Struct smartnoise_runtime::proto::DpLinearRegression [−][src]
DPLinearRegression Component
Returns differentially private estimates of the slope and intercept.
This struct represents an abstract computation. Arguments are provided via the graph. Additional options are set via the fields on this struct. The return is the result of the dp_linear_regression on the arguments.
Arguments
data_x
- Array - Predictor variabledata_y
- Array - Target variablek
- Integer - Number of matchings. Memory usage is quadratic in K.lower_slope
- Array - Estimated minimum possible value of the slope.upper_slope
- Array - Estimated maximum possible value of the slope.lower_intercept
- Array - Estimated minimum possible value of the intercept.upper_intercept
- Array - Estimated maximum possible value of the intercept.
Returns
Value
- Array - Differentially private estimate of the slope and intercept of the line fit to the data.
Fields
implementation: String
Theil-Sen implementation to use. One of [theil-sen
, theil-sen-k-match
]
privacy_usage: Vec<PrivacyUsage, Global>
Object describing the type and amount of privacy to be used for the mechanism release.
Trait Implementations
impl Clone for DpLinearRegression
[src]
pub fn clone(&self) -> DpLinearRegression
[src]
pub fn clone_from(&mut self, source: &Self)
1.0.0[src]
impl Debug for DpLinearRegression
[src]
impl Default for DpLinearRegression
[src]
pub fn default() -> DpLinearRegression
[src]
impl Expandable for DpLinearRegression
[src]
pub fn expand_component(
&self,
_privacy_definition: &Option<PrivacyDefinition>,
component: &Component,
public_arguments: &IndexMap<IndexKey, &Value, RandomState>,
_properties: &IndexMap<IndexKey, ValueProperties, RandomState>,
component_id: u32,
maximum_id: u32
) -> Result<ComponentExpansion, Error>
[src]
&self,
_privacy_definition: &Option<PrivacyDefinition>,
component: &Component,
public_arguments: &IndexMap<IndexKey, &Value, RandomState>,
_properties: &IndexMap<IndexKey, ValueProperties, RandomState>,
component_id: u32,
maximum_id: u32
) -> Result<ComponentExpansion, Error>
impl Message for DpLinearRegression
[src]
pub fn encode_raw<B>(&self, buf: &mut B) where
B: BufMut,
[src]
B: BufMut,
pub fn merge_field<B>(
&mut self,
tag: u32,
wire_type: WireType,
buf: &mut B,
ctx: DecodeContext
) -> Result<(), DecodeError> where
B: Buf,
[src]
&mut self,
tag: u32,
wire_type: WireType,
buf: &mut B,
ctx: DecodeContext
) -> Result<(), DecodeError> where
B: Buf,
pub fn encoded_len(&self) -> usize
[src]
pub fn clear(&mut self)
[src]
pub fn encode<B>(&self, buf: &mut B) -> Result<(), EncodeError> where
B: BufMut,
[src]
B: BufMut,
pub fn encode_length_delimited<B>(&self, buf: &mut B) -> Result<(), EncodeError> where
B: BufMut,
[src]
B: BufMut,
pub fn decode<B>(buf: B) -> Result<Self, DecodeError> where
Self: Default,
B: Buf,
[src]
Self: Default,
B: Buf,
pub fn decode_length_delimited<B>(buf: B) -> Result<Self, DecodeError> where
Self: Default,
B: Buf,
[src]
Self: Default,
B: Buf,
pub fn merge<B>(&mut self, buf: B) -> Result<(), DecodeError> where
B: Buf,
[src]
B: Buf,
pub fn merge_length_delimited<B>(&mut self, buf: B) -> Result<(), DecodeError> where
B: Buf,
[src]
B: Buf,
impl PartialEq<DpLinearRegression> for DpLinearRegression
[src]
pub fn eq(&self, other: &DpLinearRegression) -> bool
[src]
pub fn ne(&self, other: &DpLinearRegression) -> bool
[src]
impl Report for DpLinearRegression
[src]
pub fn summarize(
&self,
node_id: u32,
component: &Component,
_public_arguments: IndexMap<IndexKey, &Value, RandomState>,
_properties: IndexMap<IndexKey, ValueProperties, RandomState>,
release: &Value,
_variable_names: Option<&Vec<IndexKey, Global>>
) -> Result<Option<Vec<JSONRelease, Global>>, Error>
[src]
&self,
node_id: u32,
component: &Component,
_public_arguments: IndexMap<IndexKey, &Value, RandomState>,
_properties: IndexMap<IndexKey, ValueProperties, RandomState>,
release: &Value,
_variable_names: Option<&Vec<IndexKey, Global>>
) -> Result<Option<Vec<JSONRelease, Global>>, Error>
impl StructuralPartialEq for DpLinearRegression
[src]
Auto Trait Implementations
impl RefUnwindSafe for DpLinearRegression
impl Send for DpLinearRegression
impl Sync for DpLinearRegression
impl Unpin for DpLinearRegression
impl UnwindSafe for DpLinearRegression
Blanket Implementations
impl<T> Any for T where
T: 'static + ?Sized,
[src]
T: 'static + ?Sized,
impl<T> Az for T
[src]
impl<T> Borrow<T> for T where
T: ?Sized,
[src]
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
[src]
T: ?Sized,
pub fn borrow_mut(&mut self) -> &mut T
[src]
impl<T> CheckedAs for T
[src]
pub fn checked_as<Dst>(self) -> Option<Dst> where
T: CheckedCast<Dst>,
[src]
T: CheckedCast<Dst>,
impl<T> From<T> for T
[src]
impl<T, U> Into<U> for T where
U: From<T>,
[src]
U: From<T>,
impl<T> OverflowingAs for T
[src]
pub fn overflowing_as<Dst>(self) -> (Dst, bool) where
T: OverflowingCast<Dst>,
[src]
T: OverflowingCast<Dst>,
impl<T> SaturatingAs for T
[src]
pub fn saturating_as<Dst>(self) -> Dst where
T: SaturatingCast<Dst>,
[src]
T: SaturatingCast<Dst>,
impl<T> ToOwned for T where
T: Clone,
[src]
T: Clone,
type Owned = T
The resulting type after obtaining ownership.
pub fn to_owned(&self) -> T
[src]
pub fn clone_into(&self, target: &mut T)
[src]
impl<T, U> TryFrom<U> for T where
U: Into<T>,
[src]
U: Into<T>,
type Error = Infallible
The type returned in the event of a conversion error.
pub fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>
[src]
impl<T, U> TryInto<U> for T where
U: TryFrom<T>,
[src]
U: TryFrom<T>,
type Error = <U as TryFrom<T>>::Error
The type returned in the event of a conversion error.
pub fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>
[src]
impl<T> UnwrappedAs for T
[src]
pub fn unwrapped_as<Dst>(self) -> Dst where
T: UnwrappedCast<Dst>,
[src]
T: UnwrappedCast<Dst>,
impl<V, T> VZip<V> for T where
V: MultiLane<T>,
[src]
V: MultiLane<T>,
impl<T> WrappingAs for T
[src]
pub fn wrapping_as<Dst>(self) -> Dst where
T: WrappingCast<Dst>,
[src]
T: WrappingCast<Dst>,