Struct statrs::distribution::Cauchy[][src]

pub struct Cauchy { /* fields omitted */ }

Implements the Cauchy distribution, also known as the Lorentz distribution.

Examples

use statrs::distribution::{Cauchy, Continuous};
use statrs::statistics::Mode;

let n = Cauchy::new(0.0, 1.0).unwrap();
assert_eq!(n.mode(), 0.0);
assert_eq!(n.pdf(1.0), 0.1591549430918953357689);

Implementations

impl Cauchy[src]

pub fn new(location: f64, scale: f64) -> Result<Cauchy>[src]

Constructs a new cauchy distribution with the given location and scale.

Errors

Returns an error if location or scale are NaN or scale <= 0.0

Examples

use statrs::distribution::Cauchy;

let mut result = Cauchy::new(0.0, 1.0);
assert!(result.is_ok());

result = Cauchy::new(0.0, -1.0);
assert!(result.is_err());

pub fn location(&self) -> f64[src]

Returns the location of the cauchy distribution

Examples

use statrs::distribution::Cauchy;

let n = Cauchy::new(0.0, 1.0).unwrap();
assert_eq!(n.location(), 0.0);

pub fn scale(&self) -> f64[src]

Returns the scale of the cauchy distribution

Examples

use statrs::distribution::Cauchy;

let n = Cauchy::new(0.0, 1.0).unwrap();
assert_eq!(n.scale(), 1.0);

Trait Implementations

impl Clone for Cauchy[src]

impl Continuous<f64, f64> for Cauchy[src]

fn pdf(&self, x: f64) -> f64[src]

Calculates the probability density function for the cauchy distribution at x

Formula

1 / (πγ * (1 + ((x - x_0) / γ)^2))

where x_0 is the location and γ is the scale

fn ln_pdf(&self, x: f64) -> f64[src]

Calculates the log probability density function for the cauchy distribution at x

Formula

ln(1 / (πγ * (1 + ((x - x_0) / γ)^2)))

where x_0 is the location and γ is the scale

impl Copy for Cauchy[src]

impl Debug for Cauchy[src]

impl Distribution<f64> for Cauchy[src]

impl Entropy<f64> for Cauchy[src]

fn entropy(&self) -> f64[src]

Returns the entropy of the cauchy distribution

Formula

ln(γ) + ln()

where γ is the scale

impl Max<f64> for Cauchy[src]

fn max(&self) -> f64[src]

Returns the maximum value in the domain of the cauchy distribution representable by a double precision float

Formula

INF

impl Median<f64> for Cauchy[src]

fn median(&self) -> f64[src]

Returns the median of the cauchy distribution

Formula

x_0

where x_0 is the location

impl Min<f64> for Cauchy[src]

fn min(&self) -> f64[src]

Returns the minimum value in the domain of the cauchy distribution representable by a double precision float

Formula

NEG_INF

impl Mode<f64> for Cauchy[src]

fn mode(&self) -> f64[src]

Returns the mode of the cauchy distribution

Formula

x_0

where x_0 is the location

impl PartialEq<Cauchy> for Cauchy[src]

impl StructuralPartialEq for Cauchy[src]

impl Univariate<f64, f64> for Cauchy[src]

fn cdf(&self, x: f64) -> f64[src]

Calculates the cumulative distribution function for the cauchy distribution at x

Formula

(1 / π) * arctan((x - x_0) / γ) + 0.5

where x_0 is the location and γ is the scale

Auto Trait Implementations

impl RefUnwindSafe for Cauchy

impl Send for Cauchy

impl Sync for Cauchy

impl Unpin for Cauchy

impl UnwindSafe for Cauchy

Blanket Implementations

impl<T> Any for T where
    T: 'static + ?Sized
[src]

impl<T> Borrow<T> for T where
    T: ?Sized
[src]

impl<T> BorrowMut<T> for T where
    T: ?Sized
[src]

impl<T> From<T> for T[src]

impl<T, U> Into<U> for T where
    U: From<T>, 
[src]

impl<T> ToOwned for T where
    T: Clone
[src]

type Owned = T

The resulting type after obtaining ownership.

impl<T, U> TryFrom<U> for T where
    U: Into<T>, 
[src]

type Error = Infallible

The type returned in the event of a conversion error.

impl<T, U> TryInto<U> for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.

impl<V, T> VZip<V> for T where
    V: MultiLane<T>, 
[src]