Trait ieee754::Ieee754[][src]

pub trait Ieee754: Copy + PartialEq + PartialOrd {
    type Bits: Bits;
    type Exponent;
    type RawExponent;
    type Significand;
    fn upto(self, lim: Self) -> Iter<Self>

Notable traits for Iter<T>

impl<T: Ieee754> Iterator for Iter<T> type Item = T;
;
fn next(self) -> Self;
fn prev(self) -> Self;
fn ulp(self) -> Option<Self>;
fn bits(self) -> Self::Bits;
fn from_bits(x: Self::Bits) -> Self;
fn exponent_bias() -> Self::Exponent;
fn decompose_raw(self) -> (bool, Self::RawExponent, Self::Significand);
fn recompose_raw(
        sign: bool,
        expn: Self::RawExponent,
        signif: Self::Significand
    ) -> Self;
fn decompose(self) -> (bool, Self::Exponent, Self::Significand);
fn recompose(
        sign: bool,
        expn: Self::Exponent,
        signif: Self::Significand
    ) -> Self;
fn total_cmp(&self, other: &Self) -> Ordering;
fn abs(self) -> Self;
fn copy_sign(self, sign: Self) -> Self;
fn sign(self) -> Self;
fn rel_error(self, exact: Self) -> Self; }

Types that are IEEE754 floating point numbers.

Associated Types

type Bits: Bits[src]

A type that represents the raw bits of Self.

type Exponent[src]

A type large enough to store the true exponent of Self.

type RawExponent[src]

A type large enough to store the raw exponent (i.e. with the bias).

type Significand[src]

A type large enough to store the significand of Self.

Loading content...

Required methods

fn upto(self, lim: Self) -> Iter<Self>

Notable traits for Iter<T>

impl<T: Ieee754> Iterator for Iter<T> type Item = T;
[src]

Iterate over each value of Self in [self, lim].

The returned iterator will include subnormal numbers, and will only include one of -0.0 and 0.0.

Panics

Panics if self > lim, or if either are NaN.

Examples

use ieee754::Ieee754;

// there are 840 single-precision floats in between 1.0 and 1.0001
// (inclusive).
assert_eq!(1_f32.upto(1.0001).count(), 840);

fn next(self) -> Self[src]

Return the next value after self.

Calling this on NaN or positive infinity will yield nonsense.

Examples

use ieee754::Ieee754;
let x: f32 = 1.0;
assert_eq!(x.next(), 1.000000119209);

fn prev(self) -> Self[src]

Return the previous value before self.

Calling this on NaN or negative infinity will yield nonsense.

Examples

use ieee754::Ieee754;
let x: f32 = 1.0;
assert_eq!(x.prev(), 0.99999995);

fn ulp(self) -> Option<Self>[src]

Return the unit-in-the-last-place ulp of self. That is, x.abs().next() - x.abs(), but handling overflow properly.

Returns None if self is not finite.

Examples

Single precision:

use std::f32;
use ieee754::Ieee754;

assert_eq!(0_f32.ulp(), Some(1.4e-45));

assert_eq!(1_f32.ulp(), Some(1.1920928955078125e-07));
assert_eq!((-1_f32).ulp(), Some(1.1920928955078125e-07));

// 2^23
assert_eq!(8_388_608_f32.ulp(), Some(1.0));
// 2^24 - 1, the largest f32 with ULP 1
assert_eq!(16_777_215_f32.ulp(), Some(1.0));
// 2^24
assert_eq!(16_777_216_f32.ulp(), Some(2.0));

// non-finite
assert_eq!(f32::INFINITY.ulp(), None);
assert_eq!(f32::NAN.ulp(), None);

Double precision:

use std::f64;
use ieee754::Ieee754;

assert_eq!(0_f64.ulp(), Some(4.9e-324));

assert_eq!(1_f64.ulp(), Some(2.220446049250313e-16));
assert_eq!((-1_f64).ulp(), Some(2.220446049250313e-16));

// 2^52
assert_eq!(4_503_599_627_370_496_f64.ulp(), Some(1.0));
// 2^53 - 1, the largest f64 with ULP 1
assert_eq!(9_007_199_254_740_991_f64.ulp(), Some(1.0));
// 2^53
assert_eq!(9_007_199_254_740_992_f64.ulp(), Some(2.0));

// non-finite
assert_eq!(f64::INFINITY.ulp(), None);
assert_eq!(f64::NAN.ulp(), None);

fn bits(self) -> Self::Bits[src]

View self as a collection of bits.

