Struct statrs::distribution::Normal [−][src]
Implements the Normal distribution
Examples
use statrs::distribution::{Normal, Continuous}; use statrs::statistics::Mean; let n = Normal::new(0.0, 1.0).unwrap(); assert_eq!(n.mean(), 0.0); assert_eq!(n.pdf(1.0), 0.2419707245191433497978);
Implementations
impl Normal
[src]
pub fn new(mean: f64, std_dev: f64) -> Result<Normal>
[src]
Constructs a new normal distribution with a mean of mean
and a standard deviation of std_dev
Errors
Returns an error if mean
or std_dev
are NaN
or if
std_dev <= 0.0
Examples
use statrs::distribution::Normal; let mut result = Normal::new(0.0, 1.0); assert!(result.is_ok()); result = Normal::new(0.0, 0.0); assert!(result.is_err());
Trait Implementations
impl CheckedInverseCDF<f64> for Normal
[src]
fn checked_inverse_cdf(&self, x: f64) -> Result<f64>
[src]
impl Clone for Normal
[src]
impl Continuous<f64, f64> for Normal
[src]
fn pdf(&self, x: f64) -> f64
[src]
Calculates the probability density function for the normal distribution
at x
Formula
(1 / sqrt(2σ^2 * π)) * e^(-(x - μ)^2 / 2σ^2)
where μ
is the mean and σ
is the standard deviation
fn ln_pdf(&self, x: f64) -> f64
[src]
Calculates the log probability density function for the normal
distribution
at x
Formula
ln((1 / sqrt(2σ^2 * π)) * e^(-(x - μ)^2 / 2σ^2))
where μ
is the mean and σ
is the standard deviation
impl Copy for Normal
[src]
impl Debug for Normal
[src]
impl Distribution<f64> for Normal
[src]
fn sample<R: Rng + ?Sized>(&self, r: &mut R) -> f64
[src]
pub fn sample_iter<R>(self, rng: R) -> DistIter<Self, R, T> where
R: Rng,
[src]
R: Rng,
impl Entropy<f64> for Normal
[src]
fn entropy(&self) -> f64
[src]
Returns the entropy of the normal distribution
Formula
(1 / 2) * ln(2σ^2 * π * e)
where σ
is the standard deviation
impl InverseCDF<f64> for Normal
[src]
fn inverse_cdf(&self, x: f64) -> f64
[src]
impl Max<f64> for Normal
[src]
fn max(&self) -> f64
[src]
Returns the maximum value in the domain of the normal distribution representable by a double precision float
Formula
INF
impl Mean<f64> for Normal
[src]
fn mean(&self) -> f64
[src]
Returns the mean of the normal distribution
Remarks
This is the same mean used to construct the distribution
impl Median<f64> for Normal
[src]
impl Min<f64> for Normal
[src]
fn min(&self) -> f64
[src]
Returns the minimum value in the domain of the normal distribution representable by a double precision float
Formula
-INF
impl Mode<f64> for Normal
[src]
impl PartialEq<Normal> for Normal
[src]
impl Skewness<f64> for Normal
[src]
impl StructuralPartialEq for Normal
[src]
impl Univariate<f64, f64> for Normal
[src]
fn cdf(&self, x: f64) -> f64
[src]
Calculates the cumulative distribution function for the
normal distribution at x
Formula
(1 / 2) * (1 + erf((x - μ) / (σ * sqrt(2))))
where μ
is the mean, σ
is the standard deviation, and
erf
is the error function
impl Variance<f64> for Normal
[src]
Auto Trait Implementations
impl RefUnwindSafe for Normal
impl Send for Normal
impl Sync for Normal
impl Unpin for Normal
impl UnwindSafe for Normal
Blanket Implementations
impl<T> Any for T where
T: 'static + ?Sized,
[src]
T: 'static + ?Sized,
impl<T> Borrow<T> for T where
T: ?Sized,
[src]
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
[src]
T: ?Sized,
pub fn borrow_mut(&mut self) -> &mut T
[src]
impl<T> From<T> for T
[src]
impl<T, U> Into<U> for T where
U: From<T>,
[src]
U: From<T>,
impl<T> ToOwned for T where
T: Clone,
[src]
T: Clone,
type Owned = T
The resulting type after obtaining ownership.
pub fn to_owned(&self) -> T
[src]
pub fn clone_into(&self, target: &mut T)
[src]
impl<T, U> TryFrom<U> for T where
U: Into<T>,
[src]
U: Into<T>,
type Error = Infallible
The type returned in the event of a conversion error.
pub fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>
[src]
impl<T, U> TryInto<U> for T where
U: TryFrom<T>,
[src]
U: TryFrom<T>,
type Error = <U as TryFrom<T>>::Error
The type returned in the event of a conversion error.
pub fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>
[src]
impl<V, T> VZip<V> for T where
V: MultiLane<T>,
[src]
V: MultiLane<T>,