<'i>
[src]
fn rem_euc(self, rhs: u32) -> RemRoundingU32Incomplete<'i>
[src]
impl RemRounding<u64> for Integer
[src]
type Output = Integer
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: u64) -> Integer
[src]
fn rem_ceil(self, rhs: u64) -> Integer
[src]
fn rem_floor(self, rhs: u64) -> Integer
[src]
fn rem_euc(self, rhs: u64) -> Integer
[src]
impl<'i> RemRounding<u64> for &'i Integer
[src]
type Output = RemRoundingU64Incomplete<'i>
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: u64) -> RemRoundingU64Incomplete<'i>
[src]
fn rem_ceil(self, rhs: u64) -> RemRoundingU64Incomplete<'i>
[src]
fn rem_floor(self, rhs: u64) -> RemRoundingU64Incomplete<'i>
[src]
fn rem_euc(self, rhs: u64) -> RemRoundingU64Incomplete<'i>
[src]
impl RemRounding<u8> for Integer
[src]
type Output = Integer
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: u8) -> Integer
[src]
fn rem_ceil(self, rhs: u8) -> Integer
[src]
fn rem_floor(self, rhs: u8) -> Integer
[src]
fn rem_euc(self, rhs: u8) -> Integer
[src]
impl<'i> RemRounding<u8> for &'i Integer
[src]
type Output = RemRoundingU8Incomplete<'i>
The resulting type from the remainder operation.
fn rem_trunc(self, rhs: u8) -> RemRoundingU8Incomplete<'i>
[src]
fn rem_ceil(self, rhs: u8) -> RemRoundingU8Incomplete<'i>
[src]
fn rem_floor(self, rhs: u8) -> RemRoundingU8Incomplete<'i>
[src]
fn rem_euc(self, rhs: u8) -> RemRoundingU8Incomplete<'i>
[src]
impl RemRoundingAssign<&'_ Integer> for Integer
[src]
fn rem_trunc_assign(&mut self, rhs: &Integer)
[src]
fn rem_ceil_assign(&mut self, rhs: &Integer)
[src]
fn rem_floor_assign(&mut self, rhs: &Integer)
[src]
fn rem_euc_assign(&mut self, rhs: &Integer)
[src]
impl RemRoundingAssign<&'_ i128> for Integer
[src]
fn rem_trunc_assign(&mut self, rhs: &i128)
[src]
fn rem_ceil_assign(&mut self, rhs: &i128)
[src]
fn rem_floor_assign(&mut self, rhs: &i128)
[src]
fn rem_euc_assign(&mut self, rhs: &i128)
[src]
impl RemRoundingAssign<&'_ i16> for Integer
[src]
fn rem_trunc_assign(&mut self, rhs: &i16)
[src]
fn rem_ceil_assign(&mut self, rhs: &i16)
[src]
fn rem_floor_assign(&mut self, rhs: &i16)
[src]
fn rem_euc_assign(&mut self, rhs: &i16)
[src]
impl RemRoundingAssign<&'_ i32> for Integer
[src]
fn rem_trunc_assign(&mut self, rhs: &i32)
[src]
fn rem_ceil_assign(&mut self, rhs: &i32)
[src]
fn rem_floor_assign(&mut self, rhs: &i32)
[src]
fn rem_euc_assign(&mut self, rhs: &i32)
[src]
impl RemRoundingAssign<&'_ i64> for Integer
[src]
fn rem_trunc_assign(&mut self, rhs: &i64)
[src]
fn rem_ceil_assign(&mut self, rhs: &i64)
[src]
fn rem_floor_assign(&mut self, rhs: &i64)
[src]
fn rem_euc_assign(&mut self, rhs: &i64)
[src]
impl RemRoundingAssign<&'_ i8> for Integer
[src]
fn rem_trunc_assign(&mut self, rhs: &i8)
[src]
fn rem_ceil_assign(&mut self, rhs: &i8)
[src]
fn rem_floor_assign(&mut self, rhs: &i8)
[src]
fn rem_euc_assign(&mut self, rhs: &i8)
[src]
impl RemRoundingAssign<&'_ u128> for Integer
[src]
fn rem_trunc_assign(&mut self, rhs: &u128)
[src]
fn rem_ceil_assign(&mut self, rhs: &u128)
[src]
fn rem_floor_assign(&mut self, rhs: &u128)
[src]
fn rem_euc_assign(&mut self, rhs: &u128)
[src]
impl RemRoundingAssign<&'_ u16> for Integer
[src]
fn rem_trunc_assign(&mut self, rhs: &u16)
[src]
fn rem_ceil_assign(&mut self, rhs: &u16)
[src]
fn rem_floor_assign(&mut self, rhs: &u16)
[src]
fn rem_euc_assign(&mut self, rhs: &u16)
[src]
impl RemRoundingAssign<&'_ u32> for Integer
[src]
fn rem_trunc_assign(&mut self, rhs: &u32)
[src]
fn rem_ceil_assign(&mut self, rhs: &u32)
[src]
fn rem_floor_assign(&mut self, rhs: &u32)
[src]
fn rem_euc_assign(&mut self, rhs: &u32)
[src]
impl RemRoundingAssign<&'_ u64> for Integer
[src]
fn rem_trunc_assign(&mut self, rhs: &u64)
[src]
fn rem_ceil_assign(&mut self, rhs: &u64)
[src]
fn rem_floor_assign(&mut self, rhs: &u64)
[src]
fn rem_euc_assign(&mut self, rhs: &u64)
[src]
impl RemRoundingAssign<&'_ u8> for Integer
[src]