Examples

use ieee754::Ieee754;
let x: f32 = 1.0;
assert_eq!(x.bits(), 0x3f80_0000);

fn from_bits(x: Self::Bits) -> Self[src]

View a collections of bits as a floating point number.

Examples

use ieee754::Ieee754;
let float: f32 = Ieee754::from_bits(0xbf80_0000);
assert_eq!(float, -1.0);

fn exponent_bias() -> Self::Exponent[src]

Get the bias of the stored exponent.

Examples

use ieee754::Ieee754;

assert_eq!(f32::exponent_bias(), 127);
assert_eq!(f64::exponent_bias(), 1023);

fn decompose_raw(self) -> (bool, Self::RawExponent, Self::Significand)[src]

Break self into the three constituent parts of an IEEE754 float.

The exponent returned is the raw bits, use exponent_bias to compute the offset required or use decompose to obtain this in precomputed form.

Examples

Single precision:

use ieee754::Ieee754;

assert_eq!(1_f32.decompose_raw(), (false, 127, 0));
assert_eq!(1234.567_f32.decompose_raw(), (false, 137, 0x1a5225));

assert_eq!((-0.525_f32).decompose_raw(), (true, 126, 0x66666));

assert_eq!(std::f32::INFINITY.decompose_raw(), (false, 255, 0));

let (sign, expn, signif) = std::f32::NAN.decompose_raw();
assert_eq!((sign, expn), (false, 255));
assert!(signif != 0);

Double precision:

use ieee754::Ieee754;

assert_eq!(1_f64.decompose_raw(), (false, 1023, 0));
assert_eq!(1234.567_f64.decompose_raw(), (false, 1033, 0x34a449ba5e354));

assert_eq!((-0.525_f64).decompose_raw(), (true, 1022, 0xcccc_cccc_cccd));

assert_eq!(std::f64::INFINITY.decompose_raw(), (false, 2047, 0));

let (sign, expn, signif) = std::f64::NAN.decompose_raw();
assert_eq!((sign, expn), (false, 2047));
assert!(signif != 0);

fn recompose_raw(
    sign: bool,
    expn: Self::RawExponent,
    signif: Self::Significand
) -> Self
[src]

Create a Self out of the three constituent parts of an IEEE754 float.

This returns (-1)sign × 1.signif × 2expn - bias, where

  • sign is treated as if true == 1 (meaning true is negative),
  • 1.signif refers to placing the bits of signif as the fractional part of a number between 1 and 2, and
  • bias is the exponent bias for this float (see [exponent_bias]).

The exponent should be the raw bits: use exponent_bias to compute the offset required, or use recompose to feed in an unbiased exponent.

Examples

Single precision:

use ieee754::Ieee754;

assert_eq!(f32::recompose_raw(false, 127, 0), 1.0);
assert_eq!(f32::recompose_raw(false, 137, 0x1a5225), 1234.567);
assert_eq!(f32::recompose_raw(true, 126, 0x66666), -0.525);

assert_eq!(f32::recompose_raw(false, 255, 0), std::f32::INFINITY);

assert!(f32::recompose_raw(false, 255, 1).is_nan());

Double precision:

use ieee754::Ieee754;

assert_eq!(f64::recompose_raw(false, 1023, 0), 1.0);
assert_eq!(f64::recompose_raw(false, 1033, 0x34a449ba5e354), 1234.567);
assert_eq!(f64::recompose_raw(true, 1022, 0xcccc_cccc_cccd), -0.525);

assert_eq!(f64::recompose_raw(false, 2047, 0), std::f64::INFINITY);

assert!(f64::recompose_raw(false, 2047, 1).is_nan());

fn decompose(self) -> (bool, Self::Exponent, Self::Significand)[src]

Break self into the three constituent parts of an IEEE754 float.

The exponent returned is the true exponent, after accounting for the bias it is stored with. The significand does not include the implicit highest bit (if it exists), e.g. the 24-bit for single precision.

