Struct rug::integer::SmallInteger[][src]

pub struct SmallInteger { /* fields omitted */ }

A small integer that does not require any memory allocation.

This can be useful when you have a primitive integer type such as u64 or i8, but need a reference to an Integer.

If there are functions that take a u32 or i32 directly instead of an Integer reference, using them can still be faster than using a SmallInteger; the functions would still need to check for the size of an Integer obtained using SmallInteger.

The SmallInteger type can be coerced to an Integer, as it implements Deref<Target = Integer>.

Examples

use rug::{integer::SmallInteger, Integer};
// `a` requires a heap allocation
let mut a = Integer::from(250);
// `b` can reside on the stack
let b = SmallInteger::from(-100);
a.lcm_mut(&b);
assert_eq!(a, 500);
// another computation:
a.lcm_mut(&SmallInteger::from(30));
assert_eq!(a, 1500);

Implementations

impl SmallInteger[src]

pub const fn new() -> Self[src]

Creates a SmallInteger with value 0.

Examples

use rug::integer::SmallInteger;
let i = SmallInteger::new();
// Borrow i as if it were Integer.
assert_eq!(*i, 0);

pub unsafe fn as_nonreallocating_integer(&mut self) -> &mut Integer[src]

Returns a mutable reference to an Integer for simple operations that do not need to allocate more space for the number.

Safety

It is undefined behaviour to perform operations that reallocate the internal data of the referenced Integer or to swap it with another number.

Some GMP functions swap the allocations of their target operands; calling such functions with the mutable reference returned by this method can lead to undefined behaviour.

Examples

use rug::{integer::SmallInteger, Assign};
let mut i = SmallInteger::from(1u64);
let capacity = i.capacity();
// another u64 will not require a reallocation
unsafe {
    i.as_nonreallocating_integer().assign(2u64);
}
assert_eq!(*i, 2);
assert_eq!(i.capacity(), capacity);

Methods from Deref<Target = Integer>

pub fn capacity(&self) -> usize[src]

Returns the capacity in bits that can be stored without reallocating.

Examples

use rug::Integer;
let i = Integer::with_capacity(137);
assert!(i.capacity() >= 137);

pub const fn as_raw(&self) -> *const mpz_t[src]

Returns a pointer to the inner GMP integer.

The returned pointer will be valid for as long as self is valid.

Examples

use gmp_mpfr_sys::gmp;
use rug::Integer;
let i = Integer::from(15);
let z_ptr = i.as_raw();
unsafe {
    let u = gmp::mpz_get_ui(z_ptr);
    assert_eq!(u, 15);
}
// i is still valid
assert_eq!(i, 15);

pub fn significant_digits<T: UnsignedPrimitive>(&self) -> usize[src]

Returns the number of digits of type T required to represent the absolute value.

T can be any unsigned integer primitive type.

Examples

use rug::Integer;

let i: Integer = Integer::from(1) << 256;
assert_eq!(i.significant_digits::<bool>(), 257);
assert_eq!(i.significant_digits::<u8>(), 33);
assert_eq!(i.significant_digits::<u16>(), 17);
assert_eq!(i.significant_digits::<u32>(), 9);
assert_eq!(i.significant_digits::<u64>(), 5);

pub fn to_digits<T: UnsignedPrimitive>(&self, order: Order) -> Vec<T>[src]

Converts the absolute value to a Vec of digits of type T, where T can be any unsigned integer primitive type.

The Integer type also implements AsRef<[limb_t]>, which can be used to borrow the digits without copying them. This does come with some disadvantages compared to to_digits:

  1. The digit width is not optional and depends on the implementation: limb_t is typically u64 on 64-bit systems and u32 on 32-bit systems.
  2. The order is not optional and is least significant digit first, with each digit in the target’s endianness, equivalent to Order::Lsf.

Examples

use rug::{integer::Order, Integer};
let i = Integer::from(0x1234_5678_9abc_def0u64);
let digits = i.to_digits::<u32>(Order::MsfBe);
assert_eq!(digits, [0x1234_5678u32.to_be(), 0x9abc_def0u32.to_be()]);

let zero = Integer::new();
let digits_zero = zero.to_digits::<u32>(Order::MsfBe);
assert!(digits_zero.is_empty());

int.as_ref() is like a borrowing non-copy version of int.to_digits::<limb_t>(Order::Lsf).

use gmp_mpfr_sys::gmp::limb_t;
use rug::{integer::Order, Integer};
let int = Integer::from(0x1234_5678_9abc_def0u64);
// no copying for int_slice, which is borrowing int
let int_slice = int.as_ref();
// digits is a copy and does not borrow int
let digits = int.to_digits::<limb_t>(Order::Lsf);
// no copying for digits_slice, which is borrowing digits
let digits_slice = &digits[..];
assert_eq!(int_slice, digits_slice);

pub fn write_digits<T: UnsignedPrimitive>(&self, digits: &mut [T], order: Order)[src]

Writes the absolute value into a slice of digits of type T, where T can be any unsigned integer primitive type.

The slice must be large enough to hold the digits; the minimum size can be obtained using the significant_digits method.

Panics

Panics if the slice does not have sufficient capacity.

Examples

use rug::{integer::Order, Integer};
let i = Integer::from(0x1234_5678_9abc_def0u64);
let mut digits = [0xffff_ffffu32; 4];
i.write_digits(&mut digits, Order::MsfBe);
let word0 = 0x9abc_def0u32;
let word1 = 0x1234_5678u32;
assert_eq!(digits, [0, 0, word1.to_be(), word0.to_be()]);

pub unsafe fn write_digits_unaligned<T: UnsignedPrimitive>(
    &self,
    dst: *mut T,
    len: usize,
    order: Order
)
[src]

Writes the absolute value into a memory area of digits of type T, where T can be any unsigned integer primitive type.

The memory area is addressed using a pointer and a length. The len parameter is the number of digits, not the number of bytes.

The length must be large enough to hold the digits; the minimum length can be obtained using the significant_digits method.

There are no data alignment restrictions on dst, any address is allowed.

The memory locations can be uninitialized before this method is called; this method sets all len elements, padding with zeros if the length is larger than required.

Safety

To avoid undefined behavior, dst must be valid for writing len digits, that is len × size_of::<T>() bytes.

Panics

Panics if the length is less than the number of digits.