fn rem_trunc_assign(&mut self, rhs: &u8)
[src]
fn rem_ceil_assign(&mut self, rhs: &u8)
[src]
fn rem_floor_assign(&mut self, rhs: &u8)
[src]
fn rem_euc_assign(&mut self, rhs: &u8)
[src]
impl RemRoundingAssign<Integer> for Integer
[src]
fn rem_trunc_assign(&mut self, rhs: Integer)
[src]
fn rem_ceil_assign(&mut self, rhs: Integer)
[src]
fn rem_floor_assign(&mut self, rhs: Integer)
[src]
fn rem_euc_assign(&mut self, rhs: Integer)
[src]
impl RemRoundingAssign<i128> for Integer
[src]
fn rem_trunc_assign(&mut self, rhs: i128)
[src]
fn rem_ceil_assign(&mut self, rhs: i128)
[src]
fn rem_floor_assign(&mut self, rhs: i128)
[src]
fn rem_euc_assign(&mut self, rhs: i128)
[src]
impl RemRoundingAssign<i16> for Integer
[src]
fn rem_trunc_assign(&mut self, rhs: i16)
[src]
fn rem_ceil_assign(&mut self, rhs: i16)
[src]
fn rem_floor_assign(&mut self, rhs: i16)
[src]
fn rem_euc_assign(&mut self, rhs: i16)
[src]
impl RemRoundingAssign<i32> for Integer
[src]
fn rem_trunc_assign(&mut self, rhs: i32)
[src]
fn rem_ceil_assign(&mut self, rhs: i32)
[src]
fn rem_floor_assign(&mut self, rhs: i32)
[src]
fn rem_euc_assign(&mut self, rhs: i32)
[src]
impl RemRoundingAssign<i64> for Integer
[src]
fn rem_trunc_assign(&mut self, rhs: i64)
[src]
fn rem_ceil_assign(&mut self, rhs: i64)
[src]
fn rem_floor_assign(&mut self, rhs: i64)
[src]
fn rem_euc_assign(&mut self, rhs: i64)
[src]
impl RemRoundingAssign<i8> for Integer
[src]
fn rem_trunc_assign(&mut self, rhs: i8)
[src]
fn rem_ceil_assign(&mut self, rhs: i8)
[src]
fn rem_floor_assign(&mut self, rhs: i8)
[src]
fn rem_euc_assign(&mut self, rhs: i8)
[src]
impl RemRoundingAssign<u128> for Integer
[src]
fn rem_trunc_assign(&mut self, rhs: u128)
[src]
fn rem_ceil_assign(&mut self, rhs: u128)
[src]
fn rem_floor_assign(&mut self, rhs: u128)
[src]
fn rem_euc_assign(&mut self, rhs: u128)
[src]
impl RemRoundingAssign<u16> for Integer
[src]
fn rem_trunc_assign(&mut self, rhs: u16)
[src]
fn rem_ceil_assign(&mut self, rhs: u16)
[src]
fn rem_floor_assign(&mut self, rhs: u16)
[src]
fn rem_euc_assign(&mut self, rhs: u16)
[src]
impl RemRoundingAssign<u32> for Integer
[src]
fn rem_trunc_assign(&mut self, rhs: u32)
[src]
fn rem_ceil_assign(&mut self, rhs: u32)
[src]
fn rem_floor_assign(&mut self, rhs: u32)
[src]
fn rem_euc_assign(&mut self, rhs: u32)
[src]
impl RemRoundingAssign<u64> for Integer
[src]
fn rem_trunc_assign(&mut self, rhs: u64)
[src]
fn rem_ceil_assign(&mut self, rhs: u64)
[src]
fn rem_floor_assign(&mut self, rhs: u64)
[src]
fn rem_euc_assign(&mut self, rhs: u64)
[src]
impl RemRoundingAssign<u8> for Integer
[src]
fn rem_trunc_assign(&mut self, rhs: u8)
[src]
fn rem_ceil_assign(&mut self, rhs: u8)
[src]
fn rem_floor_assign(&mut self, rhs: u8)
[src]
fn rem_euc_assign(&mut self, rhs: u8)
[src]
impl RemRoundingFrom<&'_ Integer> for Integer
[src]
fn rem_trunc_from(&mut self, lhs: &Integer)
[src]
fn rem_ceil_from(&mut self, lhs: &Integer)
[src]
fn rem_floor_from(&mut self, lhs: &Integer)
[src]
fn rem_euc_from(&mut self, lhs: &Integer)
[src]
impl RemRoundingFrom<&'_ i128> for Integer
[src]
fn rem_trunc_from(&mut self, lhs: &i128)
[src]
fn rem_ceil_from(&mut self, lhs: &i128)
[src]
fn rem_floor_from(&mut self, lhs: &i128)
[src]
fn rem_euc_from(&mut self, lhs: &i128)
[src]
impl RemRoundingFrom<&'_ i16> for Integer
[src]
fn rem_trunc_from(&mut self, lhs: &i16)
[src]
fn rem_ceil_from(&mut self, lhs: &i16)
[src]
fn rem_floor_from(&mut self, lhs: &i16)
[src]
fn rem_euc_from(&mut self, lhs: &i16)
[src]
impl RemRoundingFrom<&'_ i32> for Integer
[src]
fn rem_trunc_from(&mut self, lhs: &i32)
[src]
fn rem_ceil_from(&mut self, lhs: &i32)
[src]
fn rem_floor_from(&mut self, lhs: &i32)
[src]
fn rem_euc_from(&mut self, lhs: &i32)
[src]
impl RemRoundingFrom<&'_ i64> for Integer
[src]
fn rem_trunc_from(&mut self, lhs: &i64)
[src]
fn rem_ceil_from(&mut self, lhs: &i64)
[src]
fn rem_floor_from(&mut self, lhs: &i64)
[src]
fn rem_euc_from(&mut self, lhs: &i64)
