Trait statrs::distribution::CheckedDiscrete[][src]

pub trait CheckedDiscrete<T, K> {
    fn checked_pmf(&self, x: T) -> Result<K>;
fn checked_ln_pmf(&self, x: T) -> Result<K>; }

The CheckedDiscrete trait provides an interface for interacting with discrete statistical distributions with possible failure modes

Required methods

fn checked_pmf(&self, x: T) -> Result<K>[src]

Returns the probability mass function calculated at x for a given distribution.

Examples

use statrs::distribution::{CheckedDiscrete, Multinomial};
use statrs::prec;

let n = Multinomial::new(&[0.3, 0.7], 5).unwrap();
assert!(n.checked_pmf(&[1]).is_err());

fn checked_ln_pmf(&self, x: T) -> Result<K>[src]

Returns the log of the probability mass function calculated at x for a given distribution.

Examples

use statrs::distribution::{CheckedDiscrete, Multinomial};
use statrs::prec;

let n = Multinomial::new(&[0.3, 0.7], 5).unwrap();
assert!(n.checked_ln_pmf(&[1]).is_err());
Loading content...

Implementors

impl<'a> CheckedDiscrete<&'a [u64], f64> for Multinomial[src]

fn checked_pmf(&self, x: &[u64]) -> Result<f64>[src]

Calculates the probability mass function for the multinomial distribution with the given x’s corresponding to the probabilities for this distribution

Errors

If the elements in x do not sum to n or if the length of x is not equivalent to the length of p

Formula

(n! / x_1!...x_k!) * p_i^x_i for i in 1...k

where n is the number of trials, p_i is the ith probability, x_i is the ith x value, and k is the total number of probabilities

fn checked_ln_pmf(&self, x: &[u64]) -> Result<f64>[src]

Calculates the log probability mass function for the multinomial distribution with the given x’s corresponding to the probabilities for this distribution

Errors

If the elements in x do not sum to n or if the length of x is not equivalent to the length of p

Formula

ln((n! / x_1!...x_k!) * p_i^x_i) for i in 1...k

where n is the number of trials, p_i is the ith probability, x_i is the ith x value, and k is the total number of probabilities

Loading content...