Struct statrs::distribution::Dirichlet [−][src]
Implements the Dirichlet distribution
Examples
use statrs::distribution::{Dirichlet, Continuous}; use statrs::statistics::Mean; let n = Dirichlet::new(&[1.0, 2.0, 3.0]).unwrap(); assert_eq!(n.mean(), [1.0 / 6.0, 1.0 / 3.0, 0.5]); assert_eq!(n.pdf(&[0.33333, 0.33333, 0.33333]), 2.222155556222205);
Implementations
impl Dirichlet
[src]
pub fn new(alpha: &[f64]) -> Result<Dirichlet>
[src]
Constructs a new dirichlet distribution with the given concenctration parameters (alpha)
Errors
Returns an error if any element x
in alpha exist
such that x < = 0.0
or x
is NaN
, or if the length of alpha is
less than 2
Examples
use statrs::distribution::Dirichlet; let alpha_ok = [1.0, 2.0, 3.0]; let mut result = Dirichlet::new(&alpha_ok); assert!(result.is_ok()); let alpha_err = [0.0]; result = Dirichlet::new(&alpha_err); assert!(result.is_err());
pub fn new_with_param(alpha: f64, n: usize) -> Result<Dirichlet>
[src]
Constructs a new dirichlet distribution with the given
concenctration parameter (alpha) repeated n
times
Errors
Returns an error if alpha < = 0.0
or alpha
is NaN
,
or if n < 2
Examples
use statrs::distribution::Dirichlet; let mut result = Dirichlet::new_with_param(1.0, 3); assert!(result.is_ok()); result = Dirichlet::new_with_param(0.0, 1); assert!(result.is_err());
pub fn alpha(&self) -> &[f64]
[src]
Returns the concentration parameters of the dirichlet distribution as a slice
Examples
use statrs::distribution::Dirichlet; let n = Dirichlet::new(&[1.0, 2.0, 3.0]).unwrap(); assert_eq!(n.alpha(), [1.0, 2.0, 3.0]);
Trait Implementations
impl<'a> CheckedContinuous<&'a [f64], f64> for Dirichlet
[src]
fn checked_pdf(&self, x: &[f64]) -> Result<f64>
[src]
Calculates the probabiliy density function for the dirichlet
distribution
with given x
’s corresponding to the concentration parameters for this
distribution
Errors
If any element in x
is not in (0, 1)
, the elements in x
do not
sum to
1
with a tolerance of 1e-4
, or if x
is not the same length as
the vector of
concentration parameters for this distribution
Formula
(1 / B(α)) * Π(x_i^(α_i - 1))
where
B(α) = Π(Γ(α_i)) / Γ(Σ(α_i))
α
is the vector of concentration parameters, α_i
is the i
th
concentration parameter, x_i
is the i
th argument corresponding to
the i
th concentration parameter, Γ
is the gamma function,
Π
is the product from 1
to K
, Σ
is the sum from 1
to K
,
and K
is the number of concentration parameters
fn checked_ln_pdf(&self, x: &[f64]) -> Result<f64>
[src]
Calculates the log probabiliy density function for the dirichlet
distribution
with given x
’s corresponding to the concentration parameters for this
distribution
Errors
If any element in x
is not in (0, 1)
, the elements in x
do not
sum to
1
with a tolerance of 1e-4
, or if x
is not the same length as
the vector of
concentration parameters for this distribution
Formula
ln((1 / B(α)) * Π(x_i^(α_i - 1)))
where
B(α) = Π(Γ(α_i)) / Γ(Σ(α_i))
α
is the vector of concentration parameters, α_i
is the i
th
concentration parameter, x_i
is the i
th argument corresponding to
the i
th concentration parameter, Γ
is the gamma function,
Π
is the product from 1
to K
, Σ
is the sum from 1
to K
,
and K
is the number of concentration parameters
impl Clone for Dirichlet
[src]
impl<'a> Continuous<&'a [f64], f64> for Dirichlet
[src]
fn pdf(&self, x: &[f64]) -> f64
[src]
Calculates the probabiliy density function for the dirichlet
distribution
with given x
’s corresponding to the concentration parameters for this
distribution
Panics
If any element in x
is not in (0, 1)
, the elements in x
do not
sum to
1
with a tolerance of 1e-4
, or if x
is not the same length as
the vector of
concentration parameters for this distribution
Formula
(1 / B(α)) * Π(x_i^(α_i - 1))
where
B(α) = Π(Γ(α_i)) / Γ(Σ(α_i))
α
is the vector of concentration parameters, α_i