Examples

Single precision:

use ieee754::Ieee754;

assert_eq!(1_f32.decompose(), (false, 0, 0));
assert_eq!(1234.567_f32.decompose(), (false, 10, 0x1a5225));

assert_eq!((-0.525_f32).decompose(), (true, -1, 0x66666));

assert_eq!(std::f32::INFINITY.decompose(), (false, 128, 0));

let (sign, expn, signif) = std::f32::NAN.decompose();
assert_eq!((sign, expn), (false, 128));
assert!(signif != 0);

Double precision:

use ieee754::Ieee754;

assert_eq!(1_f64.decompose(), (false, 0, 0));
assert_eq!(1234.567_f64.decompose(), (false, 10, 0x34a449ba5e354));

assert_eq!((-0.525_f64).decompose(), (true, -1, 0xcccc_cccc_cccd));

assert_eq!(std::f64::INFINITY.decompose(), (false, 1024, 0));

let (sign, expn, signif) = std::f64::NAN.decompose();
assert_eq!((sign, expn), (false, 1024));
assert!(signif != 0);

fn recompose(
    sign: bool,
    expn: Self::Exponent,
    signif: Self::Significand
) -> Self
[src]

Create a Self out of the three constituent parts of an IEEE754 float.

This returns (-1)sign × 1.signif × 2expn, where

  • sign is treated as if true == 1 (meaning true is negative), and
  • 1.signif refers to placing the bits of signif as the fractional part of a number between 1 and 2.

The exponent should be the true exponent, not accounting for any bias. The significand should not include the implicit highest bit (if it exists), e.g. the 24-th bit for single precision.

Examples

Single precision:

use ieee754::Ieee754;

// normal numbers
assert_eq!(f32::recompose(false, 0, 0), 1.0);
assert_eq!(f32::recompose(false, 10, 0x1a5225), 1234.567);
assert_eq!(f32::recompose(true, -1, 0x66666), -0.525);

// infinity
assert_eq!(f32::recompose(false, 128, 0), std::f32::INFINITY);

// NaN
assert!(f32::recompose(false, 128, 1).is_nan());

Double precision:

use ieee754::Ieee754;

// normal numbers
assert_eq!(f64::recompose(false, 0, 0), 1.0);
assert_eq!(f64::recompose(false, 10, 0x34a449ba5e354), 1234.567);
assert_eq!(f64::recompose(true, -1, 0xcccc_cccc_cccd), -0.525);

// infinity
assert_eq!(f64::recompose(false, 1024, 0), std::f64::INFINITY);

// NaN
assert!(f64::recompose(false, 1024, 1).is_nan());

fn total_cmp(&self, other: &Self) -> Ordering[src]

Compare x and y using the IEEE-754 totalOrder predicate (Section 5.10).

This orders NaNs before or after all non-NaN floats, depending on the sign bit. Using -qNaN to represent a quiet NaN with negative sign bit and similarly for a signalling NaN (sNaN), the order is:

-qNaN < -sNaN < -∞ < -12.34 < -0.0 < +0.0 < +12.34 < +∞ < +sNaN < +qNaN

(NaNs are ordered according to their payload.)

Examples

Sorting:

use std::f32;

use ieee754::Ieee754;

let mut data = vec![0.0, f32::NEG_INFINITY, -1.0, f32::INFINITY,
                    f32::NAN, -0.0, 12.34e5, -f32::NAN];
data.sort_by(|a, b| a.total_cmp(b));

assert_eq!(format!("{:.0?}", data),
           "[NaN, -inf, -1, -0, 0, 1234000, inf, NaN]");

Single precision:

use std::cmp::Ordering;
use std::f32;

use ieee754::Ieee754;

// normal comparison
assert_eq!(0_f32.total_cmp(&0_f32), Ordering::Equal);
assert_eq!(0_f32.total_cmp(&1_f32), Ordering::Less);
assert_eq!(1e10_f32.total_cmp(&f32::NEG_INFINITY), Ordering::Greater);

// signed zero
assert_eq!(0_f32.total_cmp(&-0_f32), Ordering::Greater);

// NaNs
assert_eq!(f32::NAN.total_cmp(&0_f32), Ordering::Greater);
assert_eq!(f32::NAN.total_cmp(&f32::INFINITY), Ordering::Greater);
assert_eq!((-f32::NAN).total_cmp(&f32::NEG_INFINITY), Ordering::Less);

Double precision:

use std::cmp::Ordering;
use std::f64;

use ieee754::Ieee754;

// normal comparison
assert_eq!(0_f64.total_cmp(&0_f64), Ordering::Equal);
assert_eq!(0_f64.total_cmp(&1_f64), Ordering::Less);
assert_eq!(1e10_f64.total_cmp(&f64::NEG_INFINITY), Ordering::Greater);

// signed zero
assert_eq!(0_f64.total_cmp(&-0_f64), Ordering::Greater);

// NaNs
assert_eq!(f64::NAN.total_cmp(&0_f64), Ordering::Greater);
assert_eq!(f64::NAN.total_cmp(&f64::INFINITY), Ordering::Greater);
assert_eq!((-f64::NAN).total_cmp(&f64::NEG_INFINITY), Ordering::Less);

fn abs(self) -> Self[src]

Return the absolute value of x.