Examples

use rug::{integer::Order, Integer};
let i = Integer::from(0xfedc_ba98_7654_3210u64);
let mut digits = [0xffff_ffffu32; 4];
let ptr = digits.as_mut_ptr();
unsafe {
    let unaligned = (ptr as *mut u8).offset(2) as *mut u32;
    i.write_digits_unaligned(unaligned, 3, Order::MsfBe);
}
assert_eq!(
    digits,
    [
        0xffff_0000u32.to_be(),
        0x0000_fedcu32.to_be(),
        0xba98_7654u32.to_be(),
        0x3210_ffffu32.to_be(),
    ]
);

The following example shows how to write into uninitialized memory. In practice, the following code could be replaced by a call to the safe method to_digits.

use rug::{integer::Order, Integer};
let i = Integer::from(0x1234_5678_9abc_def0u64);
let len = i.significant_digits::<u32>();
assert_eq!(len, 2);

// The following code is equivalent to:
//     let digits = i.to_digits::<u32>(Order::MsfBe);
let mut digits = Vec::<u32>::with_capacity(len);
let ptr = digits.as_mut_ptr();
unsafe {
    i.write_digits_unaligned(ptr, len, Order::MsfBe);
    digits.set_len(len);
}

assert_eq!(digits, [0x1234_5678u32.to_be(), 0x9abc_def0u32.to_be()]);

pub fn to_i8(&self) -> Option<i8>[src]

Converts to an i8 if the value fits.

This conversion can also be performed using

Examples

use rug::Integer;
let fits = Integer::from(-100);
assert_eq!(fits.to_i8(), Some(-100));
let small = Integer::from(-200);
assert_eq!(small.to_i8(), None);
let large = Integer::from(200);
assert_eq!(large.to_i8(), None);

pub fn to_i16(&self) -> Option<i16>[src]

Converts to an i16 if the value fits.

This conversion can also be performed using

Examples

use rug::Integer;
let fits = Integer::from(-30_000);
assert_eq!(fits.to_i16(), Some(-30_000));
let small = Integer::from(-40_000);
assert_eq!(small.to_i16(), None);
let large = Integer::from(40_000);
assert_eq!(large.to_i16(), None);

pub fn to_i32(&self) -> Option<i32>[src]

Converts to an i32 if the value fits.

This conversion can also be performed using

Examples

use rug::Integer;
let fits = Integer::from(-50);
assert_eq!(fits.to_i32(), Some(-50));
let small = Integer::from(-123456789012345_i64);
assert_eq!(small.to_i32(), None);
let large = Integer::from(123456789012345_i64);
assert_eq!(large.to_i32(), None);

pub fn to_i64(&self) -> Option<i64>[src]

Converts to an i64 if the value fits.

This conversion can also be performed using

Examples

use rug::Integer;
let fits = Integer::from(-50);
assert_eq!(fits.to_i64(), Some(-50));
let small = Integer::from_str_radix("-fedcba9876543210", 16).unwrap();
assert_eq!(small.to_i64(), None);
let large = Integer::from_str_radix("fedcba9876543210", 16).unwrap();
assert_eq!(large.to_i64(), None);

pub fn to_i128(&self) -> Option<i128>[src]

Converts to an i128 if the value fits.

This conversion can also be performed using

Examples

use rug::Integer;
let fits = Integer::from(-50);
assert_eq!(fits.to_i128(), Some(-50));
let small: Integer = Integer::from(-1) << 130;
assert_eq!(small.to_i128(), None);
let large: Integer = Integer::from(1) << 130;
assert_eq!(large.to_i128(), None);

pub fn to_isize(&self) -> Option<isize>[src]

Converts to an isize if the value fits.

This conversion can also be performed using

Examples

use rug::Integer;
let fits = Integer::from(0x1000);
assert_eq!(fits.to_isize(), Some(0x1000));
let large: Integer = Integer::from(0x1000) << 128;
assert_eq!(large.to_isize(), None);

pub fn to_u8(&self) -> Option<u8>[src]

Converts to a u8 if the value fits.

This conversion can also be performed using

Examples

use rug::Integer;
let fits = Integer::from(200);
assert_eq!(fits.to_u8(), Some(200));
let neg = Integer::from(-1);
assert_eq!(neg.to_u8(), None);
let large = Integer::from(300);
assert_eq!(large.to_u8(), None);

pub fn to_u16(&self) -> Option<u16>[src]

Converts to a u16 if the value fits.

This conversion can also be performed using

Examples

use rug::Integer;
let fits = Integer::from(60_000);
assert_eq!(fits.to_u16(), Some(60_000));
let neg = Integer::from(-1);
assert_eq!(neg.to_u16(), None);
let large = Integer::from(70_000);
assert_eq!(large.to_u16(), None);

pub fn to_u32(&self) -> Option<u32>[src]

Converts to a u32 if the value fits.

This conversion can also be performed using

Examples

use rug::Integer;
let fits = Integer::from(1234567890);
assert_eq!(fits.to_u32(), Some(1234567890));
let neg = Integer::from(-1);
assert_eq!(neg.to_u32(), None);
let large = Integer::from(123456789012345_u64);
assert_eq!(large.to_u32(), None);

pub fn to_u64(&self) -> Option<u64>[src]

Converts to a u64 if the value fits.

This conversion can also be performed using

Examples

use rug::Integer;
let fits = Integer::from(123456789012345_u64);
assert_eq!(fits.to_u64(), Some(123456789012345));
let neg = Integer::from(-1);
assert_eq!(neg.to_u64(), None);
let large = "1234567890123456789012345".parse::<Integer>().unwrap();
assert_eq!(large.to_u64(), None);

pub fn to_u128(&self) -> Option<u128>[src]

Converts to a u128 if the value fits.

This conversion can also be performed using

Examples

use rug::Integer;
let fits = Integer::from(12345678901234567890_u128);
assert_eq!(fits.to_u128(), Some(12345678901234567890));
let neg = Integer::from(-1);
assert_eq!(neg.to_u128(), None);
let large = "1234567890123456789012345678901234567890"
    .parse::<Integer>()
    .unwrap();
assert_eq!(large.to_u128(), None);

pub fn to_usize(&self) -> Option<usize>[src]

Converts to a usize if the value fits.

This conversion can also be performed using

Examples

use rug::Integer;
let fits = Integer::from(0x1000);
assert_eq!(fits.to_usize(), Some(0x1000));
let neg = Integer::from(-1);
assert_eq!(neg.to_usize(), None);
let large: Integer = Integer::from(0x1000) << 128;
assert_eq!(large.to_usize(), None);

pub fn to_i8_wrapping(&self) -> i8[src]

Converts to an i8, wrapping if the value does not fit.

This conversion can also be performed using

Examples

use rug::Integer;
let large = Integer::from(0x1234);
assert_eq!(large.to_i8_wrapping(), 0x34);

pub fn to_i16_wrapping(&self) -> i16[src]

Converts to an i16, wrapping if the value does not fit.

This conversion can also be performed using

Examples

use rug::Integer;
let large = Integer::from(0x1234_5678);
assert_eq!(large.to_i16_wrapping(), 0x5678);

pub fn to_i32_wrapping(&self) -> i32[src]

Converts to an i32, wrapping if the value does not fit.