[src]
impl RemRoundingFrom<&'_ i8> for Integer
[src]
fn rem_trunc_from(&mut self, lhs: &i8)
[src]
fn rem_ceil_from(&mut self, lhs: &i8)
[src]
fn rem_floor_from(&mut self, lhs: &i8)
[src]
fn rem_euc_from(&mut self, lhs: &i8)
[src]
impl RemRoundingFrom<&'_ u128> for Integer
[src]
fn rem_trunc_from(&mut self, lhs: &u128)
[src]
fn rem_ceil_from(&mut self, lhs: &u128)
[src]
fn rem_floor_from(&mut self, lhs: &u128)
[src]
fn rem_euc_from(&mut self, lhs: &u128)
[src]
impl RemRoundingFrom<&'_ u16> for Integer
[src]
fn rem_trunc_from(&mut self, lhs: &u16)
[src]
fn rem_ceil_from(&mut self, lhs: &u16)
[src]
fn rem_floor_from(&mut self, lhs: &u16)
[src]
fn rem_euc_from(&mut self, lhs: &u16)
[src]
impl RemRoundingFrom<&'_ u32> for Integer
[src]
fn rem_trunc_from(&mut self, lhs: &u32)
[src]
fn rem_ceil_from(&mut self, lhs: &u32)
[src]
fn rem_floor_from(&mut self, lhs: &u32)
[src]
fn rem_euc_from(&mut self, lhs: &u32)
[src]
impl RemRoundingFrom<&'_ u64> for Integer
[src]
fn rem_trunc_from(&mut self, lhs: &u64)
[src]
fn rem_ceil_from(&mut self, lhs: &u64)
[src]
fn rem_floor_from(&mut self, lhs: &u64)
[src]
fn rem_euc_from(&mut self, lhs: &u64)
[src]
impl RemRoundingFrom<&'_ u8> for Integer
[src]
fn rem_trunc_from(&mut self, lhs: &u8)
[src]
fn rem_ceil_from(&mut self, lhs: &u8)
[src]
fn rem_floor_from(&mut self, lhs: &u8)
[src]
fn rem_euc_from(&mut self, lhs: &u8)
[src]
impl RemRoundingFrom<Integer> for Integer
[src]
fn rem_trunc_from(&mut self, lhs: Integer)
[src]
fn rem_ceil_from(&mut self, lhs: Integer)
[src]
fn rem_floor_from(&mut self, lhs: Integer)
[src]
fn rem_euc_from(&mut self, lhs: Integer)
[src]
impl RemRoundingFrom<i128> for Integer
[src]
fn rem_trunc_from(&mut self, lhs: i128)
[src]
fn rem_ceil_from(&mut self, lhs: i128)
[src]
fn rem_floor_from(&mut self, lhs: i128)
[src]
fn rem_euc_from(&mut self, lhs: i128)
[src]
impl RemRoundingFrom<i16> for Integer
[src]
fn rem_trunc_from(&mut self, lhs: i16)
[src]
fn rem_ceil_from(&mut self, lhs: i16)
[src]
fn rem_floor_from(&mut self, lhs: i16)
[src]
fn rem_euc_from(&mut self, lhs: i16)
[src]
impl RemRoundingFrom<i32> for Integer
[src]
fn rem_trunc_from(&mut self, lhs: i32)
[src]
fn rem_ceil_from(&mut self, lhs: i32)
[src]
fn rem_floor_from(&mut self, lhs: i32)
[src]
fn rem_euc_from(&mut self, lhs: i32)
[src]
impl RemRoundingFrom<i64> for Integer
[src]
fn rem_trunc_from(&mut self, lhs: i64)
[src]
fn rem_ceil_from(&mut self, lhs: i64)
[src]
fn rem_floor_from(&mut self, lhs: i64)
[src]
fn rem_euc_from(&mut self, lhs: i64)
[src]
impl RemRoundingFrom<i8> for Integer
[src]
fn rem_trunc_from(&mut self, lhs: i8)
[src]
fn rem_ceil_from(&mut self, lhs: i8)
[src]
fn rem_floor_from(&mut self, lhs: i8)
[src]
fn rem_euc_from(&mut self, lhs: i8)
[src]
impl RemRoundingFrom<u128> for Integer
[src]
fn rem_trunc_from(&mut self, lhs: u128)
[src]
fn rem_ceil_from(&mut self, lhs: u128)
[src]
fn rem_floor_from(&mut self, lhs: u128)
[src]
fn rem_euc_from(&mut self, lhs: u128)
[src]
impl RemRoundingFrom<u16> for Integer
[src]
fn rem_trunc_from(&mut self, lhs: u16)
[src]
fn rem_ceil_from(&mut self, lhs: u16)
[src]
fn rem_floor_from(&mut self, lhs: u16)
[src]
fn rem_euc_from(&mut self, lhs: u16)
[src]
impl RemRoundingFrom<u32> for Integer
[src]
fn rem_trunc_from(&mut self, lhs: u32)
[src]
fn rem_ceil_from(&mut self, lhs: u32)
[src]
fn rem_floor_from(&mut self, lhs: u32)
[src]
fn rem_euc_from(&mut self, lhs: u32)
[src]
impl RemRoundingFrom<u64> for Integer
[src]
fn rem_trunc_from(&mut self, lhs: u64)
[src]
fn rem_ceil_from(&mut self, lhs: u64)
[src]
fn rem_floor_from(&mut self, lhs: u64)
[src]
fn rem_euc_from(&mut self, lhs: u64)
[src]
impl RemRoundingFrom<u8> for Integer
[src]
fn rem_trunc_from(&mut self, lhs: u8)
[src]
fn rem_ceil_from(&mut self, lhs: u8)
[src]
fn rem_floor_from(&mut self, lhs: u8)
[src]
fn rem_euc_from(&mut self, lhs: u8)
[src]
impl SaturatingCast<i128> for Integer
[src]
