Struct statrs::distribution::Cauchy [−][src]
Implements the Cauchy distribution, also known as the Lorentz distribution.
Examples
use statrs::distribution::{Cauchy, Continuous}; use statrs::statistics::Mode; let n = Cauchy::new(0.0, 1.0).unwrap(); assert_eq!(n.mode(), 0.0); assert_eq!(n.pdf(1.0), 0.1591549430918953357689);
Implementations
impl Cauchy
[src]
pub fn new(location: f64, scale: f64) -> Result<Cauchy>
[src]
Constructs a new cauchy distribution with the given location and scale.
Errors
Returns an error if location or scale are NaN
or scale <= 0.0
Examples
use statrs::distribution::Cauchy; let mut result = Cauchy::new(0.0, 1.0); assert!(result.is_ok()); result = Cauchy::new(0.0, -1.0); assert!(result.is_err());
pub fn location(&self) -> f64
[src]
Returns the location of the cauchy distribution
Examples
use statrs::distribution::Cauchy; let n = Cauchy::new(0.0, 1.0).unwrap(); assert_eq!(n.location(), 0.0);
pub fn scale(&self) -> f64
[src]
Returns the scale of the cauchy distribution
Examples
use statrs::distribution::Cauchy; let n = Cauchy::new(0.0, 1.0).unwrap(); assert_eq!(n.scale(), 1.0);
Trait Implementations
impl Clone for Cauchy
[src]
impl Continuous<f64, f64> for Cauchy
[src]
fn pdf(&self, x: f64) -> f64
[src]
Calculates the probability density function for the cauchy
distribution at x
Formula
1 / (πγ * (1 + ((x - x_0) / γ)^2))
where x_0
is the location and γ
is the scale
fn ln_pdf(&self, x: f64) -> f64
[src]
Calculates the log probability density function for the cauchy
distribution at x
Formula
ln(1 / (πγ * (1 + ((x - x_0) / γ)^2)))
where x_0
is the location and γ
is the scale
impl Copy for Cauchy
[src]
impl Debug for Cauchy
[src]
impl Distribution<f64> for Cauchy
[src]
fn sample<R: Rng + ?Sized>(&self, r: &mut R) -> f64
[src]
pub fn sample_iter<R>(self, rng: R) -> DistIter<Self, R, T> where
R: Rng,
[src]
R: Rng,
impl Entropy<f64> for Cauchy
[src]
impl Max<f64> for Cauchy
[src]
fn max(&self) -> f64
[src]
Returns the maximum value in the domain of the cauchy distribution representable by a double precision float
Formula
INF
impl Median<f64> for Cauchy
[src]
impl Min<f64> for Cauchy
[src]
fn min(&self) -> f64
[src]
Returns the minimum value in the domain of the cauchy distribution representable by a double precision float
Formula
NEG_INF
impl Mode<f64> for Cauchy
[src]
impl PartialEq<Cauchy> for Cauchy
[src]
impl StructuralPartialEq for Cauchy
[src]
impl Univariate<f64, f64> for Cauchy
[src]
Auto Trait Implementations
impl RefUnwindSafe for Cauchy
impl Send for Cauchy
impl Sync for Cauchy
impl Unpin for Cauchy
impl UnwindSafe for Cauchy
Blanket Implementations
impl<T> Any for T where
T: 'static + ?Sized,
[src]
T: 'static + ?Sized,
impl<T> Borrow<T> for T where
T: ?Sized,
[src]
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
[src]
T: ?Sized,
pub fn borrow_mut(&mut self) -> &mut T
[src]
impl<T> From<T> for T
[src]
impl<T, U> Into<U> for T where
U: From<T>,
[src]
U: From<T>,
impl<T> ToOwned for T where
T: Clone,
[src]
T: Clone,
type Owned = T
The resulting type after obtaining ownership.
pub fn to_owned(&self) -> T
[src]
pub fn clone_into(&self, target: &mut T)
[src]
impl<T, U> TryFrom<U> for T where
U: Into<T>,
[src]
U: Into<T>,
type Error = Infallible
The type returned in the event of a conversion error.
pub fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>
[src]
impl<T, U> TryInto<U> for T where
U: TryFrom<T>,
[src]
U: TryFrom<T>,
type Error = <U as TryFrom<T>>::Error
The type returned in the event of a conversion error.
pub fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>
[src]
impl<V, T> VZip<V> for T where
V: MultiLane<T>,
[src]
V: MultiLane<T>,