This conversion can also be performed using

Examples

use rug::Integer;
let large = Integer::from(0x1234_5678_9abc_def0_u64);
assert_eq!(large.to_i32_wrapping(), 0x9abc_def0_u32 as i32);

pub fn to_i64_wrapping(&self) -> i64[src]

Converts to an i64, wrapping if the value does not fit.

This conversion can also be performed using

Examples

use rug::Integer;
let large = Integer::from_str_radix("f123456789abcdef0", 16).unwrap();
assert_eq!(large.to_i64_wrapping(), 0x1234_5678_9abc_def0);

pub fn to_i128_wrapping(&self) -> i128[src]

Converts to an i128, wrapping if the value does not fit.

This conversion can also be performed using

Examples

use rug::Integer;
let s = "f123456789abcdef0123456789abcdef0";
let large = Integer::from_str_radix(s, 16).unwrap();
assert_eq!(
    large.to_i128_wrapping(),
    0x1234_5678_9abc_def0_1234_5678_9abc_def0
);

pub fn to_isize_wrapping(&self) -> isize[src]

Converts to an isize, wrapping if the value does not fit.

This conversion can also be performed using

Examples

use rug::Integer;
let large: Integer = (Integer::from(0x1000) << 128) | 0x1234;
assert_eq!(large.to_isize_wrapping(), 0x1234);

pub fn to_u8_wrapping(&self) -> u8[src]

Converts to a u8, wrapping if the value does not fit.

This conversion can also be performed using

Examples

use rug::Integer;
let neg = Integer::from(-1);
assert_eq!(neg.to_u8_wrapping(), 0xff);
let large = Integer::from(0x1234);
assert_eq!(large.to_u8_wrapping(), 0x34);

pub fn to_u16_wrapping(&self) -> u16[src]

Converts to a u16, wrapping if the value does not fit.

This conversion can also be performed using

Examples

use rug::Integer;
let neg = Integer::from(-1);
assert_eq!(neg.to_u16_wrapping(), 0xffff);
let large = Integer::from(0x1234_5678);
assert_eq!(large.to_u16_wrapping(), 0x5678);

pub fn to_u32_wrapping(&self) -> u32[src]

Converts to a u32, wrapping if the value does not fit.

This conversion can also be performed using

Examples

use rug::Integer;
let neg = Integer::from(-1);
assert_eq!(neg.to_u32_wrapping(), 0xffff_ffff);
let large = Integer::from(0x1234_5678_9abc_def0_u64);
assert_eq!(large.to_u32_wrapping(), 0x9abc_def0);

pub fn to_u64_wrapping(&self) -> u64[src]

Converts to a u64, wrapping if the value does not fit.

This conversion can also be performed using

Examples

use rug::Integer;
let neg = Integer::from(-1);
assert_eq!(neg.to_u64_wrapping(), 0xffff_ffff_ffff_ffff);
let large = Integer::from_str_radix("f123456789abcdef0", 16).unwrap();
assert_eq!(large.to_u64_wrapping(), 0x1234_5678_9abc_def0);

pub fn to_u128_wrapping(&self) -> u128[src]

Converts to a u128, wrapping if the value does not fit.

This conversion can also be performed using

Examples

use rug::Integer;
let neg = Integer::from(-1);
assert_eq!(
    neg.to_u128_wrapping(),
    0xffff_ffff_ffff_ffff_ffff_ffff_ffff_ffff
);
let s = "f123456789abcdef0123456789abcdef0";
let large = Integer::from_str_radix(s, 16).unwrap();
assert_eq!(
    large.to_u128_wrapping(),
    0x1234_5678_9abc_def0_1234_5678_9abc_def0
);

pub fn to_usize_wrapping(&self) -> usize[src]

Converts to a usize, wrapping if the value does not fit.

This conversion can also be performed using

Examples

use rug::Integer;
let large: Integer = (Integer::from(0x1000) << 128) | 0x1234;
assert_eq!(large.to_usize_wrapping(), 0x1234);

pub fn to_f32(&self) -> f32[src]

Converts to an f32, rounding towards zero.

This conversion can also be performed using

Examples

use core::f32;
use rug::Integer;
let min = Integer::from_f32(f32::MIN).unwrap();
let min_minus_one = min - 1u32;
// min_minus_one is truncated to f32::MIN
assert_eq!(min_minus_one.to_f32(), f32::MIN);
let times_two = min_minus_one * 2u32;
// times_two is too small
assert_eq!(times_two.to_f32(), f32::NEG_INFINITY);

pub fn to_f64(&self) -> f64[src]

Converts to an f64, rounding towards zero.

This conversion can also be performed using

Examples

use core::f64;
use rug::Integer;

// An `f64` has 53 bits of precision.
let exact = 0x1f_ffff_ffff_ffff_u64;
let i = Integer::from(exact);
assert_eq!(i.to_f64(), exact as f64);

// large has 56 ones
let large = 0xff_ffff_ffff_ffff_u64;
// trunc has 53 ones followed by 3 zeros
let trunc = 0xff_ffff_ffff_fff8_u64;
let j = Integer::from(large);
assert_eq!(j.to_f64() as u64, trunc);

let max = Integer::from_f64(f64::MAX).unwrap();
let max_plus_one = max + 1u32;
// max_plus_one is truncated to f64::MAX
assert_eq!(max_plus_one.to_f64(), f64::MAX);
let times_two = max_plus_one * 2u32;
// times_two is too large
assert_eq!(times_two.to_f64(), f64::INFINITY);

pub fn to_f32_exp(&self) -> (f32, u32)[src]

Converts to an f32 and an exponent, rounding towards zero.

The returned f32 is in the range 0.5 ≤ x < 1. If the value is zero, (0.0, 0) is returned.

Examples

use rug::Integer;
let zero = Integer::new();
let (d0, exp0) = zero.to_f32_exp();
assert_eq!((d0, exp0), (0.0, 0));
let fifteen = Integer::from(15);
let (d15, exp15) = fifteen.to_f32_exp();
assert_eq!((d15, exp15), (15.0 / 16.0, 4));

pub fn to_f64_exp(&self) -> (f64, u32)[src]

Converts to an f64 and an exponent, rounding towards zero.

The returned f64 is in the range 0.5 ≤ x < 1. If the value is zero, (0.0, 0) is returned.

Examples

use rug::Integer;
let zero = Integer::new();
let (d0, exp0) = zero.to_f64_exp();
assert_eq!((d0, exp0), (0.0, 0));
let fifteen = Integer::from(15);
let (d15, exp15) = fifteen.to_f64_exp();
assert_eq!((d15, exp15), (15.0 / 16.0, 4));

pub fn to_string_radix(&self, radix: i32) -> String[src]

Returns a string representation of the number for the specified radix.