This provides a no_std/core-only version of the built-in abs in std, until #50145 is addressed.

Examples

Single precision:

#![no_std]
use core::f32;

use ieee754::Ieee754;

assert_eq!((0_f32).abs(), 0.0);

assert_eq!((12.34_f32).abs(), 12.34);
assert_eq!((-12.34_f32).abs(), 12.34);

assert_eq!(f32::INFINITY.abs(), f32::INFINITY);
assert_eq!(f32::NEG_INFINITY.abs(), f32::INFINITY);
assert!(f32::NAN.abs().is_nan());

Double precision:

#![no_std]
use core::f64;

use ieee754::Ieee754;

assert_eq!((0_f64).abs(), 0.0);

assert_eq!((12.34_f64).abs(), 12.34);
assert_eq!((-12.34_f64).abs(), 12.34);

assert_eq!(f64::INFINITY.abs(), f64::INFINITY);
assert_eq!(f64::NEG_INFINITY.abs(), f64::INFINITY);
assert!(f64::NAN.abs().is_nan());

fn copy_sign(self, sign: Self) -> Self[src]

Return a float with the magnitude of self but the sign of sign.

If sign is NaN, this still uses its sign bit, and does not (necessarily) return NaN.

Examples

Single precision:

use std::f32;

use ieee754::Ieee754;

// normal numbers
assert_eq!(1_f32.copy_sign(1.0), 1.0);
assert_eq!(2_f32.copy_sign(-1.0), -2.0);
assert_eq!((-3_f32).copy_sign(1.0), 3.0);
assert_eq!((-4_f32).copy_sign(-1.0), -4.0);

// infinities
assert_eq!(5_f32.copy_sign(f32::NEG_INFINITY), -5.0);
assert_eq!(f32::NEG_INFINITY.copy_sign(1.0), f32::INFINITY);

// signs of zeros matter
assert_eq!((-6_f32).copy_sign(0.0), 6.0);
assert_eq!(7_f32.copy_sign(-0.0), -7.0);

// NaNs only propagate on the self argument
assert!(f32::NAN.copy_sign(1.0).is_nan());
assert_eq!(8_f32.copy_sign(-f32::NAN), -8.0);

Double precision:

use std::f64;

use ieee754::Ieee754;

// normal numbers
assert_eq!(1_f64.copy_sign(1.0), 1.0);
assert_eq!(2_f64.copy_sign(-1.0), -2.0);
assert_eq!((-3_f64).copy_sign(1.0), 3.0);
assert_eq!((-4_f64).copy_sign(-1.0), -4.0);

// infinities
assert_eq!(5_f64.copy_sign(f64::NEG_INFINITY), -5.0);
assert_eq!(f64::NEG_INFINITY.copy_sign(1.0), f64::INFINITY);

// signs of zeros matter
assert_eq!((-6_f64).copy_sign(0.0), 6.0);
assert_eq!(7_f64.copy_sign(-0.0), -7.0);

// NaNs only propagate on the self argument
assert!(f64::NAN.copy_sign(1.0).is_nan());
assert_eq!(8_f64.copy_sign(-f64::NAN), -8.0);

fn sign(self) -> Self[src]

Return the sign of x.

This provides a no_std/core-only function similar to the built-in signum in std (until #50145 is addressed). This sign function differs at two values; it matches the mathematical definitions when self == 0.0 :

xx.signum() (std)x.sign() (ieee754)
< 0.0−1.0−1.0
−0.0−1.0−0.0
+0.0+1.0+0.0
> 0.0+1.0+1.0
NaNNaNNaN

Examples

Single precision:

use std::f32;
use std::cmp::Ordering;

use ieee754::Ieee754;

// zeros
assert_eq!(0_f32.sign().total_cmp(&0.0), Ordering::Equal);
assert_eq!((-0_f32).sign().total_cmp(&-0.0), Ordering::Equal);