fn saturating_cast(self) -> i128
[src]
impl SaturatingCast<i128> for &Integer
[src]
fn saturating_cast(self) -> i128
[src]
impl SaturatingCast<i16> for Integer
[src]
fn saturating_cast(self) -> i16
[src]
impl SaturatingCast<i16> for &Integer
[src]
fn saturating_cast(self) -> i16
[src]
impl SaturatingCast<i32> for Integer
[src]
fn saturating_cast(self) -> i32
[src]
impl SaturatingCast<i32> for &Integer
[src]
fn saturating_cast(self) -> i32
[src]
impl SaturatingCast<i64> for Integer
[src]
fn saturating_cast(self) -> i64
[src]
impl SaturatingCast<i64> for &Integer
[src]
fn saturating_cast(self) -> i64
[src]
impl SaturatingCast<i8> for Integer
[src]
fn saturating_cast(self) -> i8
[src]
impl SaturatingCast<i8> for &Integer
[src]
fn saturating_cast(self) -> i8
[src]
impl SaturatingCast<isize> for Integer
[src]
fn saturating_cast(self) -> isize
[src]
impl SaturatingCast<isize> for &Integer
[src]
fn saturating_cast(self) -> isize
[src]
impl SaturatingCast<u128> for Integer
[src]
fn saturating_cast(self) -> u128
[src]
impl SaturatingCast<u128> for &Integer
[src]
fn saturating_cast(self) -> u128
[src]
impl SaturatingCast<u16> for Integer
[src]
fn saturating_cast(self) -> u16
[src]
impl SaturatingCast<u16> for &Integer
[src]
fn saturating_cast(self) -> u16
[src]
impl SaturatingCast<u32> for Integer
[src]
fn saturating_cast(self) -> u32
[src]
impl SaturatingCast<u32> for &Integer
[src]
fn saturating_cast(self) -> u32
[src]
impl SaturatingCast<u64> for Integer
[src]
fn saturating_cast(self) -> u64
[src]
impl SaturatingCast<u64> for &Integer
[src]
fn saturating_cast(self) -> u64
[src]
impl SaturatingCast<u8> for Integer
[src]
fn saturating_cast(self) -> u8
[src]
impl SaturatingCast<u8> for &Integer
[src]
fn saturating_cast(self) -> u8
[src]
impl SaturatingCast<usize> for Integer
[src]
fn saturating_cast(self) -> usize
[src]
impl SaturatingCast<usize> for &Integer
[src]
fn saturating_cast(self) -> usize
[src]
impl Send for Integer
[src]
impl Shl<&'_ i32> for Integer
[src]
type Output = Integer
The resulting type after applying the <<
operator.
fn shl(self, rhs: &i32) -> Integer
[src]
impl<'b> Shl<&'_ i32> for &'b Integer
[src]
type Output = ShlI32Incomplete<'b>
The resulting type after applying the <<
operator.
fn shl(self, rhs: &i32) -> ShlI32Incomplete<'b>
[src]
impl Shl<&'_ u32> for Integer
[src]
type Output = Integer
The resulting type after applying the <<
operator.
fn shl(self, rhs: &u32) -> Integer
[src]
impl<'b> Shl<&'_ u32> for &'b Integer
[src]
type Output = ShlU32Incomplete<'b>
The resulting type after applying the <<
operator.
fn shl(self, rhs: &u32) -> ShlU32Incomplete<'b>
[src]
impl Shl<i32> for Integer
[src]
type Output = Integer
The resulting type after applying the <<
operator.
fn shl(self, rhs: i32) -> Integer
[src]
impl<'b> Shl<i32> for &'b Integer
[src]
type Output = ShlI32Incomplete<'b>
The resulting type after applying the <<
operator.
fn shl(self, rhs: i32) -> ShlI32Incomplete<'b>
[src]
impl Shl<u32> for Integer
[src]
type Output = Integer
The resulting type after applying the <<
operator.
fn shl(self, rhs: u32) -> Integer
[src]
impl<'b> Shl<u32> for &'b Integer
[src]
type Output = ShlU32Incomplete<'b>
The resulting type after applying the <<
operator.
fn shl(self, rhs: u32) -> ShlU32Incomplete<'b>
[src]
impl ShlAssign<&'_ i32> for Integer
[src]
fn shl_assign(&mut self, rhs: &i32)
[src]
impl ShlAssign<&'_ u32> for Integer
[src]
fn shl_assign(&mut self, rhs: &u32)
[src]
impl ShlAssign<i32> for Integer
[src]
fn shl_assign(&mut self, rhs: i32)
[src]
impl ShlAssign<u32> for Integer
[src]
fn shl_assign(&mut self, rhs: u32)
[src]
impl Shr<&'_ i32> for Integer
[src]
type Output = Integer
The resulting type after applying the >>
operator.
fn shr(self, rhs: &i32) -> Integer
[src]
impl<'b> Shr<&'_ i32> for &'b Integer
[src]
type Output = ShrI32Incomplete<'b>
The resulting type after applying the >>
operator.