Panics

Panics if radix is less than 2 or greater than 36.

Examples

use rug::{Assign, Integer};
let mut i = Integer::new();
assert_eq!(i.to_string_radix(10), "0");
i.assign(-10);
assert_eq!(i.to_string_radix(16), "-a");
i.assign(0x1234cdef);
assert_eq!(i.to_string_radix(4), "102031030313233");
i.assign(Integer::parse_radix("123456789aAbBcCdDeEfF", 16).unwrap());
assert_eq!(i.to_string_radix(16), "123456789aabbccddeeff");

pub fn as_neg(&self) -> BorrowInteger<'_>[src]

Borrows a negated copy of the Integer.

The returned object implements Deref<Target = Integer>.

This method performs a shallow copy and negates it, and negation does not change the allocated data.

Examples

use rug::Integer;
let i = Integer::from(42);
let neg_i = i.as_neg();
assert_eq!(*neg_i, -42);
// methods taking &self can be used on the returned object
let reneg_i = neg_i.as_neg();
assert_eq!(*reneg_i, 42);
assert_eq!(*reneg_i, i);

pub fn as_abs(&self) -> BorrowInteger<'_>[src]

Borrows an absolute copy of the Integer.

The returned object implements Deref<Target = Integer>.

This method performs a shallow copy and possibly negates it, and negation does not change the allocated data.

Examples

use rug::Integer;
let i = Integer::from(-42);
let abs_i = i.as_abs();
assert_eq!(*abs_i, 42);
// methods taking &self can be used on the returned object
let reabs_i = abs_i.as_abs();
assert_eq!(*reabs_i, 42);
assert_eq!(*reabs_i, *abs_i);

pub fn is_even(&self) -> bool[src]

Returns true if the number is even.

Examples

use rug::Integer;
assert!(!(Integer::from(13).is_even()));
assert!(Integer::from(-14).is_even());

pub fn is_odd(&self) -> bool[src]

Returns true if the number is odd.

Examples

use rug::Integer;
assert!(Integer::from(13).is_odd());
assert!(!Integer::from(-14).is_odd());

pub fn is_divisible(&self, divisor: &Self) -> bool[src]

Returns true if the number is divisible by divisor. Unlike other division functions, divisor can be zero.

Examples

use rug::Integer;
let i = Integer::from(230);
assert!(i.is_divisible(&Integer::from(10)));
assert!(!i.is_divisible(&Integer::from(100)));
assert!(!i.is_divisible(&Integer::new()));

pub fn is_divisible_u(&self, divisor: u32) -> bool[src]

Returns true if the number is divisible by divisor. Unlike other division functions, divisor can be zero.

Examples

use rug::Integer;
let i = Integer::from(230);
assert!(i.is_divisible_u(23));
assert!(!i.is_divisible_u(100));
assert!(!i.is_divisible_u(0));

pub fn is_divisible_2pow(&self, b: u32) -> bool[src]

Returns true if the number is divisible by 2b.

Examples

use rug::Integer;
let i = Integer::from(15 << 17);
assert!(i.is_divisible_2pow(16));
assert!(i.is_divisible_2pow(17));
assert!(!i.is_divisible_2pow(18));

pub fn is_congruent(&self, c: &Self, divisor: &Self) -> bool[src]

Returns true if the number is congruent to c mod divisor, that is, if there exists a q such that self = c + q × divisor. Unlike other division functions, divisor can be zero.

Examples

use rug::Integer;
let n = Integer::from(105);
let divisor = Integer::from(10);
assert!(n.is_congruent(&Integer::from(5), &divisor));
assert!(n.is_congruent(&Integer::from(25), &divisor));
assert!(!n.is_congruent(&Integer::from(7), &divisor));
// n is congruent to itself if divisor is 0
assert!(n.is_congruent(&n, &Integer::from(0)));

pub fn is_congruent_u(&self, c: u32, divisor: u32) -> bool[src]

Returns true if the number is congruent to c mod divisor, that is, if there exists a q such that self = c + q × divisor. Unlike other division functions, divisor can be zero.

Examples

use rug::Integer;
let n = Integer::from(105);
assert!(n.is_congruent_u(3335, 10));
assert!(!n.is_congruent_u(107, 10));
// n is congruent to itself if divisor is 0
assert!(n.is_congruent_u(105, 0));

pub fn is_congruent_2pow(&self, c: &Self, b: u32) -> bool[src]

Returns true if the number is congruent to c mod 2b, that is, if there exists a q such that self = c + q × 2b.

Examples

use rug::Integer;
let n = Integer::from(13 << 17 | 21);
assert!(n.is_congruent_2pow(&Integer::from(7 << 17 | 21), 17));
assert!(!n.is_congruent_2pow(&Integer::from(13 << 17 | 22), 17));

pub fn is_perfect_power(&self) -> bool[src]

Returns true if the number is a perfect power.

Examples

use rug::Integer;
// 0 is 0 to the power of anything
assert!(Integer::from(0).is_perfect_power());
// 25 is 5 to the power of 2
assert!(Integer::from(25).is_perfect_power());
// −243 is −3 to the power of 5
assert!(Integer::from(243).is_perfect_power());

assert!(!Integer::from(24).is_perfect_power());
assert!(!Integer::from(-100).is_perfect_power());

pub fn is_perfect_square(&self) -> bool[src]

Returns true if the number is a perfect square.

Examples

use rug::Integer;
assert!(Integer::from(0).is_perfect_square());
assert!(Integer::from(1).is_perfect_square());
assert!(Integer::from(4).is_perfect_square());
assert!(Integer::from(9).is_perfect_square());

assert!(!Integer::from(15).is_perfect_square());
assert!(!Integer::from(-9).is_perfect_square());

pub fn is_power_of_two(&self) -> bool[src]

Returns true if the number is a power of two.

Examples

use rug::Integer;
assert!(Integer::from(1).is_power_of_two());
assert!(Integer::from(4).is_power_of_two());
assert!(Integer::from(1 << 30).is_power_of_two());

assert!(!Integer::from(7).is_power_of_two());
assert!(!Integer::from(0).is_power_of_two());
assert!(!Integer::from(-1).is_power_of_two());

pub fn cmp0(&self) -> Ordering[src]

Returns the same result as self.cmp(&0.into()), but is faster.

Examples

use core::cmp::Ordering;
use rug::Integer;
assert_eq!(Integer::from(-5).cmp0(), Ordering::Less);
assert_eq!(Integer::from(0).cmp0(), Ordering::Equal);
assert_eq!(Integer::from(5).cmp0(), Ordering::Greater);

pub fn cmp_abs(&self, other: &Self) -> Ordering[src]

Compares the absolute values.

