Struct statrs::distribution::LogNormal[][src]

pub struct LogNormal { /* fields omitted */ }

Implements the Log-normal distribution

Examples

use statrs::distribution::{LogNormal, Continuous};
use statrs::statistics::Mean;
use statrs::prec;

let n = LogNormal::new(0.0, 1.0).unwrap();
assert_eq!(n.mean(), (0.5f64).exp());
assert!(prec::almost_eq(n.pdf(1.0), 0.3989422804014326779399, 1e-16));

Implementations

impl LogNormal[src]

pub fn new(location: f64, scale: f64) -> Result<LogNormal>[src]

Constructs a new log-normal distribution with a location of location and a scale of scale

Errors

Returns an error if location or scale are NaN. Returns an error if scale <= 0.0

Examples

use statrs::distribution::LogNormal;

let mut result = LogNormal::new(0.0, 1.0);
assert!(result.is_ok());

result = LogNormal::new(0.0, 0.0);
assert!(result.is_err());

Trait Implementations

impl Clone for LogNormal[src]

impl Continuous<f64, f64> for LogNormal[src]

fn pdf(&self, x: f64) -> f64[src]

Calculates the probability density function for the log-normal distribution at x

Formula

(1 /  * sqrt()) * e^(-((ln(x) - μ)^2) / ^2)

where μ is the location and σ is the scale

fn ln_pdf(&self, x: f64) -> f64[src]

Calculates the log probability density function for the log-normal distribution at x

Formula

ln((1 /  * sqrt()) * e^(-((ln(x) - μ)^2) / ^2))

where μ is the location and σ is the scale

impl Copy for LogNormal[src]

impl Debug for LogNormal[src]

impl Distribution<f64> for LogNormal[src]

impl Entropy<f64> for LogNormal[src]

fn entropy(&self) -> f64[src]

Returns the entropy of the log-normal distribution

Formula

ln(σe^(μ + 1 / 2) * sqrt())

where μ is the location and σ is the scale

impl Max<f64> for LogNormal[src]

fn max(&self) -> f64[src]

Returns the maximum value in the domain of the log-normal distribution representable by a double precision float

Formula

INF

impl Mean<f64> for LogNormal[src]

fn mean(&self) -> f64[src]

Returns the mean of the log-normal distribution

Formula

e^(μ + σ^2 / 2)

where μ is the location and σ is the scale

impl Median<f64> for LogNormal[src]

fn median(&self) -> f64[src]

Returns the median of the log-normal distribution

Formula

e^μ

where μ is the location

impl Min<f64> for LogNormal[src]

fn min(&self) -> f64[src]

Returns the minimum value in the domain of the log-normal distribution representable by a double precision float

Formula

0

impl Mode<f64> for LogNormal[src]

fn mode(&self) -> f64[src]

Returns the mode of the log-normal distribution

Formula

e^(μ - σ^2)

where μ is the location and σ is the scale

impl PartialEq<LogNormal> for LogNormal[src]

impl Skewness<f64> for LogNormal[src]

fn skewness(&self) -> f64[src]

Returns the skewness of the log-normal distribution

Formula

(e^(σ^2) + 2) * sqrt(e^(σ^2) - 1)

where μ is the location and σ is the scale

impl StructuralPartialEq for LogNormal[src]

impl Univariate<f64, f64> for LogNormal[src]

fn cdf(&self, x: f64) -> f64[src]

Calculates the cumulative distribution function for the log-normal distribution at x

Formula

(1 / 2) + (1 / 2) * erf((ln(x) - μ) / sqrt(2) * σ)

where μ is the location, σ is the scale, and erf is the error function

impl Variance<f64> for LogNormal[src]

fn variance(&self) -> f64[src]

Returns the variance of the log-normal distribution

Formula

(e^(σ^2) - 1) * e^( + σ^2)

where μ is the location and σ is the scale

fn std_dev(&self) -> f64[src]

Returns the standard deviation of the log-normal distribution

Formula

sqrt((e^(σ^2) - 1) * e^( + σ^2))

where μ is the location and σ is the scale

Auto Trait Implementations

impl RefUnwindSafe for LogNormal

impl Send for LogNormal

impl Sync for LogNormal

impl Unpin for LogNormal

impl UnwindSafe for LogNormal

Blanket Implementations

impl<T> Any for T where
    T: 'static + ?Sized
[src]

impl<T> Borrow<T> for T where
    T: ?Sized
[src]

impl<T> BorrowMut<T> for T where
    T: ?Sized
[src]

impl<T> From<T> for T[src]

impl<T, U> Into<U> for T where
    U: From<T>, 
[src]

impl<T> ToOwned for T where
    T: Clone
[src]

type Owned = T

The resulting type after obtaining ownership.

impl<T, U> TryFrom<U> for T where
    U: Into<T>, 
[src]

type Error = Infallible

The type returned in the event of a conversion error.

impl<T, U> TryInto<U> for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.

impl<V, T> VZip<V> for T where
    V: MultiLane<T>, 
[src]