Trait statrs::statistics::Skewness [−][src]
The Skewness
trait specifies an object that has a closed form solution
for its skewness(s)
Required methods
fn skewness(&self) -> T
[src]
Returns the skewness. May panic depending on the implementor.
Examples
use statrs::statistics::Skewness; use statrs::distribution::Uniform; let n = Uniform::new(0.0, 1.0).unwrap(); assert_eq!(0.0, n.skewness());
Implementors
impl Skewness<f64> for Bernoulli
[src]
impl Skewness<f64> for Beta
[src]
fn skewness(&self) -> f64
[src]
Returns the skewness of the Beta distribution
Formula
2(β - α) * sqrt(α + β + 1) / ((α + β + 2) * sqrt(αβ))
where α
is shapeA and β
is shapeB
impl Skewness<f64> for Binomial
[src]
impl Skewness<f64> for Chi
[src]
impl Skewness<f64> for ChiSquared
[src]
fn skewness(&self) -> f64
[src]
Returns the skewness of the chi-squared distribution
Formula
sqrt(8 / k)
where k
is the degrees of freedom
impl Skewness<f64> for DiscreteUniform
[src]
impl Skewness<f64> for Erlang
[src]
impl Skewness<f64> for Exponential
[src]
impl Skewness<f64> for FisherSnedecor
[src]
fn skewness(&self) -> f64
[src]
Returns the skewness of the fisher-snedecor distribution
Panics
If freedom_2 <= 6.0
Remarks
Returns NaN
if freedom_1
or freedom_2
is INF
Formula
((2d1 + d2 - 2) * sqrt(8 * (d2 - 4))) / ((d2 - 6) * sqrt(d1 * (d1 + d2 - 2)))
where d1
is the first degree of freedom and d2
is
the second degree of freedom
impl Skewness<f64> for Gamma
[src]
impl Skewness<f64> for Geometric
[src]
impl Skewness<f64> for Hypergeometric
[src]
impl Skewness<f64> for InverseGamma
[src]
impl Skewness<f64> for LogNormal
[src]
fn skewness(&self) -> f64
[src]
Returns the skewness of the log-normal distribution
Formula
(e^(σ^2) + 2) * sqrt(e^(σ^2) - 1)
where μ
is the location and σ
is the scale
impl Skewness<f64> for Normal
[src]
impl Skewness<f64> for Pareto
[src]
impl Skewness<f64> for Poisson
[src]
impl Skewness<f64> for StudentsT
[src]
impl Skewness<f64> for Triangular
[src]
fn skewness(&self) -> f64
[src]
Returns the skewness of the triangular distribution
Formula
(sqrt(2) * (min + max - 2 * mode) * (2 * min - max - mode) * (min - 2 * max + mode)) / ( 5 * (min^2 + max^2 + mode^2 - min * max - min * mode - max * mode)^(3 / 2))
impl Skewness<f64> for Uniform
[src]
impl Skewness<f64> for Weibull
[src]
fn skewness(&self) -> f64
[src]
Returns the skewness of the weibull distribution
Formula
(Γ(1 + 3 / k) * λ^3 - 3μσ^2 - μ^3) / σ^3
where k
is the shape, λ
is the scale, and Γ
is
the gamma function, μ
is the mean of the distribution.
and σ
the standard deviation of the distribution