Examples

use core::cmp::Ordering;
use rug::Integer;
let a = Integer::from(-10);
let b = Integer::from(4);
assert_eq!(a.cmp(&b), Ordering::Less);
assert_eq!(a.cmp_abs(&b), Ordering::Greater);

pub fn significant_bits(&self) -> u32[src]

Returns the number of bits required to represent the absolute value.

Examples

use rug::Integer;

assert_eq!(Integer::from(0).significant_bits(), 0);  //    “”
assert_eq!(Integer::from(1).significant_bits(), 1);  //   “1”
assert_eq!(Integer::from(4).significant_bits(), 3);  // “100”
assert_eq!(Integer::from(7).significant_bits(), 3);  // “111”
assert_eq!(Integer::from(-1).significant_bits(), 1); //   “1”
assert_eq!(Integer::from(-4).significant_bits(), 3); // “100”
assert_eq!(Integer::from(-7).significant_bits(), 3); // “111”

pub fn signed_bits(&self) -> u32[src]

Returns the number of bits required to represent the value using a two’s-complement representation.

For non-negative numbers, this method returns one more than the significant_bits method, since an extra zero is needed before the most significant bit.

Examples

use rug::Integer;

assert_eq!(Integer::from(-5).signed_bits(), 4); // “1011”
assert_eq!(Integer::from(-4).signed_bits(), 3); //  “100”
assert_eq!(Integer::from(-3).signed_bits(), 3); //  “101”
assert_eq!(Integer::from(-2).signed_bits(), 2); //   “10”
assert_eq!(Integer::from(-1).signed_bits(), 1); //    “1”
assert_eq!(Integer::from(0).signed_bits(), 1);  //    “0”
assert_eq!(Integer::from(1).signed_bits(), 2);  //   “01”
assert_eq!(Integer::from(2).signed_bits(), 3);  //  “010”
assert_eq!(Integer::from(3).signed_bits(), 3);  //  “011”
assert_eq!(Integer::from(4).signed_bits(), 4);  // “0100”

pub fn count_ones(&self) -> Option<u32>[src]

Returns the number of one bits if the value ≥ 0.

Examples

use rug::Integer;
assert_eq!(Integer::from(0).count_ones(), Some(0));
assert_eq!(Integer::from(15).count_ones(), Some(4));
assert_eq!(Integer::from(-1).count_ones(), None);

pub fn count_zeros(&self) -> Option<u32>[src]

Returns the number of zero bits if the value < 0.

Examples

use rug::Integer;
assert_eq!(Integer::from(0).count_zeros(), None);
assert_eq!(Integer::from(1).count_zeros(), None);
assert_eq!(Integer::from(-1).count_zeros(), Some(0));
assert_eq!(Integer::from(-2).count_zeros(), Some(1));
assert_eq!(Integer::from(-7).count_zeros(), Some(2));
assert_eq!(Integer::from(-8).count_zeros(), Some(3));

pub fn find_zero(&self, start: u32) -> Option<u32>[src]

Returns the location of the first zero, starting at start. If the bit at location start is zero, returns start.

use rug::Integer;
// −2 is ...11111110
assert_eq!(Integer::from(-2).find_zero(0), Some(0));
assert_eq!(Integer::from(-2).find_zero(1), None);
// 15 is ...00001111
assert_eq!(Integer::from(15).find_zero(0), Some(4));
assert_eq!(Integer::from(15).find_zero(20), Some(20));

pub fn find_one(&self, start: u32) -> Option<u32>[src]

Returns the location of the first one, starting at start. If the bit at location start is one, returns start.

use rug::Integer;
// 1 is ...00000001
assert_eq!(Integer::from(1).find_one(0), Some(0));
assert_eq!(Integer::from(1).find_one(1), None);
// −16 is ...11110000
assert_eq!(Integer::from(-16).find_one(0), Some(4));
assert_eq!(Integer::from(-16).find_one(20), Some(20));

pub fn get_bit(&self, index: u32) -> bool[src]

Returns true if the bit at location index is 1 or false if the bit is 0.

Examples

use rug::Integer;
let i = Integer::from(0b100101);
assert!(i.get_bit(0));
assert!(!i.get_bit(1));
assert!(i.get_bit(5));
let neg = Integer::from(-1);
assert!(neg.get_bit(1000));

pub fn hamming_dist(&self, other: &Self) -> Option<u32>[src]

Retuns the Hamming distance if the two numbers have the same sign.

The Hamming distance is the number of different bits.

Examples

use rug::Integer;
let i = Integer::from(-1);
assert_eq!(Integer::from(0).hamming_dist(&i), None);
assert_eq!(Integer::from(-1).hamming_dist(&i), Some(0));
// −1 is ...11111111 and −13 is ...11110011
assert_eq!(Integer::from(-13).hamming_dist(&i), Some(2));

pub fn abs_ref(&self) -> AbsIncomplete<'_>[src]

Computes the absolute value.

The following are implemented with the returned incomplete-computation value as Src:

Examples

use rug::Integer;
let i = Integer::from(-100);
let r = i.abs_ref();
let abs = Integer::from(r);
assert_eq!(abs, 100);
assert_eq!(i, -100);

pub fn signum_ref(&self) -> SignumIncomplete<'_>[src]

Computes the signum.

  • 0 if the value is zero
  • 1 if the value is positive
  • −1 if the value is negative

The following are implemented with the returned incomplete-computation value as Src:

Examples

use rug::Integer;
let i = Integer::from(-100);
let r = i.signum_ref();
let signum = Integer::from(r);
assert_eq!(signum, -1);
assert_eq!(i, -100);

pub fn clamp_ref<'min, 'max, Min, Max>(
    &self,
    min: &'min Min,
    max: &'max Max
) -> ClampIncomplete<'_, 'min, 'max, Min, Max> where
    Self: PartialOrd<Min> + PartialOrd<Max> + for<'a> Assign<&'a Min> + for<'a> Assign<&'a Max>, 
[src]

Clamps the value within the specified bounds.

The following are implemented with the returned incomplete-computation value as Src:

Panics

Panics if the maximum value is less than the minimum value.

Examples

use rug::Integer;
let min = -10;
let max = 10;
let too_small = Integer::from(-100);
let r1 = too_small.clamp_ref(&min, &max);
let clamped1 = Integer::from(r1);
assert_eq!(clamped1, -10);
let in_range = Integer::from(3);
let r2 = in_range.clamp_ref(&min, &max);
let clamped2 = Integer::from(r2);
assert_eq!(clamped2, 3);

pub fn keep_bits_ref(&self, n: u32) -> KeepBitsIncomplete<'_>[src]

Keeps the n least significant bits only, producing a result that is greater or equal to 0.

The following are implemented with the returned incomplete-computation value as Src:

Examples

use rug::Integer;
let i = Integer::from(-1);
let r = i.keep_bits_ref(8);
let eight_bits = Integer::from(r);
assert_eq!(eight_bits, 0xff);

pub fn keep_signed_bits_ref(&self, n: u32) -> KeepSignedBitsIncomplete<'_>[src]

Keeps the n least significant bits only, producing a negative result if the nth least significant bit is one.

