Struct statrs::distribution::Categorical[][src]

pub struct Categorical { /* fields omitted */ }

Implements the Categorical distribution, also known as the generalized Bernoulli or discrete distribution

Examples


use statrs::distribution::{Categorical, Discrete};
use statrs::statistics::Mean;
use statrs::prec;

let n = Categorical::new(&[0.0, 1.0, 2.0]).unwrap();
assert!(prec::almost_eq(n.mean(), 5.0 / 3.0, 1e-15));
assert_eq!(n.pmf(1), 1.0 / 3.0);

Implementations

impl Categorical[src]

pub fn new(prob_mass: &[f64]) -> Result<Categorical>[src]

Constructs a new categorical distribution with the probabilities masses defined by prob_mass

Errors

Returns an error if prob_mass is empty, the sum of the elements in prob_mass is 0, or any element is less than 0 or is f64::NAN

Note

The elements in prob_mass do not need to be normalized

Examples

use statrs::distribution::Categorical;

let mut result = Categorical::new(&[0.0, 1.0, 2.0]);
assert!(result.is_ok());

result = Categorical::new(&[0.0, -1.0, 2.0]);
assert!(result.is_err());

Trait Implementations

impl CheckedInverseCDF<f64> for Categorical[src]

fn checked_inverse_cdf(&self, x: f64) -> Result<f64>[src]

Calculates the inverse cumulative distribution function for the categorical distribution at x

Errors

If x <= 0.0 or x >= 1.0

Formula

i

where i is the first index such that x < f(i) and f(x) is defined as p_x + f(x - 1) and f(0) = p_0 where p_x is the xth probability mass

impl Clone for Categorical[src]

impl Debug for Categorical[src]

impl Discrete<u64, f64> for Categorical[src]

fn pmf(&self, x: u64) -> f64[src]

Calculates the probability mass function for the categorical distribution at x

Formula

p_x

fn ln_pmf(&self, x: u64) -> f64[src]

Calculates the log probability mass function for the categorical distribution at x

impl Distribution<f64> for Categorical[src]

impl Entropy<f64> for Categorical[src]

fn entropy(&self) -> f64[src]

Returns the entropy of the categorical distribution

Formula

-Σ(p_j * ln(p_j))

where p_j is the jth probability mass, Σ is the sum from 0 to k - 1, and k is the number of categories

impl InverseCDF<f64> for Categorical[src]

fn inverse_cdf(&self, x: f64) -> f64[src]

Calculates the inverse cumulative distribution function for the categorical distribution at x

Panics

If x <= 0.0 or x >= 1.0

Formula

i

where i is the first index such that x < f(i) and f(x) is defined as p_x + f(x - 1) and f(0) = p_0 where p_x is the xth probability mass

impl Max<u64> for Categorical[src]

fn max(&self) -> u64[src]

Returns the maximum value in the domain of the categorical distribution representable by a 64-bit integer

Formula

n

impl Mean<f64> for Categorical[src]

fn mean(&self) -> f64[src]

Returns the mean of the categorical distribution

Formula

Σ(j * p_j)

where p_j is the jth probability mass, Σ is the sum from 0 to k - 1, and k is the number of categories

impl Median<f64> for Categorical[src]

fn median(&self) -> f64[src]

Returns the median of the categorical distribution

Formula

CDF^-1(0.5)

impl Min<u64> for Categorical[src]

fn min(&self) -> u64[src]

Returns the minimum value in the domain of the categorical distribution representable by a 64-bit integer

Formula

0

impl PartialEq<Categorical> for Categorical[src]

impl StructuralPartialEq for Categorical[src]

impl Univariate<u64, f64> for Categorical[src]

fn cdf(&self, x: f64) -> f64[src]

Calculates the cumulative distribution function for the categorical distribution at x

Formula

sum(p_j) from 0..x

where p_j is the probability mass for the jth category

impl Variance<f64> for Categorical[src]

fn variance(&self) -> f64[src]

Returns the variance of the categorical distribution

Formula

Σ(p_j * (j - μ)^2)

where p_j is the jth probability mass, μ is the mean, Σ is the sum from 0 to k - 1, and k is the number of categories

fn std_dev(&self) -> f64[src]

Returns the standard deviation of the categorical distribution

Formula

sqrt(Σ(p_j * (j - μ)^2))

where p_j is the jth probability mass, μ is the mean, Σ is the sum from 0 to k - 1, and k is the number of categories

Auto Trait Implementations

impl RefUnwindSafe for Categorical

impl Send for Categorical

impl Sync for Categorical

impl Unpin for Categorical

impl UnwindSafe for Categorical

Blanket Implementations

impl<T> Any for T where
    T: 'static + ?Sized
[src]

impl<T> Borrow<T> for T where
    T: ?Sized
[src]

impl<T> BorrowMut<T> for T where
    T: ?Sized
[src]

impl<T> From<T> for T[src]

impl<T, U> Into<U> for T where
    U: From<T>, 
[src]

impl<T> ToOwned for T where
    T: Clone
[src]

type Owned = T

The resulting type after obtaining ownership.

impl<T, U> TryFrom<U> for T where
    U: Into<T>, 
[src]

type Error = Infallible

The type returned in the event of a conversion error.

impl<T, U> TryInto<U> for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.

impl<V, T> VZip<V> for T where
    V: MultiLane<T>, 
[src]