fn shr(self, rhs: &i32) -> ShrI32Incomplete<'b>
[src]
impl Shr<&'_ u32> for Integer
[src]
type Output = Integer
The resulting type after applying the >>
operator.
fn shr(self, rhs: &u32) -> Integer
[src]
impl<'b> Shr<&'_ u32> for &'b Integer
[src]
type Output = ShrU32Incomplete<'b>
The resulting type after applying the >>
operator.
fn shr(self, rhs: &u32) -> ShrU32Incomplete<'b>
[src]
impl Shr<i32> for Integer
[src]
type Output = Integer
The resulting type after applying the >>
operator.
fn shr(self, rhs: i32) -> Integer
[src]
impl<'b> Shr<i32> for &'b Integer
[src]
type Output = ShrI32Incomplete<'b>
The resulting type after applying the >>
operator.
fn shr(self, rhs: i32) -> ShrI32Incomplete<'b>
[src]
impl Shr<u32> for Integer
[src]
type Output = Integer
The resulting type after applying the >>
operator.
fn shr(self, rhs: u32) -> Integer
[src]
impl<'b> Shr<u32> for &'b Integer
[src]
type Output = ShrU32Incomplete<'b>
The resulting type after applying the >>
operator.
fn shr(self, rhs: u32) -> ShrU32Incomplete<'b>
[src]
impl ShrAssign<&'_ i32> for Integer
[src]
fn shr_assign(&mut self, rhs: &i32)
[src]
impl ShrAssign<&'_ u32> for Integer
[src]
fn shr_assign(&mut self, rhs: &u32)
[src]
impl ShrAssign<i32> for Integer
[src]
fn shr_assign(&mut self, rhs: i32)
[src]
impl ShrAssign<u32> for Integer
[src]
fn shr_assign(&mut self, rhs: u32)
[src]
impl Sub<&'_ Integer> for Integer
[src]
type Output = Integer
The resulting type after applying the -
operator.
fn sub(self, rhs: &Integer) -> Integer
[src]
impl Sub<&'_ Integer> for Float
[src]
type Output = Float
The resulting type after applying the -
operator.
fn sub(self, rhs: &Integer) -> Float
[src]
impl Sub<&'_ i128> for Integer
[src]
type Output = Integer
The resulting type after applying the -
operator.
fn sub(self, rhs: &i128) -> Integer
[src]
impl<'b> Sub<&'_ i128> for &'b Integer
[src]
type Output = SubI128Incomplete<'b>
The resulting type after applying the -
operator.
fn sub(self, rhs: &i128) -> SubI128Incomplete<'b>
[src]
impl Sub<&'_ i16> for Integer
[src]
type Output = Integer
The resulting type after applying the -
operator.
fn sub(self, rhs: &i16) -> Integer
[src]
impl<'b> Sub<&'_ i16> for &'b Integer
[src]
type Output = SubI16Incomplete<'b>
The resulting type after applying the -
operator.
fn sub(self, rhs: &i16) -> SubI16Incomplete<'b>
[src]
impl Sub<&'_ i32> for Integer
[src]
type Output = Integer
The resulting type after applying the -
operator.
fn sub(self, rhs: &i32) -> Integer
[src]
impl<'b> Sub<&'_ i32> for &'b Integer
[src]
type Output = SubI32Incomplete<'b>
The resulting type after applying the -
operator.
fn sub(self, rhs: &i32) -> SubI32Incomplete<'b>
[src]
impl Sub<&'_ i64> for Integer
[src]
type Output = Integer
The resulting type after applying the -
operator.
fn sub(self, rhs: &i64) -> Integer
[src]
impl<'b> Sub<&'_ i64> for &'b Integer
[src]
type Output = SubI64Incomplete<'b>
The resulting type after applying the -
operator.
fn sub(self, rhs: &i64) -> SubI64Incomplete<'b>
[src]
impl Sub<&'_ i8> for Integer
[src]
type Output = Integer
The resulting type after applying the -
operator.
fn sub(self, rhs: &i8) -> Integer
[src]
impl<'b> Sub<&'_ i8> for &'b Integer
[src]
type Output = SubI8Incomplete<'b>
The resulting type after applying the -
operator.
fn sub(self, rhs: &i8) -> SubI8Incomplete<'b>
[src]
impl Sub<&'_ u128> for Integer
[src]
type Output = Integer
The resulting type after applying the -
operator.
fn sub(self, rhs: &u128) -> Integer
[src]
impl<'b> Sub<&'_ u128> for &'b Integer
[src]
type Output = SubU128Incomplete<'b>
The resulting type after applying the -
operator.
fn sub(self, rhs: &u128) -> SubU128Incomplete<'b>
[src]
impl Sub<&'_ u16> for Integer
[src]
type Output = Integer
The resulting type after applying the -
operator.
fn sub(self, rhs: &u16) -> Integer
[src]
impl<'b> Sub<&'_ u16> for &'b Integer
[src]
type Output = SubU16Incomplete<'b>
The resulting type after applying the -
operator.
fn sub(self, rhs: &u16) -> SubU16Incomplete<'b>
[src]
impl Sub<&'_ u32> for Integer
[src]
type Output = Integer
The resulting type after applying the -
operator.
fn sub(self, rhs: &u32) -> Integer
[src]
impl<'b> Sub<&'_ u32> for &'b Integer
[src]
type Output = SubU32Incomplete<'b>
The resulting type after applying the -
operator.
fn sub(self, rhs: &u32) -> SubU32Incomplete<'b>
[src]
impl Sub<&'_ u64> for Integer
[src]
type Output = Integer
The resulting type after applying the -
operator.