The following are implemented with the returned incomplete-computation value as Src:

Examples

use rug::Integer;
let i = Integer::from(-1);
let r = i.keep_signed_bits_ref(8);
let eight_bits = Integer::from(r);
assert_eq!(eight_bits, -1);

pub fn next_power_of_two_ref(&self) -> NextPowerOfTwoIncomplete<'_>[src]

Finds the next power of two, or 1 if the number ≤ 0.

The following are implemented with the returned incomplete-computation value as Src:

Examples

use rug::Integer;
let i = Integer::from(53);
let r = i.next_power_of_two_ref();
let next = Integer::from(r);
assert_eq!(next, 64);

pub fn div_rem_ref<'a>(&'a self, divisor: &'a Self) -> DivRemIncomplete<'_>[src]

Performs a division producing both the quotient and remainder.

The following are implemented with the returned incomplete-computation value as Src:

The remainder has the same sign as the dividend.

Examples

use rug::Integer;
let dividend = Integer::from(-23);
let divisor = Integer::from(-10);
let r = dividend.div_rem_ref(&divisor);
let (quotient, rem) = <(Integer, Integer)>::from(r);
assert_eq!(quotient, 2);
assert_eq!(rem, -3);

pub fn div_rem_ceil_ref<'a>(
    &'a self,
    divisor: &'a Self
) -> DivRemCeilIncomplete<'_>
[src]

Performs a division producing both the quotient and remainder, with the quotient rounded up.

The sign of the remainder is the opposite of the divisor’s sign.

The following are implemented with the returned incomplete-computation value as Src:

Examples

use rug::Integer;
let dividend = Integer::from(-23);
let divisor = Integer::from(-10);
let r = dividend.div_rem_ceil_ref(&divisor);
let (quotient, rem) = <(Integer, Integer)>::from(r);
assert_eq!(quotient, 3);
assert_eq!(rem, 7);

pub fn div_rem_floor_ref<'a>(
    &'a self,
    divisor: &'a Self
) -> DivRemFloorIncomplete<'_>
[src]

Performs a division producing both the quotient and remainder, with the quotient rounded down.

The remainder has the same sign as the divisor.

The following are implemented with the returned incomplete-computation value as Src:

Examples

use rug::Integer;
let dividend = Integer::from(-23);
let divisor = Integer::from(-10);
let r = dividend.div_rem_floor_ref(&divisor);
let (quotient, rem) = <(Integer, Integer)>::from(r);
assert_eq!(quotient, 2);
assert_eq!(rem, -3);

pub fn div_rem_round_ref<'a>(
    &'a self,
    divisor: &'a Self
) -> DivRemRoundIncomplete<'_>
[src]

Performs a division producing both the quotient and remainder, with the quotient rounded to the nearest integer.

When the quotient before rounding lies exactly between two integers, it is rounded away from zero.

The following are implemented with the returned incomplete-computation value as Src:

Examples

use rug::Integer;
// −28 / −10 → 3 rem 2
let dividend = Integer::from(-28);
let divisor = Integer::from(-10);
let r = dividend.div_rem_round_ref(&divisor);
let (quotient, rem) = <(Integer, Integer)>::from(r);
assert_eq!(quotient, 3);
assert_eq!(rem, 2);

pub fn div_rem_euc_ref<'a>(
    &'a self,
    divisor: &'a Self
) -> DivRemEucIncomplete<'_>
[src]

Performs Euclidan division producing both the quotient and remainder, with a positive remainder.

The following are implemented with the returned incomplete-computation value as Src:

Examples

use rug::Integer;
let dividend = Integer::from(-23);
let divisor = Integer::from(-10);
let r = dividend.div_rem_euc_ref(&divisor);
let (quotient, rem) = <(Integer, Integer)>::from(r);
assert_eq!(quotient, 3);
assert_eq!(rem, 7);

pub fn mod_u(&self, modulo: u32) -> u32[src]

Returns the modulo, or the remainder of Euclidean division by a u32.

The result is always zero or positive.

Panics

Panics if modulo is zero.

Examples

use rug::Integer;
let pos = Integer::from(23);
assert_eq!(pos.mod_u(1), 0);
assert_eq!(pos.mod_u(10), 3);
assert_eq!(pos.mod_u(100), 23);
let neg = Integer::from(-23);
assert_eq!(neg.mod_u(1), 0);
assert_eq!(neg.mod_u(10), 7);
assert_eq!(neg.mod_u(100), 77);

pub fn div_exact_ref<'a>(&'a self, divisor: &'a Self) -> DivExactIncomplete<'_>[src]

Performs an exact division.

This is much faster than normal division, but produces correct results only when the division is exact.

The following are implemented with the returned incomplete-computation value as Src:

Examples

use rug::Integer;
let i = Integer::from(12345 * 54321);
let divisor = Integer::from(12345);
let r = i.div_exact_ref(&divisor);
let quotient = Integer::from(r);
assert_eq!(quotient, 54321);

pub fn div_exact_u_ref(&self, divisor: u32) -> DivExactUIncomplete<'_>[src]

Performs an exact division.

This is much faster than normal division, but produces correct results only when the division is exact.

The following are implemented with the returned incomplete-computation value as Src:

Examples

use rug::Integer;
let i = Integer::from(12345 * 54321);
let r = i.div_exact_u_ref(12345);
assert_eq!(Integer::from(r), 54321);

pub fn invert_ref<'a>(
    &'a self,
    modulo: &'a Self
) -> Option<InvertIncomplete<'a>>
[src]

Finds the inverse modulo modulo if an inverse exists.

The inverse exists if the modulo is not zero, and self and the modulo are co-prime, that is their GCD is 1.

The following are implemented with the unwrapped returned incomplete-computation value as Src:

Examples

use rug::Integer;
let two = Integer::from(2);
let four = Integer::from(4);
let five = Integer::from(5);

// Modulo 4, 2 has no inverse, there is no i such that 2 × i = 1.
// For this conversion, if no inverse exists, the Integer
// created is left unchanged as 0.
assert!(two.invert_ref(&four).is_none());

// Modulo 5, the inverse of 2 is 3, as 2 × 3 = 1.
let r = two.invert_ref(&five).unwrap();
let inverse = Integer::from(r);
assert_eq!(inverse, 3);

pub fn pow_mod_ref<'a>(
    &'a self,
    exponent: &'a Self,
    modulo: &'a Self
) -> Option<PowModIncomplete<'a>>
[src]

Raises a number to the power of exponent modulo modulo if an answer exists.

If the exponent is negative, then the number must have an inverse for an answer to exist.

