Trait statrs::distribution::CheckedContinuous [−][src]
The CheckedContinuous
trait provides an interface for
interacting with continuous statistical distributions with possible
failure modes
Required methods
fn checked_pdf(&self, x: T) -> Result<K>
[src]
Returns the probability density function calculated at x
for a given
distribution.
Examples
use statrs::distribution::{CheckedContinuous, Dirichlet}; let n = Dirichlet::new(&[1.0, 2.0, 3.0]).unwrap(); assert!(n.checked_pdf(&[0.0]).is_err());
fn checked_ln_pdf(&self, x: T) -> Result<K>
[src]
Returns the log of the probability density function calculated at x
for a given distribution.
Examples
use statrs::distribution::{CheckedContinuous, Dirichlet}; let n = Dirichlet::new(&[1.0, 2.0, 3.0]).unwrap(); assert!(n.checked_ln_pdf(&[0.0]).is_err());
Implementors
impl<'a> CheckedContinuous<&'a [f64], f64> for Dirichlet
[src]
fn checked_pdf(&self, x: &[f64]) -> Result<f64>
[src]
Calculates the probabiliy density function for the dirichlet
distribution
with given x
’s corresponding to the concentration parameters for this
distribution
Errors
If any element in x
is not in (0, 1)
, the elements in x
do not
sum to
1
with a tolerance of 1e-4
, or if x
is not the same length as
the vector of
concentration parameters for this distribution
Formula
(1 / B(α)) * Π(x_i^(α_i - 1))
where
B(α) = Π(Γ(α_i)) / Γ(Σ(α_i))
α
is the vector of concentration parameters, α_i
is the i
th
concentration parameter, x_i
is the i
th argument corresponding to
the i
th concentration parameter, Γ
is the gamma function,
Π
is the product from 1
to K
, Σ
is the sum from 1
to K
,
and K
is the number of concentration parameters
fn checked_ln_pdf(&self, x: &[f64]) -> Result<f64>
[src]
Calculates the log probabiliy density function for the dirichlet
distribution
with given x
’s corresponding to the concentration parameters for this
distribution
Errors
If any element in x
is not in (0, 1)
, the elements in x
do not
sum to
1
with a tolerance of 1e-4
, or if x
is not the same length as
the vector of
concentration parameters for this distribution
Formula
ln((1 / B(α)) * Π(x_i^(α_i - 1)))
where
B(α) = Π(Γ(α_i)) / Γ(Σ(α_i))
α
is the vector of concentration parameters, α_i
is the i
th
concentration parameter, x_i
is the i
th argument corresponding to
the i
th concentration parameter, Γ
is the gamma function,
Π
is the product from 1
to K
, Σ
is the sum from 1
to K
,
and K
is the number of concentration parameters