Struct statrs::distribution::Triangular [−][src]
Implements the Triangular distribution
Examples
use statrs::distribution::{Triangular, Continuous}; use statrs::statistics::Mean; let n = Triangular::new(0.0, 5.0, 2.5).unwrap(); assert_eq!(n.mean(), 7.5 / 3.0); assert_eq!(n.pdf(2.5), 5.0 / 12.5);
Implementations
impl Triangular
[src]
pub fn new(min: f64, max: f64, mode: f64) -> Result<Triangular>
[src]
Constructs a new triangular distribution with a minimum of min
,
maximum of max
, and a mode of mode
.
Errors
Returns an error if min
, max
, or mode
are NaN
or ±INF
.
Returns an error if max < mode
, mode < min
, or max == min
.
Examples
use statrs::distribution::Triangular; let mut result = Triangular::new(0.0, 5.0, 2.5); assert!(result.is_ok()); result = Triangular::new(2.5, 1.5, 0.0); assert!(result.is_err());
Trait Implementations
impl Clone for Triangular
[src]
fn clone(&self) -> Triangular
[src]
pub fn clone_from(&mut self, source: &Self)
1.0.0[src]
impl Continuous<f64, f64> for Triangular
[src]
fn pdf(&self, x: f64) -> f64
[src]
Calculates the probability density function for the triangular
distribution
at x
Formula
if x < min { 0 } else if min <= x <= mode { 2 * (x - min) / ((max - min) * (mode - min)) } else if mode < x <= max { 2 * (max - x) / ((max - min) * (max - mode)) } else { 0 }
fn ln_pdf(&self, x: f64) -> f64
[src]
Calculates the log probability density function for the triangular
distribution
at x
Formula
ln( if x < min { 0 } else if min <= x <= mode { 2 * (x - min) / ((max - min) * (mode - min)) } else if mode < x <= max { 2 * (max - x) / ((max - min) * (max - mode)) } else { 0 } )
impl Copy for Triangular
[src]
impl Debug for Triangular
[src]
impl Distribution<f64> for Triangular
[src]
fn sample<R: Rng + ?Sized>(&self, r: &mut R) -> f64
[src]
pub fn sample_iter<R>(self, rng: R) -> DistIter<Self, R, T> where
R: Rng,
[src]
R: Rng,
impl Entropy<f64> for Triangular
[src]
impl Max<f64> for Triangular
[src]
fn max(&self) -> f64
[src]
Returns the maximum value in the domain of the triangular distribution representable by a double precision float
Remarks
The return value is the same max used to construct the distribution
impl Mean<f64> for Triangular
[src]
impl Median<f64> for Triangular
[src]
fn median(&self) -> f64
[src]
Returns the median of the triangular distribution
Formula
if mode >= (min + max) / 2 { min + sqrt((max - min) * (mode - min) / 2) } else { max - sqrt((max - min) * (max - mode) / 2) }
impl Min<f64> for Triangular
[src]
fn min(&self) -> f64
[src]
Returns the minimum value in the domain of the triangular distribution representable by a double precision float
Remarks
The return value is the same min used to construct the distribution
impl Mode<f64> for Triangular
[src]
impl PartialEq<Triangular> for Triangular
[src]
fn eq(&self, other: &Triangular) -> bool
[src]
fn ne(&self, other: &Triangular) -> bool
[src]
impl Skewness<f64> for Triangular
[src]
fn skewness(&self) -> f64
[src]
Returns the skewness of the triangular distribution
Formula
(sqrt(2) * (min + max - 2 * mode) * (2 * min - max - mode) * (min - 2 * max + mode)) / ( 5 * (min^2 + max^2 + mode^2 - min * max - min * mode - max * mode)^(3 / 2))
impl StructuralPartialEq for Triangular
[src]
impl Univariate<f64, f64> for Triangular
[src]
fn cdf(&self, x: f64) -> f64
[src]
Calculates the cumulative distribution function for the triangular
distribution
at x
Formula
if x == min { 0 } if min < x <= mode { (x - min)^2 / ((max - min) * (mode - min)) } else if mode < x < max { 1 - (max - min)^2 / ((max - min) * (max - mode)) } else { 1 }
impl Variance<f64> for Triangular
[src]
fn variance(&self) -> f64
[src]
Returns the variance of the triangular distribution
Formula
(min^2 + max^2 + mode^2 - min * max - min * mode - max * mode) / 18
fn std_dev(&self) -> f64
[src]
Returns the standard deviation of the triangular distribution
Formula
sqrt((min^2 + max^2 + mode^2 - min * max - min * mode - max * mode) / 18)
Auto Trait Implementations
impl RefUnwindSafe for Triangular
impl Send for Triangular
impl Sync for Triangular
impl Unpin for Triangular
impl UnwindSafe for Triangular
Blanket Implementations
impl<T> Any for T where
T: 'static + ?Sized,
[src]
T: 'static + ?Sized,
impl<T> Borrow<T> for T where
T: ?Sized,
[src]
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
[src]
T: ?Sized,
pub fn borrow_mut(&mut self) -> &mut T
[src]
impl<T> From<T> for T
[src]
impl<T, U> Into<U> for T where
U: From<T>,
[src]
U: From<T>,
impl<T> ToOwned for T where
T: Clone,
[src]
T: Clone,
type Owned = T
The resulting type after obtaining ownership.
pub fn to_owned(&self) -> T
[src]
pub fn clone_into(&self, target: &mut T)
[src]
impl<T, U> TryFrom<U> for T where
U: Into<T>,
[src]
U: Into<T>,
type Error = Infallible
The type returned in the event of a conversion error.
pub fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>
[src]
impl<T, U> TryInto<U> for T where
U: TryFrom<T>,
[src]
U: TryFrom<T>,
type Error = <U as TryFrom<T>>::Error
The type returned in the event of a conversion error.
pub fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>
[src]
impl<V, T> VZip<V> for T where
V: MultiLane<T>,
[src]
V: MultiLane<T>,