The following are implemented with the unwrapped returned incomplete-computation value as Src:

Examples

use rug::Integer;
let two = Integer::from(2);
let thousand = Integer::from(1000);
let minus_five = Integer::from(-5);
let seven = Integer::from(7);

// Modulo 1000, 2 has no inverse: there is no i such that 2 × i = 1.
assert!(two.pow_mod_ref(&minus_five, &thousand).is_none());

// 7 × 143 modulo 1000 = 1, so 7 has an inverse 143.
// 7 ^ −5 modulo 1000 = 143 ^ 5 modulo 1000 = 943.
let r = seven.pow_mod_ref(&minus_five, &thousand).unwrap();
let power = Integer::from(r);
assert_eq!(power, 943);

pub fn secure_pow_mod_ref<'a>(
    &'a self,
    exponent: &'a Self,
    modulo: &'a Self
) -> SecurePowModIncomplete<'a>
[src]

Raises a number to the power of exponent modulo modulo, with resilience to side-channel attacks.

The exponent must be greater than zero, and the modulo must be odd.

This method is intended for cryptographic purposes where resilience to side-channel attacks is desired. The function is designed to take the same time and use the same cache access patterns for same-sized arguments, assuming that the arguments are placed at the same position and the machine state is identical when starting.

The following are implemented with the returned incomplete-computation value as Src:

Panics

Panics if exponent ≤ 0 or if modulo is even.

Examples

use rug::Integer;
// 7 ^ 4 mod 13 = 9
let n = Integer::from(7);
let e = Integer::from(4);
let m = Integer::from(13);
let power = Integer::from(n.secure_pow_mod_ref(&e, &m));
assert_eq!(power, 9);

pub fn root_ref(&self, n: u32) -> RootIncomplete<'_>[src]

Computes the nth root and truncates the result.

The following are implemented with the returned incomplete-computation value as Src:

Examples

use rug::Integer;
let i = Integer::from(1004);
assert_eq!(Integer::from(i.root_ref(3)), 10);

pub fn root_rem_ref(&self, n: u32) -> RootRemIncomplete<'_>[src]

Computes the nth root and returns the truncated root and the remainder.

The remainder is the original number minus the truncated root raised to the power of n.

The following are implemented with the returned incomplete-computation value as Src:

Examples

use rug::{Assign, Integer};
let i = Integer::from(1004);
let mut root = Integer::new();
let mut rem = Integer::new();
let r = i.root_rem_ref(3);
(&mut root, &mut rem).assign(r);
assert_eq!(root, 10);
assert_eq!(rem, 4);
let r = i.root_rem_ref(3);
let (other_root, other_rem) = <(Integer, Integer)>::from(r);
assert_eq!(other_root, 10);
assert_eq!(other_rem, 4);

pub fn square_ref(&self) -> SquareIncomplete<'_>[src]

Computes the square.

The following are implemented with the returned incomplete-computation value as Src:

Examples

use rug::Integer;
let i = Integer::from(13);
assert_eq!(Integer::from(i.square_ref()), 169);

pub fn sqrt_ref(&self) -> SqrtIncomplete<'_>[src]

Computes the square root and truncates the result.

The following are implemented with the returned incomplete-computation value as Src:

Examples

use rug::Integer;
let i = Integer::from(104);
assert_eq!(Integer::from(i.sqrt_ref()), 10);

pub fn sqrt_rem_ref(&self) -> SqrtRemIncomplete<'_>[src]

Computes the square root and the remainder.

The remainder is the original number minus the truncated root squared.

The following are implemented with the returned incomplete-computation value as Src:

Examples

use rug::{Assign, Integer};
let i = Integer::from(104);
let mut sqrt = Integer::new();
let mut rem = Integer::new();
let r = i.sqrt_rem_ref();
(&mut sqrt, &mut rem).assign(r);
assert_eq!(sqrt, 10);
assert_eq!(rem, 4);
let r = i.sqrt_rem_ref();
let (other_sqrt, other_rem) = <(Integer, Integer)>::from(r);
assert_eq!(other_sqrt, 10);
assert_eq!(other_rem, 4);

pub fn is_probably_prime(&self, reps: u32) -> IsPrime[src]

Determines wheter a number is prime.

This function uses some trial divisions, a Baille-PSW probable prime test, then reps − 24 Miller-Rabin probabilistic primality tests.

Examples

use rug::{integer::IsPrime, Integer};
let no = Integer::from(163 * 4003);
assert_eq!(no.is_probably_prime(30), IsPrime::No);
let yes = Integer::from(817_504_243);
assert_eq!(yes.is_probably_prime(30), IsPrime::Yes);
// 16_412_292_043_871_650_369 is actually a prime.
let probably = Integer::from(16_412_292_043_871_650_369_u64);
assert_eq!(probably.is_probably_prime(30), IsPrime::Probably);

pub fn next_prime_ref(&self) -> NextPrimeIncomplete<'_>[src]

Identifies primes using a probabilistic algorithm; the chance of a composite passing will be extremely small.

The following are implemented with the returned incomplete-computation value as Src:

Examples

use rug::Integer;
let i = Integer::from(800_000_000);
let r = i.next_prime_ref();
let prime = Integer::from(r);
assert_eq!(prime, 800_000_011);

pub fn gcd_ref<'a>(&'a self, other: &'a Self) -> GcdIncomplete<'_>[src]

Finds the greatest common divisor.

The result is always positive except when both inputs are zero.

The following are implemented with the returned incomplete-computation value as Src:

Examples

use rug::Integer;
let a = Integer::from(100);
let b = Integer::from(125);
let r = a.gcd_ref(&b);
// gcd of 100, 125 is 25
assert_eq!(Integer::from(r), 25);

pub fn gcd_u_ref(&self, other: u32) -> GcdUIncomplete<'_>[src]

Finds the greatest common divisor.

The result is always positive except when both inputs are zero.

The following are implemented with the returned incomplete-computation value as Src:

The last item above is useful to obtain the result as a u32 if it fits. If other > 0 , the result always fits. If the result does not fit, it is equal to the absolute value of self.

Examples

use rug::Integer;
let i = Integer::from(100);
let r = i.gcd_u_ref(125);
// gcd of 100, 125 is 25
assert_eq!(Integer::from(r), 25);
let r = i.gcd_u_ref(125);
assert_eq!(Option::<u32>::from(r), Some(25));

pub fn gcd_cofactors_ref<'a>(&'a self, other: &'a Self) -> GcdIncomplete<'_>[src]

Finds the greatest common divisor (GCD) of the two inputs (self and other), and two cofactors to obtain the GCD from the two inputs.