// normal numbers
assert_eq!((12.34_f32).sign(), 1.0);
assert_eq!((-12.34_f32).sign(), -1.0);

// extremes
assert_eq!(f32::INFINITY.sign(), 1.0);
assert_eq!(f32::NEG_INFINITY.sign(), -1.0);
assert!(f32::NAN.sign().is_nan());

Double precision:

use std::f64;
use std::cmp::Ordering;

use ieee754::Ieee754;

// zeros
assert_eq!(0_f64.sign().total_cmp(&0.0), Ordering::Equal);
assert_eq!((-0_f64).sign().total_cmp(&-0.0), Ordering::Equal);

// normal numbers
assert_eq!((12.34_f64).sign(), 1.0);
assert_eq!((-12.34_f64).sign(), -1.0);

// extremes
assert_eq!(f64::INFINITY.sign(), 1.0);
assert_eq!(f64::NEG_INFINITY.sign(), -1.0);
assert!(f64::NAN.sign().is_nan());

fn rel_error(self, exact: Self) -> Self[src]

Compute the (generalized) signed relative error of self as an approximation to exact.

This computes the signed value: positive indicates self in the opposite direction to 0 from exact; negative indicates self is in the same direction as 0 from exact. Use x.rel_error(exact).abs() to get the non-signed relative error.

The “generalized” refers to exact being 0 or ±∞ the handling of which is designed to indicate a “failure” (infinite error), if self doesn’t precisely equal exact. This behaviour is designed for checking output of algorithms on floats when it is often desirable to match 0.0 and ±∞ perfectly.

The values of this function are:

exactxx.rel_error(exact)
NaNany valueNaN
any valueNaNNaN
0equal to exact0
0not equal to exactsignum(x) × ∞
±∞equal to exact0
±∞not equal to exact-∞
any other valueany value(x - exact) / exact

The sign of a zero-valued argument has no effect on the result of this function.

Examples

Single precision:

use std::f32;

use ieee754::Ieee754;

assert_eq!(4_f32.rel_error(4.0), 0.0);
assert_eq!(3_f32.rel_error(4.0), -0.25);
assert_eq!(5_f32.rel_error(4.0), 0.25);

// zero
assert_eq!(0_f32.rel_error(0.0), 0.0);
assert_eq!(1_f32.rel_error(0.0), f32::INFINITY);
assert_eq!((-1_f32).rel_error(0.0), f32::NEG_INFINITY);

// infinities
assert_eq!(f32::INFINITY.rel_error(f32::INFINITY), 0.0);
assert_eq!(0_f32.rel_error(f32::INFINITY), f32::NEG_INFINITY);

assert_eq!(f32::NEG_INFINITY.rel_error(f32::NEG_INFINITY), 0.0);
assert_eq!(0_f32.rel_error(f32::NEG_INFINITY), f32::NEG_INFINITY);

// NaNs
assert!(f32::NAN.rel_error(4.0).is_nan());
assert!(4_f32.rel_error(f32::NAN).is_nan());

Double precision:

use std::f64;
use ieee754::Ieee754;

assert_eq!(4_f64.rel_error(4.0), 0.0);
assert_eq!(3_f64.rel_error(4.0), -0.25);
assert_eq!(5_f64.rel_error(4.0), 0.25);

// zero
assert_eq!(0_f64.rel_error(0.0), 0.0);
assert_eq!(1_f64.rel_error(0.0), f64::INFINITY);
assert_eq!((-1_f64).rel_error(0.0), f64::NEG_INFINITY);

// infinities
assert_eq!(f64::INFINITY.rel_error(f64::INFINITY), 0.0);
assert_eq!(0_f64.rel_error(f64::INFINITY), f64::NEG_INFINITY);

assert_eq!(f64::NEG_INFINITY.rel_error(f64::NEG_INFINITY), 0.0);
assert_eq!(0_f64.rel_error(f64::NEG_INFINITY), f64::NEG_INFINITY);

// NaNs
assert!(f64::NAN.rel_error(4.0).is_nan());
assert!(4_f64.rel_error(f64::NAN).is_nan());
Loading content...

Implementors

impl Ieee754 for f32[src]

type Bits = u32

type Exponent = i16

type RawExponent = u8

type Significand = u32

impl Ieee754 for f64[src]

type Bits = u64

type Exponent = i16

type RawExponent = u16

type Significand = u64

Loading content...