is the i
th
concentration parameter, x_i
is the i
th argument corresponding to
the i
th concentration parameter, Γ
is the gamma function,
Π
is the product from 1
to K
, Σ
is the sum from 1
to K
,
and K
is the number of concentration parameters
fn ln_pdf(&self, x: &[f64]) -> f64
[src]
Calculates the log probabiliy density function for the dirichlet
distribution
with given x
’s corresponding to the concentration parameters for this
distribution
Panics
If any element in x
is not in (0, 1)
, the elements in x
do not
sum to
1
with a tolerance of 1e-4
, or if x
is not the same length as
the vector of
concentration parameters for this distribution
Formula
ln((1 / B(α)) * Π(x_i^(α_i - 1)))
where
B(α) = Π(Γ(α_i)) / Γ(Σ(α_i))
α
is the vector of concentration parameters, α_i
is the i
th
concentration parameter, x_i
is the i
th argument corresponding to
the i
th concentration parameter, Γ
is the gamma function,
Π
is the product from 1
to K
, Σ
is the sum from 1
to K
,
and K
is the number of concentration parameters
impl Debug for Dirichlet
[src]
impl Distribution<Vec<f64, Global>> for Dirichlet
[src]
fn sample<R: Rng + ?Sized>(&self, r: &mut R) -> Vec<f64>
[src]
pub fn sample_iter<R>(self, rng: R) -> DistIter<Self, R, T> where
R: Rng,
[src]
R: Rng,
impl Entropy<f64> for Dirichlet
[src]
fn entropy(&self) -> f64
[src]
Returns the entropy of the dirichlet distribution
Formula
ln(B(α)) - (K - α_0)ψ(α_0) - Σ((α_i - 1)ψ(α_i))
where
B(α) = Π(Γ(α_i)) / Γ(Σ(α_i))
α_0
is the sum of all concentration parameters,
K
is the number of concentration parameters, ψ
is the digamma
function, α_i
is the i
th concentration parameter, and Σ
is the sum from 1
to K
impl Mean<Vec<f64, Global>> for Dirichlet
[src]
fn mean(&self) -> Vec<f64>
[src]
Returns the means of the dirichlet distribution
Formula
α_i / α_0
for the i
th element where α_i
is the i
th concentration parameter
and α_0
is the sum of all concentration parameters
impl PartialEq<Dirichlet> for Dirichlet
[src]
impl StructuralPartialEq for Dirichlet
[src]
impl Variance<Vec<f64, Global>> for Dirichlet
[src]
fn variance(&self) -> Vec<f64>
[src]
Returns the variances of the dirichlet distribution
Formula
(α_i * (α_0 - α_i)) / (α_0^2 * (α_0 + 1))
for the i
th element where α_i
is the i
th concentration parameter
and α_0
is the sum of all concentration parameters
fn std_dev(&self) -> Vec<f64>
[src]
Returns the standard deviation of the dirichlet distribution
Formula
sqrt((α_i * (α_0 - α_i)) / (α_0^2 * (α_0 + 1)))
for the i
th element where α_i
is the i
th concentration parameter
and α_0
is the sum of all concentration parameters
Auto Trait Implementations
impl RefUnwindSafe for Dirichlet
impl Send for Dirichlet
impl Sync for Dirichlet
impl Unpin for Dirichlet
impl UnwindSafe for Dirichlet
Blanket Implementations
impl<T> Any for T where
T: 'static + ?Sized,
[src]
T: 'static + ?Sized,
impl<T> Borrow<T> for T where
T: ?Sized,
[src]
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
[src]
T: ?Sized,
pub fn borrow_mut(&mut self) -> &mut T
[src]
impl<T> From<T> for T
[src]
impl<T, U> Into<U> for T where
U: From<T>,
[src]
U: From<T>,
impl<T> ToOwned for T where
T: Clone,
[src]
T: Clone,
type Owned = T
The resulting type after obtaining ownership.
pub fn to_owned(&self) -> T
[src]
pub fn clone_into(&self, target: &mut T)
[src]
impl<T, U> TryFrom<U> for T where
U: Into<T>,
[src]
U: Into<T>,
type Error = Infallible
The type returned in the event of a conversion error.
pub fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>
[src]
impl<T, U> TryInto<U> for T where
U: TryFrom<T>,
[src]
U: TryFrom<T>,
type Error = <U as TryFrom<T>>::Error
The type returned in the event of a conversion error.
pub fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>
[src]
impl<V, T> VZip<V> for T where
V: MultiLane<T>,
[src]
V: MultiLane<T>,