fn sub(self, rhs: &u64) -> Integer
[src]
impl<'b> Sub<&'_ u64> for &'b Integer
[src]
type Output = SubU64Incomplete<'b>
The resulting type after applying the -
operator.
fn sub(self, rhs: &u64) -> SubU64Incomplete<'b>
[src]
impl Sub<&'_ u8> for Integer
[src]
type Output = Integer
The resulting type after applying the -
operator.
fn sub(self, rhs: &u8) -> Integer
[src]
impl<'b> Sub<&'_ u8> for &'b Integer
[src]
type Output = SubU8Incomplete<'b>
The resulting type after applying the -
operator.
fn sub(self, rhs: &u8) -> SubU8Incomplete<'b>
[src]
impl<'a> Sub<&'a Float> for Integer
[src]
type Output = SubFromOwnedIntegerIncomplete<'a>
The resulting type after applying the -
operator.
fn sub(self, rhs: &Float) -> SubFromOwnedIntegerIncomplete<'_>
[src]
impl<'a> Sub<&'a Float> for &'a Integer
[src]
type Output = SubFromIntegerIncomplete<'a>
The resulting type after applying the -
operator.
fn sub(self, rhs: &'a Float) -> SubFromIntegerIncomplete<'_>
[src]
impl<'a> Sub<&'a Integer> for &'a Integer
[src]
type Output = SubIncomplete<'a>
The resulting type after applying the -
operator.
fn sub(self, rhs: &'a Integer) -> SubIncomplete<'_>
[src]
impl<'a> Sub<&'a Integer> for &'a Float
[src]
type Output = SubIntegerIncomplete<'a>
The resulting type after applying the -
operator.
fn sub(self, rhs: &'a Integer) -> SubIntegerIncomplete<'_>
[src]
impl Sub<Float> for Integer
[src]
type Output = Float
The resulting type after applying the -
operator.
fn sub(self, rhs: Float) -> Float
[src]
impl Sub<Float> for &Integer
[src]
type Output = Float
The resulting type after applying the -
operator.
fn sub(self, rhs: Float) -> Float
[src]
impl Sub<Integer> for Integer
[src]
type Output = Integer
The resulting type after applying the -
operator.
fn sub(self, rhs: Integer) -> Integer
[src]
impl Sub<Integer> for &Integer
[src]
type Output = Integer
The resulting type after applying the -
operator.
fn sub(self, rhs: Integer) -> Integer
[src]
impl Sub<Integer> for Float
[src]
type Output = Float
The resulting type after applying the -
operator.
fn sub(self, rhs: Integer) -> Float
[src]
impl<'a> Sub<Integer> for &'a Float
[src]
type Output = SubOwnedIntegerIncomplete<'a>
The resulting type after applying the -
operator.
fn sub(self, rhs: Integer) -> SubOwnedIntegerIncomplete<'a>
[src]
impl Sub<i128> for Integer
[src]
type Output = Integer
The resulting type after applying the -
operator.
fn sub(self, rhs: i128) -> Integer
[src]
impl<'b> Sub<i128> for &'b Integer
[src]
type Output = SubI128Incomplete<'b>
The resulting type after applying the -
operator.
fn sub(self, rhs: i128) -> SubI128Incomplete<'b>
[src]
impl Sub<i16> for Integer
[src]
type Output = Integer
The resulting type after applying the -
operator.
fn sub(self, rhs: i16) -> Integer
[src]
impl<'b> Sub<i16> for &'b Integer
[src]
type Output = SubI16Incomplete<'b>
The resulting type after applying the -
operator.
fn sub(self, rhs: i16) -> SubI16Incomplete<'b>
[src]
impl Sub<i32> for Integer
[src]
type Output = Integer
The resulting type after applying the -
operator.
fn sub(self, rhs: i32) -> Integer
[src]
impl<'b> Sub<i32> for &'b Integer
[src]
type Output = SubI32Incomplete<'b>
The resulting type after applying the -
operator.
fn sub(self, rhs: i32) -> SubI32Incomplete<'b>
[src]
impl Sub<i64> for Integer
[src]
type Output = Integer
The resulting type after applying the -
operator.
fn sub(self, rhs: i64) -> Integer
[src]
impl<'b> Sub<i64> for &'b Integer
[src]
type Output = SubI64Incomplete<'b>
The resulting type after applying the -
operator.
fn sub(self, rhs: i64) -> SubI64Incomplete<'b>
[src]
impl Sub<i8> for Integer
[src]
type Output = Integer
The resulting type after applying the -
operator.
fn sub(self, rhs: i8) -> Integer
[src]
impl<'b> Sub<i8> for &'b Integer
[src]
type Output = SubI8Incomplete<'b>
The resulting type after applying the -
operator.
fn sub(self, rhs: i8) -> SubI8Incomplete<'b>
[src]
impl Sub<u128> for Integer
[src]
type Output = Integer
The resulting type after applying the -
operator.
fn sub(self, rhs: u128) -> Integer
[src]
impl<'b> Sub<u128> for &'b Integer
[src]
type Output = SubU128Incomplete<'b>
The resulting type after applying the -
operator.
fn sub(self, rhs: u128) -> SubU128Incomplete<'b>
[src]
impl Sub<u16> for Integer
[src]
type Output = Integer
The resulting type after applying the -
operator.
fn sub(self, rhs: u16) -> Integer
[src]
impl<'b> Sub<u16> for &'b Integer
[src]
type Output = SubU16Incomplete<'b>
The resulting type after applying the -
operator.
fn sub(self, rhs: u16) -> SubU16Incomplete<'b>
[src]
impl Sub<u32> for Integer
[src]
type Output = Integer
The resulting type after applying the -
operator.