The following are implemented with the returned incomplete-computation value as Src:

In the case that only one of the two cofactors is required, the following are also implemented:

The GCD is always positive except when both inputs are zero. If the inputs are a and b, then the GCD is g and the cofactors are s and t such that

a × s + b × t = g

The values s and t are chosen such that normally, |s| < |b| / (2g) and |t| < |a| / (2g), and these relations define s and t uniquely. There are a few exceptional cases:

  • If |a| = |b|, then s = 0, t = sgn(b).
  • Otherwise, if b = 0 or |b| = 2g, then s = sgn(a), and if a = 0 or |a| = 2g, then t = sgn(b).

Examples

use rug::{Assign, Integer};
let a = Integer::from(4);
let b = Integer::from(6);
let r = a.gcd_cofactors_ref(&b);
let mut g = Integer::new();
let mut s = Integer::new();
let mut t = Integer::new();
(&mut g, &mut s, &mut t).assign(r);
assert_eq!(a, 4);
assert_eq!(b, 6);
assert_eq!(g, 2);
assert_eq!(s, -1);
assert_eq!(t, 1);

In the case that only one of the two cofactors is required, this can be achieved as follows:

use rug::{Assign, Integer};
let a = Integer::from(4);
let b = Integer::from(6);

// no t required
let (mut g1, mut s1) = (Integer::new(), Integer::new());
(&mut g1, &mut s1).assign(a.gcd_cofactors_ref(&b));
assert_eq!(g1, 2);
assert_eq!(s1, -1);

// no s required
let (mut g2, mut t2) = (Integer::new(), Integer::new());
(&mut g2, &mut t2).assign(b.gcd_cofactors_ref(&a));
assert_eq!(g2, 2);
assert_eq!(t2, 1);

pub fn lcm_ref<'a>(&'a self, other: &'a Self) -> LcmIncomplete<'_>[src]

Finds the least common multiple.

The result is always positive except when one or both inputs are zero.

The following are implemented with the returned incomplete-computation value as Src:

Examples

use rug::Integer;
let a = Integer::from(100);
let b = Integer::from(125);
let r = a.lcm_ref(&b);
// lcm of 100, 125 is 500
assert_eq!(Integer::from(r), 500);

pub fn lcm_u_ref(&self, other: u32) -> LcmUIncomplete<'_>[src]

Finds the least common multiple.

The result is always positive except when one or both inputs are zero.

The following are implemented with the returned incomplete-computation value as Src:

Examples

use rug::Integer;
let i = Integer::from(100);
let r = i.lcm_u_ref(125);
// lcm of 100, 125 is 500
assert_eq!(Integer::from(r), 500);

pub fn jacobi(&self, n: &Self) -> i32[src]

Calculates the Jacobi symbol (self/n).

Examples

use rug::{Assign, Integer};
let m = Integer::from(10);
let mut n = Integer::from(13);
assert_eq!(m.jacobi(&n), 1);
n.assign(15);
assert_eq!(m.jacobi(&n), 0);
n.assign(17);
assert_eq!(m.jacobi(&n), -1);

pub fn legendre(&self, p: &Self) -> i32[src]

Calculates the Legendre symbol (self/p).

Examples

use rug::{Assign, Integer};
let a = Integer::from(5);
let mut p = Integer::from(7);
assert_eq!(a.legendre(&p), -1);
p.assign(11);
assert_eq!(a.legendre(&p), 1);

pub fn kronecker(&self, n: &Self) -> i32[src]

Calculates the Jacobi symbol (self/n) with the Kronecker extension.

Examples

use rug::{Assign, Integer};
let k = Integer::from(3);
let mut n = Integer::from(16);
assert_eq!(k.kronecker(&n), 1);
n.assign(17);
assert_eq!(k.kronecker(&n), -1);
n.assign(18);
assert_eq!(k.kronecker(&n), 0);

pub fn remove_factor_ref<'a>(
    &'a self,
    factor: &'a Self
) -> RemoveFactorIncomplete<'a>
[src]

Removes all occurrences of factor, and counts the number of occurrences removed.

Examples

use rug::{Assign, Integer};
let mut i = Integer::from(Integer::u_pow_u(13, 50));
i *= 1000;
let factor = Integer::from(13);
let r = i.remove_factor_ref(&factor);
let (mut j, mut count) = (Integer::new(), 0);
(&mut j, &mut count).assign(r);
assert_eq!(count, 50);
assert_eq!(j, 1000);

pub fn binomial_ref(&self, k: u32) -> BinomialIncomplete<'_>[src]

Computes the binomial coefficient over k.

The following are implemented with the returned incomplete-computation value as Src:

Examples

use rug::Integer;
// 7 choose 2 is 21
let i = Integer::from(7);
assert_eq!(Integer::from(i.binomial_ref(2)), 21);

pub fn random_below_ref<'a>(
    &'a self,
    rng: &'a mut dyn MutRandState
) -> RandomBelowIncomplete<'a>
[src]

Generates a non-negative random number below the given boundary value.

The following are implemented with the returned incomplete-computation value as Src:

Panics

Panics if the boundary value is less than or equal to zero.

Examples

use rug::{rand::RandState, Integer};
let mut rand = RandState::new();
let bound = Integer::from(15);
let i = Integer::from(bound.random_below_ref(&mut rand));
println!("0 ≤ {} < {}", i, bound);
assert!(i < bound);

Trait Implementations

impl Assign<&'_ SmallInteger> for SmallInteger[src]

impl Assign<SmallInteger> for SmallInteger[src]

impl<T: ToSmall> Assign<T> for SmallInteger[src]

impl Clone for SmallInteger[src]

impl Default for SmallInteger[src]

impl Deref for SmallInteger[src]

type Target = Integer

The resulting type after dereferencing.

impl<T: ToSmall> From<T> for SmallInteger[src]

impl Send for SmallInteger[src]

Auto Trait Implementations

impl !RefUnwindSafe for SmallInteger

impl !Sync for SmallInteger

impl Unpin for SmallInteger

impl UnwindSafe for SmallInteger

Blanket Implementations

impl<T> Any for T where
    T: 'static + ?Sized
[src]

impl<T> Az for T[src]

impl<T> Borrow<T> for T where
    T: ?Sized
[src]

impl<T> BorrowMut<T> for T where
    T: ?Sized
[src]

impl<T> CheckedAs for T[src]

impl<T> From<T> for T[src]

impl<T, U> Into<U> for T where
    U: From<T>, 
[src]

impl<T> OverflowingAs for T[src]

impl<T> SaturatingAs for T[src]

impl<T> ToOwned for T where
    T: Clone
[src]

type Owned = T

The resulting type after obtaining ownership.

impl<T, U> TryFrom<U> for T where
    U: Into<T>, 
[src]

type Error = Infallible

The type returned in the event of a conversion error.

impl<T, U> TryInto<U> for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.

impl<T> UnwrappedAs for T[src]

impl<T> WrappingAs for T[src]