Struct statrs::distribution::Erlang [−][src]
Implements the Erlang distribution which is a special case of the Gamma distribution
Examples
use statrs::distribution::{Erlang, Continuous}; use statrs::statistics::Mean; use statrs::prec; let n = Erlang::new(3, 1.0).unwrap(); assert_eq!(n.mean(), 3.0); assert!(prec::almost_eq(n.pdf(2.0), 0.270670566473225383788, 1e-15));
Implementations
impl Erlang
[src]
pub fn new(shape: u64, rate: f64) -> Result<Erlang>
[src]
Constructs a new erlang distribution with a shape (k)
of shape
and a rate (λ) of rate
Errors
Returns an error if shape
or rate
are NaN
.
Also returns an error if shape == 0
or rate <= 0.0
Examples
use statrs::distribution::Erlang; let mut result = Erlang::new(3, 1.0); assert!(result.is_ok()); result = Erlang::new(0, 0.0); assert!(result.is_err());
pub fn shape(&self) -> u64
[src]
Returns the shape (k) of the erlang distribution
Examples
use statrs::distribution::Erlang; let n = Erlang::new(3, 1.0).unwrap(); assert_eq!(n.shape(), 3);
pub fn rate(&self) -> f64
[src]
Returns the rate (λ) of the erlang distribution
Examples
use statrs::distribution::Erlang; let n = Erlang::new(3, 1.0).unwrap(); assert_eq!(n.rate(), 1.0);
Trait Implementations
impl Clone for Erlang
[src]
impl Continuous<f64, f64> for Erlang
[src]
fn pdf(&self, x: f64) -> f64
[src]
Calculates the probability density function for the erlang distribution
at x
Remarks
Returns NAN
if any of shape
or rate
are INF
or if x
is INF
Formula
(λ^k / Γ(k)) * x^(k - 1) * e^(-λ * x)
where k
is the shape, λ
is the rate, and Γ
is the gamma function
fn ln_pdf(&self, x: f64) -> f64
[src]
impl Copy for Erlang
[src]
impl Debug for Erlang
[src]
impl Distribution<f64> for Erlang
[src]
fn sample<R: Rng + ?Sized>(&self, r: &mut R) -> f64
[src]
pub fn sample_iter<R>(self, rng: R) -> DistIter<Self, R, T> where
R: Rng,
[src]
R: Rng,
impl Entropy<f64> for Erlang
[src]
fn entropy(&self) -> f64
[src]
Returns the entropy of the erlang distribution
Formula
k - ln(λ) + ln(Γ(k)) + (1 - k) * ψ(k)
where k
is the shape, λ
is the rate, Γ
is the gamma function,
and ψ
is the digamma function
impl Max<f64> for Erlang
[src]
fn max(&self) -> f64
[src]
Returns the maximum value in the domain of the erlang distribution representable by a double precision float
Formula
INF
impl Mean<f64> for Erlang
[src]
impl Min<f64> for Erlang
[src]
fn min(&self) -> f64
[src]
Returns the minimum value in the domain of the erlang distribution representable by a double precision float
Formula
0
impl Mode<f64> for Erlang
[src]
impl PartialEq<Erlang> for Erlang
[src]
impl Skewness<f64> for Erlang
[src]
impl StructuralPartialEq for Erlang
[src]
impl Univariate<f64, f64> for Erlang
[src]
fn cdf(&self, x: f64) -> f64
[src]
Calculates the cumulative distribution function for the erlang
distribution
at x
Formula
γ(k, λx) (k - 1)!
where k
is the shape, λ
is the rate, and γ
is the lower
incomplete gamma function
impl Variance<f64> for Erlang
[src]
Auto Trait Implementations
impl RefUnwindSafe for Erlang
impl Send for Erlang
impl Sync for Erlang
impl Unpin for Erlang
impl UnwindSafe for Erlang
Blanket Implementations
impl<T> Any for T where
T: 'static + ?Sized,
[src]
T: 'static + ?Sized,
impl<T> Borrow<T> for T where
T: ?Sized,
[src]
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
[src]
T: ?Sized,
pub fn borrow_mut(&mut self) -> &mut T
[src]
impl<T> From<T> for T
[src]
impl<T, U> Into<U> for T where
U: From<T>,
[src]
U: From<T>,
impl<T> ToOwned for T where
T: Clone,
[src]
T: Clone,
type Owned = T
The resulting type after obtaining ownership.
pub fn to_owned(&self) -> T
[src]
pub fn clone_into(&self, target: &mut T)
[src]
impl<T, U> TryFrom<U> for T where
U: Into<T>,
[src]
U: Into<T>,
type Error = Infallible
The type returned in the event of a conversion error.
pub fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>
[src]
impl<T, U> TryInto<U> for T where
U: TryFrom<T>,
[src]
U: TryFrom<T>,
type Error = <U as TryFrom<T>>::Error
The type returned in the event of a conversion error.
pub fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>
[src]
impl<V, T> VZip<V> for T where
V: MultiLane<T>,
[src]
V: MultiLane<T>,