fn sub(self, rhs: u32) -> Integer
[src]
impl<'b> Sub<u32> for &'b Integer
[src]
type Output = SubU32Incomplete<'b>
The resulting type after applying the -
operator.
fn sub(self, rhs: u32) -> SubU32Incomplete<'b>
[src]
impl Sub<u64> for Integer
[src]
type Output = Integer
The resulting type after applying the -
operator.
fn sub(self, rhs: u64) -> Integer
[src]
impl<'b> Sub<u64> for &'b Integer
[src]
type Output = SubU64Incomplete<'b>
The resulting type after applying the -
operator.
fn sub(self, rhs: u64) -> SubU64Incomplete<'b>
[src]
impl Sub<u8> for Integer
[src]
type Output = Integer
The resulting type after applying the -
operator.
fn sub(self, rhs: u8) -> Integer
[src]
impl<'b> Sub<u8> for &'b Integer
[src]
type Output = SubU8Incomplete<'b>
The resulting type after applying the -
operator.
fn sub(self, rhs: u8) -> SubU8Incomplete<'b>
[src]
impl SubAssign<&'_ Integer> for Integer
[src]
fn sub_assign(&mut self, rhs: &Integer)
[src]
impl SubAssign<&'_ Integer> for Float
[src]
fn sub_assign(&mut self, rhs: &Integer)
[src]
impl SubAssign<&'_ i128> for Integer
[src]
fn sub_assign(&mut self, rhs: &i128)
[src]
impl SubAssign<&'_ i16> for Integer
[src]
fn sub_assign(&mut self, rhs: &i16)
[src]
impl SubAssign<&'_ i32> for Integer
[src]
fn sub_assign(&mut self, rhs: &i32)
[src]
impl SubAssign<&'_ i64> for Integer
[src]
fn sub_assign(&mut self, rhs: &i64)
[src]
impl SubAssign<&'_ i8> for Integer
[src]
fn sub_assign(&mut self, rhs: &i8)
[src]
impl SubAssign<&'_ u128> for Integer
[src]
fn sub_assign(&mut self, rhs: &u128)
[src]
impl SubAssign<&'_ u16> for Integer
[src]
fn sub_assign(&mut self, rhs: &u16)
[src]
impl SubAssign<&'_ u32> for Integer
[src]
fn sub_assign(&mut self, rhs: &u32)
[src]
impl SubAssign<&'_ u64> for Integer
[src]
fn sub_assign(&mut self, rhs: &u64)
[src]
impl SubAssign<&'_ u8> for Integer
[src]
fn sub_assign(&mut self, rhs: &u8)
[src]
impl SubAssign<Integer> for Integer
[src]
fn sub_assign(&mut self, rhs: Integer)
[src]
impl SubAssign<Integer> for Float
[src]
fn sub_assign(&mut self, rhs: Integer)
[src]
impl SubAssign<i128> for Integer
[src]
fn sub_assign(&mut self, rhs: i128)
[src]
impl SubAssign<i16> for Integer
[src]
fn sub_assign(&mut self, rhs: i16)
[src]
impl SubAssign<i32> for Integer
[src]
fn sub_assign(&mut self, rhs: i32)
[src]
impl SubAssign<i64> for Integer
[src]
fn sub_assign(&mut self, rhs: i64)
[src]
impl SubAssign<i8> for Integer
[src]
fn sub_assign(&mut self, rhs: i8)
[src]
impl SubAssign<u128> for Integer
[src]
fn sub_assign(&mut self, rhs: u128)
[src]
impl SubAssign<u16> for Integer
[src]
fn sub_assign(&mut self, rhs: u16)
[src]
impl SubAssign<u32> for Integer
[src]
fn sub_assign(&mut self, rhs: u32)
[src]
impl SubAssign<u64> for Integer
[src]
fn sub_assign(&mut self, rhs: u64)
[src]
impl SubAssign<u8> for Integer
[src]
fn sub_assign(&mut self, rhs: u8)
[src]
impl SubAssignRound<&'_ Integer> for Float
[src]
type Round = Round
The rounding method.
type Ordering = Ordering
The direction from rounding.
fn sub_assign_round(&mut self, rhs: &Integer, round: Round) -> Ordering
[src]
impl SubAssignRound<Integer> for Float
[src]
type Round = Round
The rounding method.
type Ordering = Ordering
The direction from rounding.
fn sub_assign_round(&mut self, rhs: Integer, round: Round) -> Ordering
[src]
impl SubFrom<&'_ Integer> for Integer
[src]
impl SubFrom<&'_ Integer> for Float
[src]
impl SubFrom<&'_ i128> for Integer
[src]
impl SubFrom<&'_ i16> for Integer
[src]
impl SubFrom<&'_ i32> for Integer
[src]
impl SubFrom<&'_ i64> for Integer
[src]
impl SubFrom<&'_ i8> for Integer
[src]
impl SubFrom<&'_ u128> for Integer
[src]
impl SubFrom<&'_ u16> for Integer
[src]
impl SubFrom<&'_ u32> for Integer
[src]
impl SubFrom<&'_ u64> for Integer
[src]
impl SubFrom<&'_ u8> for Integer
[src]
impl SubFrom<Integer> for Integer
[src]
impl SubFrom<Integer> for Float
[src]
impl SubFrom<i128> for Integer
[src]
impl SubFrom<i16> for Integer
[src]
impl SubFrom<i32> for Integer
[src]
impl SubFrom<i64> for Integer
[src]
impl SubFrom<i8> for Integer
[src]
impl SubFrom<u128> for Integer
[src]
impl SubFrom<u16> for Integer
[src]
impl SubFrom<u32> for Integer
[src]
impl SubFrom<u64> for Integer
[src]
impl SubFrom<u8> for Integer
[src]
impl SubFromRound<&'_ Integer> for Float
[src]
type Round = Round
The rounding method.
type Ordering = Ordering
The direction from rounding.
fn sub_from_round(&mut self, lhs: &Integer, round: Round) -> Ordering
[src]
impl SubFromRound<Integer> for Float
[src]
type Round = Round
The rounding method.
type Ordering = Ordering
The direction from rounding.
fn sub_from_round(&mut self, lhs: Integer, round: Round) -> Ordering
[src]
impl<T> Sum<T> for Integer where
Integer: AddAssign<T>,
[src]
Integer: AddAssign<T>,
impl Sync for Integer
[src]
impl UpperHex for Integer
[src]
impl WrappingCast<i128> for Integer
[src]
fn wrapping_cast(self) -> i128
[src]
impl WrappingCast<i128> for &Integer
[src]
fn wrapping_cast(self) -> i128
[src]
impl WrappingCast<i16> for Integer
[src]
fn wrapping_cast(self) -> i16
[src]
impl WrappingCast<i16> for &Integer
[src]
fn wrapping_cast(self) -> i16
[src]
impl WrappingCast<i32> for Integer
[src]
fn wrapping_cast(self) -> i32
[src]
impl WrappingCast<i32> for &Integer
[src]
fn wrapping_cast(self) -> i32
[src]
impl WrappingCast<i64> for Integer
[src]
fn wrapping_cast(self) -> i64
[src]
impl WrappingCast<i64> for &Integer
[src]
fn wrapping_cast(self) -> i64
[src]
impl WrappingCast<i8> for Integer
[src]
fn wrapping_cast(self) -> i8
[src]
impl WrappingCast<i8> for &Integer
[src]
fn wrapping_cast(self) -> i8
[src]
impl WrappingCast<isize> for Integer
[src]
fn wrapping_cast(self) -> isize
[src]
impl WrappingCast<isize> for &Integer
[src]
fn wrapping_cast(self) -> isize
[src]
impl WrappingCast<u128> for Integer
[src]
fn wrapping_cast(self) -> u128
[src]
impl WrappingCast<u128> for &Integer
[src]
fn wrapping_cast(self) -> u128
[src]
impl WrappingCast<u16> for Integer
[src]
fn wrapping_cast(self) -> u16
[src]
impl WrappingCast<u16> for &Integer
[src]
fn wrapping_cast(self) -> u16
[src]
impl WrappingCast<u32> for Integer
[src]
fn wrapping_cast(self) -> u32
[src]
impl WrappingCast<u32> for &Integer
[src]
fn wrapping_cast(self) -> u32
[src]
impl WrappingCast<u64> for Integer
[src]
fn wrapping_cast(self) -> u64
[src]
impl WrappingCast<u64> for &Integer
[src]
fn wrapping_cast(self) -> u64
[src]
impl WrappingCast<u8> for Integer
[src]
fn wrapping_cast(self) -> u8
[src]
impl WrappingCast<u8> for &Integer
[src]
fn wrapping_cast(self) -> u8
[src]
impl WrappingCast<usize> for Integer
[src]
fn wrapping_cast(self) -> usize
[src]
impl WrappingCast<usize> for &Integer
[src]
fn wrapping_cast(self) -> usize
[src]
Auto Trait Implementations
Blanket Implementations
impl<T> Any for T where
T: 'static + ?Sized,
[src]
T: 'static + ?Sized,
impl<T> Az for T
[src]
impl<T> Borrow<T> for T where
T: ?Sized,
[src]
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
[src]
T: ?Sized,
pub fn borrow_mut(&mut self) -> &mut T
[src]
impl<T> CheckedAs for T
[src]
pub fn checked_as<Dst>(self) -> Option<Dst> where
T: CheckedCast<Dst>,
[src]
T: CheckedCast<Dst>,
impl<T> From<T> for T
[src]
impl<T, U> Into<U> for T where
U: From<T>,
[src]
U: From<T>,
impl<T> OverflowingAs for T
[src]
pub fn overflowing_as<Dst>(self) -> (Dst, bool) where
T: OverflowingCast<Dst>,
[src]
T: OverflowingCast<Dst>,
impl<T> SaturatingAs for T
[src]
pub fn saturating_as<Dst>(self) -> Dst where
T: SaturatingCast<Dst>,
[src]
T: SaturatingCast<Dst>,
impl<T> ToOwned for T where
T: Clone,
[src]
T: Clone,
type Owned = T
The resulting type after obtaining ownership.
pub fn to_owned(&self) -> T
[src]
pub fn clone_into(&self, target: &mut T)
[src]
impl<T> ToString for T where
T: Display + ?Sized,
[src]
T: Display + ?Sized,
impl<T, U> TryFrom<U> for T where
U: Into<T>,
[src]
U: Into<T>,
type Error = Infallible
The type returned in the event of a conversion error.
pub fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>
[src]
impl<T, U> TryInto<U> for T where
U: TryFrom<T>,
[src]
U: TryFrom<T>,
type Error = <U as TryFrom<T>>::Error
The type returned in the event of a conversion error.
pub fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>
[src]
impl<T> UnwrappedAs for T
[src]
pub fn unwrapped_as<Dst>(self) -> Dst where
T: UnwrappedCast<Dst>,
[src]
T: UnwrappedCast<Dst>,
impl<T> WrappingAs for T
[src]
pub fn wrapping_as<Dst>(self) -> Dst where
T: WrappingCast<Dst>,
[src]
T: WrappingCast<Dst>,